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© Learnt harmonic mean estimator

© Radio interferometric imaging

© Proximal MCMC sampling and uncertainty quantification
© MAP estimation and uncertainty quantification

© Mass-mapping via weak gravitational lensing
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Bayesian inference
Parameter estimation

Bayes’ theorem

_ P(y|6,M)P(6| M)

POy, M) Pl

for parameters 6, model M and observed data y.
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Bayesian inference
Parameter estimation

Bayes’ theorem
likelihood prior

_[P<y|e,M>][P<0|M>]

P(0]y, M) ;

posterior P(y | M)

constant

for parameters 6, model M and observed data y.
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Bayesian inference
Parameter estimation

Bayes’ theorem

Shorthand notation: likelihood  prior

jzaEn

posterior

constant
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Bayesian inference
Parameter estimation

Bayes’ theorem

Shorthand notation: likelihood  prior
POly) |[==—Fr—

posterior
constant

For parameter estimation, typically draw samples from the posterior by Markov chain Monte
Carlo (MCMC) sampling.
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Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(Mi|y) _ P(Mi1) y P(y| M)
P(Mz|y) P(M2) = P(y|Ma)’
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Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

Ponly) |_| Pan) | [ Paian)
P(Mz2|y) P(M2) P(y| M2)
posterior odds prior odds Bayes factor
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Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

Ponly) |_| Pan) | [ Paian)
P(M2|y) P(M2) P(y|Mz)
posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

z=P(y| M) = / 6 £(0)7(6)
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For model selection, consider the posterior model probabilities:

Ponly) |_| Pan) | [ Paian)
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posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

z=P(y| M) = / 6 £(0)7(6)

— Challenging computational problem in high-dimensions.
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Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

Ponly) |_| Pan) | [ Paian)
P(M2|y) P(M2) P(y|Mz)
posterior odds prior odds Bayes factor

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

z=P(y| M) = / 6 £(0)7(6)

— Challenging computational problem in high-dimensions.

Variety of powerful methods exist:

@ Nested sampling (Skilling 2004), e.g. MultiNest (Feroz, Hobson, Bridges 2008), PolyCord (Handley,

Hobson, Lasenby 2015)

@ Heavens et al. (2017)
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Desirable properties for Bayesian evidence estimators

Seek estimator that is:
@ Agnostic to sampling method and uses posterior samples.

@ Scales to high-dimensions.
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Desirable properties for Bayesian evidence estimators

Seek estimator that is:

@ Agnostic to sampling method and uses posterior samples.

@ Scales to high-dimensions.

Harmonic mean estimator has potential to meet these criteria but has serious shortcomings as
originally posed.
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

1
P=Eeo|y) L(")}
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

p:EP(9|y)|: } / 9£(9) @ly)
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

p:EP(9|y)|: } / 9£(9) @ly)

3 1 LO)n(0)
_/ dgc(e) 2
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

p:EP(9|y)|: } / 9£(9) @ly)

3 1 LO)n(0)
_/ dgc(e) 2
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

p:EP(9|y)|: } / 9£(9) @ly)

3 1 LO)n(0)
_/d%m) 2
1

z

Original harmonic mean estimator (Newton & Raftery 1994)

N

1
0; ~ P(0
5 ©ly)
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

p:EP(9|y)|: } / 9£(9) @ly)

3 1 LO)n(0)
_/d%m) 2
1

z

Original harmonic mean estimator (Newton & Raftery 1994)

N

1
0; ~ P(0
5 ©ly)

Very simple approach but can fail catastrophically (Neal 1994).
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Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

()
L sy PO

1
p:;: . :/dQTG)P(tﬂy).
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Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

‘/d@ m(6) PO1)
2 /d9£(9 ©ly).

Importance sampling interpretation:
o Importance sampling target distribution is prior 7(0).

o Importance sampling density is posterior P(0 | y).
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Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

‘/d@ m(6) PO1)
1
- :/d&TG)P(My).

Importance sampling interpretation:
o Importance sampling target distribution is prior 7(0).

o Importance sampling density is posterior P(0 | y).

For importance sampling, typically want sampling density to have fatter tails than target.
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Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

importance sampling

‘/d@ m(6) PO1)
1
- :/d&TG)P(My).

Importance sampling interpretation:
o Importance sampling target distribution is prior 7(0).

o Importance sampling density is posterior P(0 | y).

For importance sampling, typically want sampling density to have fatter tails than target.

Not the case when importance sampling density is the posterior and the target is the prior.
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Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).
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Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

1 1
p=P(Q)— , 6 ~PO]y),
P Z;am) Y

where P(Q) is the prior probability of the posterior simulation support Q C ©.
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Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support €2 is a subset of the prior support ©,
hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

1 1
p=P(Q)— , 0; ~P(0 R
p=P() ;:1 2009 (01y)
where P(Q) is the prior probability of the posterior simulation support Q C ©.

Mitigates simulation pseudo bias but does not eliminate.
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

P=Epo|y) E(@ 9)} /9£(9) P(Oly)

High-dimensional uncertainty quantification  (Extra)



Evidence Estimators Numerical Examples Code

Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

¢ (9)
P=Epo|y) E(@ 9)} /9£(9) O
e(0)  LO)7(0)
/dec(e) © =
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

w(9)
P=Epo|y) E(@ 9)} /9£(9) O
_ w(@)  LO)m(9)
_/ dec(e) 0 =z
1
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ¢(6) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

/ 92O
E(G 9) L(0)w(0)
)

_ e(0) L(O)m(0)
_/ dec(o)w(e) z

P=Epg|y) PO 1y)

1

z

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

N
Z 0; ~PO|y)
E 71'(0

7,:1
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Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

71 fdep(9| P@|y)
p=1= —yf/dew) PO 1Y)

z z
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Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

71 fdep(9| P@|y)
p=1= —yf/dew) PO 1Y)

z z

o Ensure importance sampling target ¢(6) does not have fatter tails than posterior P(0 |y)
(importance sampling density).
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Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:
1 fdQP(9|y P@|y)
=—-=——= = [ d0—"—P(0 .
/ = [ av 500l

z z

o Ensure importance sampling target ¢(6) does not have fatter tails than posterior P(0 |y)
(importance sampling density).

— How set importance sampling target distribution ¢(0)?
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Re-targeted harmonic mean estimator
How set importance sampling target distribution ¢(6)?

Variety of cases been considered:
o Multi-variate Gaussian (e.g. Chib 1995)

o Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)
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Re-targeted harmonic mean estimator
How set importance sampling target distribution ¢(6)?

Variety of cases been considered:

o Multi-variate Gaussian (e.g. Chib 1995)

o Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

L(0)7(0)

z

(poptimal (0) —

(resulting estimator has zero variance).
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Re-targeted harmonic mean estimator
How set importance sampling target distribution ¢(6)?

Variety of cases been considered:
o Multi-variate Gaussian (e.g. Chib 1995)

o Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

(poptimal (0) — £(9)7T(0)

(resulting estimator has zero variance).

Recall:

LN
Z£ 7r(9 0; ~PO|y)

i=1
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Re-targeted harmonic mean estimator

How set importance sampling target distribution ¢(6)?

Variety of cases been considered:

o Multi-variate Gaussian (e.g. Chib 1995)

o Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

(poptimal (0) — £(9)7T(0)

(resulting estimator has zero variance).

Recall:

>
[
2=

N
Z 0; ~PO|y)
£ 7r(9

=1

But clearly not feasible since requires knowledge of the evidence z (recall the target must be
normalised) — requires problem to have been solved already!
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

w(6) = poetimal(g) =

L(0)m(6)

High-dimensional uncertainty quantification
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ML

90(9) ~ (Poptimal(e) _ M

@ Approximation not required to be highly accurate.

@ Must not have fatter tails than posterior.
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ML

<p(9) ~ (Poptimal(e) _ M

@ Approximation not required to be highly accurate.

@ Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other sanity
checks.
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Learnt harmonic mean estimator
Learning the target distribution

Consider a variety of machine learning approaches:
o Uniform hyper-ellipsoid
o Kernel Density Estimation (KDE)

o Modified Gaussian mixture model (MGMM)

Modify learning objective function to include variance penalty and regularisation.
Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning approach and hyperparameters.
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Rosenbrock example
Posterior

Rosenbrock function is the classical example of a pronounced thin curving degeneracy, with
likelihood defined by

n—1

10) =3 [(a=00% + 00551 —62)2] , 10g(£(60) = —£(0) -

i=1

10

POy

100 75 5 5
50025 00 a5 5,

. 1
—7.5-10.0 15

3

(a) Log-Posterior (b) Posterior

Figure: Rosenbrock posterior evaluated on grid.
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Rosenbrock example
MCMC sampling and learning the target distribution ¢

[
z

251 / 1
0.0 =

=15 0.0 15 3.0 0.0 25 50 7.5 10.0
o 0,

Figure: Posterior recovered by MCMC sampling.
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MCMC sampling and learning the target distribution ¢

[
z

0.0

Figure: Posterior recovered

0.0 25 50 7.5 10.0
0

by MCMC sampling.

Jason McEwen

6
lo

e

~5.0
100 -75 -50 -25 00 25 50 75 100

Figure: Learnt target distribution ¢ (by KDE).
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Rosenbrock example

Accuracy of learnt harmonic mean estimator
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o Compare to Monte Carlo simulations, repeating entire analysis.

@ Also estimate the variance of the estimator

w ow w
NONN
N A O

w
i
®

Inverse evidence (p)
!.U w
= N
o o

3.14
3.12

Truth

Measured

Estimated

(a) Inverse evidence

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Rosenbrock example
Accuracy of learnt harmonic mean estimator

o Compare to Monte Carlo simulations, repeating entire analysis.

@ Also estimate the variance of the estimator and its variance.

s e le-3
3.26 6
_.3.24 )
2 g5
y3.22 =
5 54
T 3.20 g
3 1 T 2
®318 Truth | £3
0 3
$316 | J 32
£ o
o
3.14 g,
=
3.12 e
Measured Estimated ° Measured Estimated
(a) Inverse evidence (b) Variance of inverse evidence

Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.
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Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.
Data model: Prior model:

yi ~ N(p,771) Mean: p ~ N(po, (o) ")
Precision: 7 ~ Ga(ag, bo)

1o 70 a bo

Norn:alv Gamma

W Normal

Figure: Graph of hierarchical Bayesian model of Normal-Gamma example.
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Normal-Gamma example
Analytic evidence

Analytic evidence:

2 = (2m)-n/2L(an) B6° (2) 2
F(ao) b

where

TN
T™m =70+ 7N, an:a0+n/27 bn =bo + = Z(yz %
0
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°

Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%)
Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888  -150.2375  -158.0863  -156.9350  -155.7935
Estimated log(%) -160.3883  -150.2370  -158.0851  -156.9350  -155.7921

Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Normal-Gamma example

Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%) -160.3883 -159.2370 -158.0851 -156.9359 -155.7921
Error (learnt harmonic mean) -0.0005 -0.0005 -0.0012 0.0000 -0.0014

Error (original harmonic mean)™

*Friel & Wyse (2012)

g
o
=
o

1.005

1.000

0.995

Relative accuracy (Zestimated/Zanalytic)

——

0.990
1075

1074

1073 102 107! 10° 10t
Prior size (To)

Figure: Accuracy for various prior sizes 7¢.
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Normal-Gamma example
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Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes 7.

Prior size ¢ 1074 1073 1072 1071 10°
Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(%) -160.3883 -159.2370 -158.0851 -156.9359 -155.7921
Error (learnt harmonic mean) -0.0005 -0.0005 -0.0012 0.0000 -0.0014
Error (original harmonic mean)™ -12.2100 - -9.7900 -8.5000 -7.1000
*Friel & Wyse (2012)

~ 1.010

§

3 1.005

g S S I

> 1.000 + + 1

©

5

2

I+

© 0.995

(]

=

=

©

2 0.990

770 107 107 1072 107! 10° 10!

Prior size (To)

Figure: Accuracy for various prior sizes 7¢.
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Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:
@ maximum compression strength parallel to grain y;,
o density x;,
o density adjust for resin content z;,

for i € {1,...,n} where n = 42 specimens.

High-dimensional uncertainty quantification
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Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:
@ maximum compression strength parallel to grain y;,
o density x;,
o density adjust for resin content z;,

for i € {1,...,n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?

High-dimensional uncertainty quantification  (Extra)
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Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a+m+6i, ein(D,Tfl),

Density

High-dimensional uncertainty quantification  (Extra)
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Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a+m+6i, ein(D,Tfl),

Density

M; : yi:7++77i: ni ~N(0,A71) .

Resin-adjusted density
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Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M : yi=a+m+6i, ein(D,Tfl),

Density

M; : yi:’Y++77i: ni ~N(0,A71) .

Resin-adjusted density

Priors for model 1 (similar for model 2):
o~ N(,ua, (r()'r)fl) ,
ﬁ ~ N(,Ufﬁv (507)71) s

T ~ Ga(ao,bo) ,

(12a = 3000, g = 185, 7o = 0.06, so = 6, ag = 3, by = 2 x 3002).

(Extra)
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Non-nested linear regression: Radiata pine example
Models

Normal

i€ {1,...,n}

Figure: Graph of hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).

Jason McEwen High-dimensional uncertainty quantification (Extra)
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Non-nested linear regression: Radiata pine example
Analytic evidence

Analytic evidence:

ap—n/2

—n/2ba0 I'(ao +n/2) |Q0|1/2 (
T(ao)  |M|/2

Z=T

y + pud Qopo — v§ Mo + 2bo) ~

where po = (,ua,,uB)T, Qo = diag(ro,s0), and M = XTX + Qo.

High-dimensional uncertainty quantification  (Extra)
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model M» log BF21
log(z1) log(22) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368

Estimated
Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model M» log BF21

log(z1) log(22) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350

Error (learnt harmonic mean)

Error (original harmonic mean)™

*Friel & Wyse (2012)
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model M» log BF21

log(z1) log(z2) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018

Error (original harmonic mean)™

*Friel & Wyse (2012)

High-dimensional uncertainty quantification  (Extra)



Evidence Estimators Numerical Examples Code

Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M; Model M» log BF21

log(z1) log(z2) = log(z2) — log(z1)
Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018
Error (original harmonic mean)* - - 0.17372

*Friel & Wyse (2012)
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Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
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Evidence Evidence Estimators Numerical Examples Code

Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
User-facing features:
o Ease of use (modular python package).
@ Follow software engineering best-practice (e.g. well documented, extensive test suite, Cl).
o Cython for speed.
o Flexible choice of sampler (we use emcee).

o Bespoke integrated cross-validation to select machine learning algorithm and
hyperparameters.
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Evidence Estimators Numerical Examples Code
Code

Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.
User-facing features:
o Ease of use (modular python package).
@ Follow software engineering best-practice (e.g. well documented, extensive test suite, Cl).
o Cython for speed.
o Flexible choice of sampler (we use emcee).

o Bespoke integrated cross-validation to select machine learning algorithm and
hyperparameters.

Under the hood:
o Bespoke objective functions with variance penalty and regularisation.

@ Solve by bespoke mini-batch stochastic gradient descent.
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Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic
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Evidence Estimators

Numerical Examples Code
Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains, ndim, In_ posterior, args=[args])
sampler.run_mcmc(pos, samples per chain) -

samples = np.ascontiguousarray (sampler.chain[:,nburn:,:])

Inprob =

np.ascontiguousarray (sampler.Inprobability [:, nburn:])

High-dimensional uncertainty quantification
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Evidence

Code

Pseudo code example

Evidence Estimators Numerical Examples Code

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler
sampler = emcee. EnsembleSampler(nchains,
sampler.run_mcmc(pos, samples_ per_chain)

samples = np.ascontiguousarray (sampler.chain[:,nburn
Inprob = np.ascontiguousarray(sampler

ndim, In_posterior,

:,:])

.Inprobability [:,nburn:])

args=[args])

# Set up chains
chains = harmonic. Chains(ndim)

chains.add_chains_3d(samples, Inprob)

-~ Jason McEwen |
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Code

Pseudo code example

Evidence Estimators Numerical Examples Code

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

sampler = emcee. EnsembleSampler(nchains, ndim, In_ posterior, args=[args])
sampler.run_mcmc(pos, samples per chain) -

samples = np.ascontiguousarray (sampler.chain[:,nburn:,:])

Inprob = np.ascontiguousarray(sampler.Inprobability [:,nburn:])

# Set up chains
chains = harmonic. Chains(ndim)
chains.add_chains_3d(samples, Inprob)

# Fit model

chains_train, chains_ test = harmonic. utils.split_data(chains, train_prop=0.05)
model = harmonic.model. KernelDensityEstimate (ndim, domain, hyper parameters)
model. fit (chains_train.samples, chains_train.In_posterior)

-~ Jason McEwen |
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______ Evidence RI_Prox MCMC_MAP_Mass-Mapping _

Code

Pseudo code example

# Import packages
import numpy as np
import emcee
import harmonic

# Run MCMC sampler

Evidence Estimators Numerical Examples Code

sampler = emcee.EnsembleSampler(nchains, ndim, In_ posterior, args=[args])
sampler.run_mcmc(pos, samples_ per_chain)

samples = np.ascontiguousarray(sampler.chain[:,nburn: , :])

Inprob = np.ascontiguousarray(sampler.Inprobability [:,nburn:])

# Set up chains

chains = harmonic. Chains(ndim)

chains.add_chains_3d(samples, Inprob)

# Fit model

chains_train, chains_ test = harmonic. utils.split_data(chains, train_prop=0.05)

model = harmonic.model. KernelDensityEstimate (ndim,

model. fit (chains_train.samples,

# Compute evidence

domain, hyper parameters)

chains train.In_ posterior)

evidence = harmonic.Evidence(chains_test.nchains, model)
evidence.add chains(chains_test)
In_evidence, In_evidence std = evidence.compute In_evidence()

-~ Jason McEwen |
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Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

= Learnt harmonic mean estimator
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Evidence Evidence Estimators Numerical Examples Code

Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

= Learnt harmonic mean estimator

Future work:
o Finalising paper.

@ Numerical optimisations.

Apply to more examples and push to higher dimensions.

Make code public.

o Extend general approach to other statistical problems (e.g. learnt importance sampling
distributions, learnt proposal distributions).
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Outline

© Radio interferometric imaging
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Statistics

e.g. Bayesian Inference

Astrostatistics

/ Astroinformatics

Applied Math

e.g. Wavelets, Sparsity,

Compressed Sensing
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Square Kilometre Array (SKA)

High-dimensional uncertainty quantification



B S o RS R VSN VEEVCETINPg  Sparse regularisation Algorithms  Results
The SKA poses a considerable big-data challenge
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B S o RS R VSN VEEVCETINPg  Sparse regularisation Algorithms  Results
The SKA poses a considerable big-data challenge
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>
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Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.
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Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g. , may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

High-dimensional uncertainty quantification  (Extra)



Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

msynthesis =W x argcinin[Hy - (D\Voc”; +A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .
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Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

msynthesis =W x argcinin[Hy - (D\Voc”; +A ||a||1:|

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Typically sparsity assumption justified by analysing example signals in transformed domain.

o Different to synthesising signals.
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Sparse regularisation
Synthesis and analysis frameworks

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Typically sparsity assumption justified by analysing example signals in transformed domain.
o Different to synthesising signals.

@ Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [ [y — @z + A [|w'z], |

Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.
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Sparse regularisation
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.

o Promote average sparsity by solving the constrained reweighted ¢; analysis problem:

min [|[WWix|; subjectto |ly—®x|2<e and x>0
RN

SARA
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Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.
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Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.

@ Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet, & Wiaux 2016)

Y1 (03] G:1M;
Y= : s o = . = X Fz
Yng @y Gnd My,
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Distributed and parallelised convex optimisation
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Standard algorithms

Output Data
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Sparse regularisation Algorithms Results

Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms

Reconstruction

@ Hybrid w-stacking and w-projection distributed and parallelised reconstruction
(Pratley, Johnston-Hollitt & McEwen 2018)

e 100 millions visibilities (measurements)
o 4096x4096 pixel image (~17 million pixels)
o 17° field of view

o w-terms of £300 wavelengths (to account for wide fields)

Imaging with exact wide-field corrections for 100 million visibilities in 30 minutes.

Jason McEwen High-dimensional uncertainty quantification (Extra)
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Public open-source codes

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

High-dimensional uncertainty quantification
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http://basp-group.github.io/purify/
http://basp-group.github.io/sopt/

m Sparse regularisation Algorithms Results
Imaging observations from the VLA and ATCA with PURIFY

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (uniform) (b) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing
Outline

© Proximal MCMC sampling and uncertainty quantification
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Prox MCMC

MCMC sampling and uncertainty quantification

[Observed visibilities in Rl imaging: y

Sample full posterior by .
‘ MCMC methods: p(x|y) HPD credible regions: Cq

\

Pixel-wise credible
intervals: (£—,&4)

( Point estimator: @* _)————(  Hypothesis testing
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling the full posterior distribution

o Sample full posterior distribution P(x |y).

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
e Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.
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P-MALA MYULA Experiments Hypothesis testing
MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(z|y) =

. exp(f)

Posterior Smooth
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(ely) = (@) | x (- al@)])

Posterior Smooth

o If g(x) differentiable can adopt MALA (Langevin dynamics).
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form:

P(ely) = (@) | x (- al@)])

Posterior Smooth
o If g(x) differentiable can adopt MALA (Langevin dynamics).

@ Based on Langevin diffusion process L£(t), with 7 as stationary distribution:
1
dL(t) = 5Vlog m(L(t))dt +dW(t), L£(0)=1lo

where W is Brownian motion.
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

MCMC sampling with gradients

Langevin dynamics

Consider posteriors of the following form:

P(ely) = (@) | x (- al@)])

Posterior Smooth

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L£(t), with 7 as stationary distribution:

dL(t):% Viogn(£(8) |dt +dW(r), £(0) =10

Gradient

where W is Brownian motion.

Need gradients so cannot support sparse priors.

High-dimensional uncertainty quantification  (Extra)



Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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P-MALA MYULA Experiments Hypothesis testing
Proximal MCMC methods

@ Exploit proximal calculus.

@ “Replace gradients with sub-gradients”.

Y

2

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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P-MALA MYULA Experiments
Proximal MALA

Moreau approximation

Hypothesis testing

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Moreau approximation

o Moreau approximation of f(x) o exp(—g(x)):

2
fMA@) = sup f(u) exp( 1=
uERN 2)\

@ Important properties of fRAA(m):
QO Asx—0, M (x) - f(x)

@ Viog fiM(2) = (prox;(x) — =)/A

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x |y) = 7(x) exp(— ).

Convex
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)
@ Consider log-convex posteriors: P(x |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

High-dimensional uncertainty quantification  (Extra)



Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)
@ Consider log-convex posteriors: P(x |y) = 7(x) exp(— ).

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

Convex

dL(t) = %Vlogfr(ﬁ(t))dt +dW(t), L£(0)=1o.

@ Euler discretisation and apply Moreau approximation to 7:

8
(m+D) — g(m) 5 Vieg (1) [+ Vow ™ .

Vlog mx(x) = (prox, (z) — x)/X
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

@ Consider log-convex posteriors: P(x |y) = m(x) o exp(—
)

@ Langevin diffusion process £(t), with 7 as stationary distribution (V' Brownian motion):

onvex

).

1
dL(t) = 5v1og7r(z:(t))dt +dW(t), L(0)=1Io.
@ Euler discretisation and apply Moreau approximation to 7:

s
1t = g m) 5| Vies

Vlog mx(x) = (prox, (z) — x)/X

@ Metropolis-Hastings accept-reject step.
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(@) = fi(@) + fo(a), where| fi(@) = ul|[W'z| |and| fa(z) = |ly — ®=|3/20°
Prior Likelihood

@ Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{u” ull1 + 552 3

ueRN
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Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (w — 5T (D — 'y)/2cr2)

f1

Single forward-backward iteration
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Proximal MALA

Computing proximity operators for the analysis case

Recall posterior: () o exp(—g(x)).

Let g(z) = f1(@) + f2(@), where | fi(x) = pl|Wiz|1 [and | fo(a) = ||y — ®z[3/20°
Prior Likelihood

Must solve an optimisation problem for each iteration!

by —eulf , fuslf )

5/2(2) — argmin { g vt
proxg’ ~(z) argmln{,u” ull1 + 552 3

ueRN

o Taylor expansion at point x: ||y — ®ul3 = ||y — ®z||3 + 2(u — =) T o (dz — ).

@ Then proximity operator approximated by

proxg/z(w) ~ prox(;/2 (:c — 5T (D — 'y)/202)

f1

Single forward-backward iteration

@ Analytic approximation:

, where & = & — 6@T (dx — y)/202.

proxg/2(w) ~o+ W (softm;/Q(llle;) = \IIT'T;))
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

o Let §(x(a)) = fi(a) + f2(a), where| fi(a) = pllal: |and| f2(a) = |y — ®Wal|3/20>
Prior Likelihood
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P-MALA MYULA Experiments Hypothesis testing
Proximal MALA

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

o Let g(z(a)) = fi(a)+ fo(a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/2(a) = argmin {u||u||1 4F
ueRL
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Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

lly — W3 + |lu —all3 }
202 )

proxg/Q(a) = argmin {u||u||1 IF
ueRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration
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Proximal MALA

Computing proximity operators for the synthesis case

Recall posterior: () o exp(—g(x)).

[
5]

fi(a) = plally [and| fo(a) = [ly — ®Wa3/207
Prior Likelihood

Let §(z(a)) = fl (a)+ fz (a), where

@ Must solve an optimisation problem for each iteration!

— OWyl2 u — a2
lly I3 + I Hz}

5/2, \ :
prox, (@) = argmin {p||u||1 —+ 252 3

u€eRL

o Taylor expansion at point a: ||y — ®Wu|j3 ~ ||y — ®Wa|? + 2(u — a) TWidf (dWa — y).

Then proximity operator approximated by

proxg/2(a) = prox:i/Z (a —swiof(owa — y)/202)

1

Single forward-backward iteration

o Analytic approximation:

proxg/Q(a) ~ soft 5 /2 (a —swiof(owa — y)/2a2)
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Moreau-Yosida approximation

@ Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida approximation

o Moreau-Yosida approximation (Moreau envelope) of f:

lu — 2|

(@)= inf f(u)+ 7

o Important properties of f&"Y(m)
O As)— 0, fW(z) = f(z)

Q@ VAY(x) = (z — prox}(z))/A

z ; o ; :
Figure: lllustration of Moreau-Yosida envelope of |z| for varying A [Credit: Stack exchange (ubpdqn)]
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Prox MCMC

MYULA
MCMC sampling

P-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x | y) = m(x) o< exp(—g(x)), where

9@ = [ 1@ ] +[ @ ]i
) [%p]
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MYULA
MCMC sampling

P-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x | y) = m(x) o< exp(—g(x)), where

5 k=
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogﬂ(ﬁ(t))dt +dw(t), £(0)=1Io .
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Prox MCMC

MYULA
MCMC sampling

P-MALA MYULA Experiments Hypothesis testing

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x | y) = m(x) o< exp(—g(x)), where

5 k=
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogﬂ(ﬁ(t))dt +dw(t), £(0)=1Io .

@ Euler discretisation and apply Moreau-Yosida approximation to fi:

I (C O g V log

™y [+ VEw™ .

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)
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Prox MCMC

P-MALA MYULA Experiments Hypothesis testing
MYULA

MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

@ Consider log-convex posteriors: P(x | y) = m(x) o< exp(—g(x)), where

5 S
s@) =| f1(@) |2 +| fat@) | £
O wn
@ Langevin diffusion process L(t), with 7 as stationary distribution (V' Brownian motion):

dL(t) = %Vlogw(ﬁ(t))dt +dw(t), £(0)=1Io .

@ Euler discretisation and apply Moreau-Yosida approximation to fi:

Viogn(x) ~ (prox?l () — :1:)//\ — Vfa(x)

@ No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target e requires:

o Worst case: order N°log?(e~1)e~? iterations.

o Strong convexity worst case: order N log(N) log?(e~!)e~2 iterations.

High-dimensional uncertainty quantification (Extra)



Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(z) = fi(@) + f2(@), where | fi(x) = p|W'z||; |and [ fo(@) = |ly — &3 /257
Prior Likelihood
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the analysis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(x) = fi(x) + fa(x), where

fi(@) = pl|Wiz|; |and [ fo(@) = |ly — &3 /257
Prior Likelihood

@ Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox{/z(w) =z+W (softﬂa/Q(WTw) “’Tw)) ’
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

o Let g(a(a) = fi(a) + fa(a), where| fi(a) = plalls |and | fa(a) = [ly — ®Wal3/20°

Prior Likelihood
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Computing proximity operators for the synthesis case

o Recall posterior: m(x) o exp(—g(x)).

fi(a) = ullalls {and| fa(a) = ||y — ®Wal3/20°

Prior Likelihood

o Let g(z(a)) = fi(a)+ fa(a), where

@ Only need to compute proximity operator of fi, which can be computed analytically
without any approximation:

prox‘;{Q(a,) = soft,,5/2(a)

High-dimensional uncertainty quantification  (Extra)
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Numerical experiments
MYULA with analysis model

(a) Ground truth

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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a1 6 |
| .I .Y

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Numerical experiments
MYULA with analysis model

Figure: HII region of M31
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Evidence Rl Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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Evidence Rl Prox MCMC MAP N\ i P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
MYULA with analysis model

- { .
| nl |

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling

CPU time (min)

Image Method Analysis  Synthesis
Cvenus A P-MALA 2274 1762
ygnu MYULA 1056 942
M31 P-MALA 1307 944
MYULA 618 581

P-MALA 1122 879

W28 MYULA 646 598
P-MALA 1144 881

3C288 MYULA 607 538
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.

@ Inpaint background (noise) into region, yielding surrogate image x'.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.
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Prox MCMC P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.

o If &’ € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.

High-dimensional uncertainty quantification  (Extra)



P-MALA MYULA Experiments Hypothesis testing

Evidence Rl Prox MCMC MAP Mass-Mapping

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Numerical experiments

(a) Recovered image

Figure: Cygnus A
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(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Evidence Rl Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

. 1. Cannot reject null
‘ hypothesis
' = cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Evidence Rl Prox MCMC MAP Mass-

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Supernova remnant W28

P-MALA MYULA Experiments Hypothesis testing
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Evidence Rl Prox MCMC MAP Mass-

Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Prox MCMC MAP

Mass-Mapping

Evidence RI

Hypothesis testing

Numerical experiments

'

(a) Recovered image

P-MALA MYULA

Figure: 3C288

High-dimensional uncertainty quantification

Experiments Hypothesis testing

(Extra)



Evidence Rl Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments
(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Evidence Rl Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing

Numerical experiments
1. Reject null hypothesis
(a) Recovered image (b) Surrogate with region removed

= structure physical

2. Cannot reject null
hypothesis

= cannot make strong
statistical statement about
origin of structure

Figure: 3C288

High-dimensional uncertainty quantification  (Extra)



MAP Local credible intervals Experiments Hypothesis testing

Outline

© MAP estimation and uncertainty quantification
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MAP Local credible intervals Experiments Hypothesis testing

Proximal MCMC sampling and uncertainty quantification

[Observed visibilities in Rl imaging: y

Sample full posterior by .
‘ MCMC methods: p(x|y) HPD credible regions: Cq

\

Pixel-wise credible
intervals: (£—,&4)

( Point estimator: @* _)————(  Hypothesis testing
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MAP Local credible intervals Experiments Hypothesis testing

MAP estimation and uncertainty quantification

[Observed visibilities in Rl imaging: y

N

MAP image Approximate HPD
estimation: Tmap credible regions: Cy

\

Approximate local credible
intervals: (£_,€.)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
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MAP Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(®*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.
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MAP Local credible intervals Experiments Hypothesis testing

Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(®*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.

o Compute x* by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.

High-dimensional uncertainty quantification  (Extra)



MAP Local credible intervals Experiments Hypothesis testing

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b, 2018; arXiv:1711.04819; arXiv:1811.02514)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

High-dimensional uncertainty quantification  (Extra)
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MAP Local credible intervals Experiments Hypothesis testing

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b, 2018; arXiv:1711.04819; arXiv:1811.02514)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =x"(T-¢)+& |
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MAP Local credible intervals Experiments Hypothesis testing

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b, 2018; arXiv:1711.04819; arXiv:1811.02514)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =x"(T-¢)+& |

Given 7, and x*, compute the credible interval by

é— = mEin {f ‘ gy(m/) < Ao, V€ € [—o0, +OO)} B

Ee = mgx{s | 9y(x') < Aa, V€ € [—00,+00)} .
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Evidence Rl Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

MAP

() point estimat (b) local credible interval (c) local credible interval (d) local credible interval
a) point estimators

(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

& |

G 5
4 |

&d £

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

& |
SN
4 |
i

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

& |
hd 5 N
1]

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

o | '
<121 1
Ed £l I8

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for M31 for the analysis model.
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Evidence Rl Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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MAP Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

i

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Numerical experiments

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Numerical experiments

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Evidence Rl Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

Numerical experiments

(a) point estimators

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments
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(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

MAP

(a) point estimators

Figure: Length of local credible intervals for W28 for the analysis model.

High-dimensional uncertainty quantification  (Extra)



Evidence Rl Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

Numerical experiments

P-MALA

MAP

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

(a) point estimators

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Local credible intervals Experiments Hypothesis testing

Numerical experiments

o ol
q Z l

o~ o
% I "“ |

(b) local credible interval (c) local credible interval (d) local credible interval

(a) point estimators L R . ) N )
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Local credible intervals Experiments Hypothesis testing

Numerical experiments

g o~ ‘ .
o~ o ‘ .

(b) local credible interval (c) local credible interval (d) local credible interval

(a) point estimators L R . ) N )
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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Evidence Rl Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

(b) local credible interval (c) local credible interval (d) local credible interval
(grid size 10 x 10 pixels) (grid size 20 x 20 pixels) (grid size 30 x 30 pixels)

Numerical experiments

P-MALA

MAP

(a) point estimators

Figure: Length of local credible intervals for 3C288 for the analysis model.
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MAP Local credible intervals Experiments Hypothesis testing

Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

CPU time

Image  Method Analysis Synthesis

P-MALA 2274 1762

Cygnus A MYULA 1056 942
MAP .07 .04

P-MALA 1307 944

M31  MYULA 618 581
MAP .03 .02

P-MALA 1122 879

W28  MYULA 646 598
MAP .06 .04

P-MALA 1144 881

3C288 MYULA 607 538
MAP .03 .02

High-dimensional uncertainty quantification  (Extra)



MAP Local credible intervals Experiments Hypothesis testing

Hypothesis testing

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Test Ground Hypothesis
Image area truth Method test

P-MALA

M31 1 v MYULA
MAP

P-MALA

Cygnus A 1 v MYULA*
MAP

P-MALA

W28 1 v MYULA
MAP

P-MALA

1 v MYULA
MAP

P-MALA

2 X MYULA
MAP

3C288

3 X XN N NN N N[X X XSS

(* Can correctly detect physical structure if use median point estimator.)
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Mass-Mapping Hypothesis testing Credible intervals Peaks
Outline

© Mass-mapping via weak gravitational lensing

High-dimensional uncertainty quantification  (Extra)



Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Model

o Let v € CM be the discretized complex shear field extracted from an underlying discretized
convergence field k € CV by a measurement operator

e CMXN ks y
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Mass-mapping via weak gravitational lensing
Model

o Let v € CM be the discretized complex shear field extracted from an underlying discretized
convergence field k € CV by a measurement operator

e CMXN ks y

@ In the planar setting ® can be modelled by

& —F 'DF
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Model

o Let v € CM be the discretized complex shear field extracted from an underlying discretized
convergence field k € CV by a measurement operator

e CMXN ks y

@ In the planar setting ® can be modelled by

& —F 'DF

@ The planar forward model in Fourier space:
(ke ky) = Di, oy filke, ky)
with the mapping operator

k2 — k2 + 2ikyky

Dy, .k, = R 1R
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Bayesian MAP estimation by sparse regularisation

@ Spare Bayesian mass-mapping framework
(Price, McEwen, Cai, Kitching, Wallis 2018a: arXiv:1812.04014).

o Consider posterior | P(x|v) o< P(v | k) P(k)
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Bayesian MAP estimation by sparse regularisation

@ Spare Bayesian mass-mapping framework
(Price, McEwen, Cai, Kitching, Wallis 2018a: arXiv:1812.04014).

o Consider posterior | P(x|v) o< P(v | k) P(k) ]

o Likelihood:

P(yr) ox exp -

(k= y)TEH(0k — 7)]

High-dimensional uncertainty quantification

(Extra)


https://arxiv.org/abs/1812.04014

Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Bayesian MAP estimation by sparse regularisation

@ Spare Bayesian mass-mapping framework
(Price, McEwen, Cai, Kitching, Wallis 2018a: arXiv:1812.04014).

Consider posterior [ P(k|v) o< P(v| k) P(k) ]

o Likelihood:

P(v| k) o exp

R G 7)]
2

o General (non-Gaussian) wavelet Laplacian prior:

P(s) o exp( — ulW'xl) |
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Bayesian MAP estimation by sparse regularisation

@ Spare Bayesian mass-mapping framework
(Price, McEwen, Cai, Kitching, Wallis 2018a: arXiv:1812.04014).

Consider posterior [ P(k|v) o< P(v| k) P(k) ]

o Likelihood:

P(v| k) o exp

2

_(®r— )i (k- 7)]

o General (non-Gaussian) wavelet Laplacian prior:

P(k) o exp( - u||W‘Ln||1)

@ Maximum a posterior (MAP) solution given by solving (convex) optimisation problem
(cf. GLIMPSE of Lanusse et al. 2016):

202

n

&k — |3
k™3P = argmin {MH‘UTMh + ”7”2} ,
K
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Selection of the regularisation parameter

o How set regularisation parameter p?

High-dimensional uncertainty quantification  (Extra)



Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Selection of the regularisation parameter

o How set regularisation parameter p?

@ Set up gamma-type hyper-prior (typical hyper-prior for scale-parameters) following
Pereyra et al. (2015):

B 1
7/”’047 676HHR+ (H) )

P(p) = @)

where without loss of generality & = 8 = 1 (results highly insensitive to choice of o and ).
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Selection of the regularisation parameter

o How set regularisation parameter p?

@ Set up gamma-type hyper-prior (typical hyper-prior for scale-parameters) following
Pereyra et al. (2015):

B a1 -8
r” © Flp, (1) |,

where without loss of generality & = 8 = 1 (results highly insensitive to choice of o and ).

P(p) =

o Compute the joint MAP estimator (x™2P, ;™3P), which maximizes P(k, 11 |v) such that

Ony1 € 8m,u logp(ﬁmap,umap ‘ ’y) .
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Mass-mapping via weak gravitational lensing
Selection of the regularisation parameter

o How set regularisation parameter p?

@ Set up gamma-type hyper-prior (typical hyper-prior for scale-parameters) following
Pereyra et al. (2015):

B a1 -8
r” © Flp, (1) |,

where without loss of generality & = 8 = 1 (results highly insensitive to choice of o and ).

P(p) =

o Compute the joint MAP estimator (x™2P, ;™3P), which maximizes P(k, 11 |v) such that

Ony1 € 8m,u logp(ﬁmap,umap ‘ ’y) .

o Yields textbfanalytic update for p estimator (Pereyra et al. 2015):

41 _ Nk~ '+a-1
f&+8 |

where f(+) is the log-prior.
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Bayesian sparse mass-mapping
Recovering mass-maps from simulations

KS Smooth Sparse

SNR: 15

SNR: 10

SNR: 5
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Bayesian sparse mass-mapping
Recovering mass-maps from simulations

SNR (dB)
Input KS .
SNR KS Smooth Sparse Difference

20.0 3.986 3.988 9.298
15.0 3.844 3.912 9.906
10.0 3.480 3.831 9.230
5.0 2.670 3.0305 7.296

+ 5.310
+ 5.993
+ 5.399
+ 4.265
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Hypothesis testing of structure
Single object structure

Test 1 Test 2 Test 3

Figure: Hypothesis testing of three selected structures in the Bolshoi-1 cluster convergence field. The
SNR of added Gaussian noise was 20 dB. The SNR of the sparse recovery was ~ 6 dB (an increase in
SNR of ~ 3.5 dB over the KS reconstruction). We correctly determine that region 1 (red) is physical
with 99% confidence. Regions 2 (blue) and 3 (green) remain within the HPD region and are therefore

inconclusive, given the data and noise level.
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Hypothesis testing of structure
Multiple object structure

Test 1 Test 2 Test 3

Figure: Hypothesis testing of three selected structures in the Bolshoi-2 cluster convergence field. The
SNR of added Gaussian noise was 20 dB. The SNR of the sparse recovery was ~ 12 dB (an increase in
SNR of ~ 7 dB over the KS reconstruction). We correctly determine that all three null hypothesis’ (red,
blue and green) are rejected at 99% confidence. In test 1 the conclusion is that the left hand peak was
statistically significant. In tests 2 and 3 the conclusions is that an image with the two peaks merged it
unacceptable, and therefore the peaks are distinct at 99% confidence.
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Hypothesis testing Credible intervals Peaks
Hypothesis testing of structure

Complex structure

MAP Test 1 Test 2 Test 3

Figure: Hypothesis testing of structure in an ~ 1.2 deg? planar Buzzard extract. Both over-densities 1
and 3 are deemed to be physical, whereas the void structure 2 is inconclusive.
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Hypothesis testing Credible intervals Peaks
Analysis of A520 cluster

Evidence for self-interacting dark matter?

@ Some controversy over peaks recovered from observations of A520 cluster (Jee et al. 2012,
2014, Clowe et al. 2012).

o A small, central convergence peak detected (J12, J14), with a notably large mass-to-light
ratio, which could indicate the possibility of self-interacting dark matter.

o Peel et al. (2017) concluded that peak existed in the J14 dataset but not in the C12 dataset
(using GLIMPSE; Lanusse et al. 2016) but cannot confirm its existence or otherwise.
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks
Analysis of A520 cluster

Evidence for self-interacting dark matter?

@ Recovered mass-maps and perform local and global hypothesis tests.

(a) J14 (b) C12

Figure: Recovered mass maps
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Analysis of A520 cluster

Evidence for self-interacting dark matter?

@ Recovered mass-maps and perform local and global hypothesis tests.

o Data-sets are globally consistent at 99% credible level.

(a) J14 (b) C12

Figure: Recovered mass maps
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Analysis of A520 cluster

Evidence for self-interacting dark matter?

@ Recovered mass-maps and perform local and global hypothesis tests.
o Data-sets are globally consistent at 99% credible level.

@ Peak in question is detected in J14 but determined not statistically significant.

(a) J14 (b) C12

Figure: Recovered mass maps
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Analysis of A520 cluster

Evidence for self-interacting dark matter?

@ Recovered mass-maps and perform local and global hypothesis tests.
o Data-sets are globally consistent at 99% credible level.
@ Peak in question is detected in J14 but determined not statistically significant.

o Also discover some new peaks but they are also not statistically significant.

(a) J14 (b) C12

Figure: Recovered mass maps
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Eviden I Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Local Bayesian credible intervals
Bolshoi simulation

@ Recover local credible intervals from MAP solution and compare to MCMC reconstructions

(Price, Cai, McEwen, Pereyra, Kitching 2018b: arXiv:1812.04017).

Px-MALA (8x8) Bolshoi-7 Px-MALA (16x16) Bolshoi-7

Bolshoi-7 Ground truth k Px-MALA (4x4) Bolshoi

.L'g"

..._.fh.rqh

MAP (4x4) Bolshoi-7 MAP (8x8) Bolshoi-7 MAP (16x16) Bolshoi-7

030
0.60 0.25

C |
058 2 0.20
0.15

0.56 L r
0.10
0.54 0.05

Figure: Length of local credible intervals at 99% credible level for Bolshoi simulation.

High-dimensional uncertainty quantification
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Local Bayesian credible intervals
Buzzard simulation

@ Recover local credible intervals from MAP solution and compare to MCMC reconstructions
(Price, Cai, McEwen, Pereyra, Kitching 2018b: arXiv:1812.04017).

Buzzard-1 Ground truth k Px-MALA (4x4) Buzzard-1 Px-MALA (8x8) Buzzard-1 Px-MALA (16x16) Buzzard-1
F e "1l H .
) | |
o .. —. 0.070 n 0030
l « 0.068 0025
| | 0.066
R e | | | 1 0020
L) 0,064 u .I
| n 0.015
e .L i 0062 |
LR 0.010
e 0060 ] |
" L0 n | 0.005
.
MAP (8x8) Buzzard-1 MAP (16x16) Buzzard-1
Ea" Bl | L u B
ol 0.050
. " |
ol n. _: = | foo0 I 0048
, il L |fooss
pip B5 wfooss 1
| o n 0.044
=y ma wis 1 0,096 0042
S ol W P R |- o
LS " | B 0004 g
..- 0.038
w0 K. ¥ 0.092 .... B | 0036
= |

Figure: Length of local credible intervals at 99% credible level for Buzzard simulation.
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Feature locations and peak statistics

@ Quantify uncertainties associated with peak locations and counts
(Price, McEwen, Cai, Kitching 2018c: arXiv:1812.04018).

0150

0100
o7
0050
0025
0000

0025

Figure: Input 2048 x 2048 convergence map extracted from the Buzzard N-body simulation.
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Evidence Rl Prox MCMC MAP Mass-Mappin Hypothesis testing Credible intervals Peaks

Feature locations
Procedure

Calculate MAP s

Remove feature Z featur
by equation
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Evidence Rl Prox MCMC MAP Mass-Mapping Hypothesis testing Credible intervals Peaks

Feature locations
Results

True Peak SNR: 20 : SNR: 15 SNR: 12
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Mass-Mapping Hypothesis testing Credible intervals Peaks

Peak statistics
Procedure

[ Initial surrogate: k%8¢ = x™apP J

l

[ Calculate excursion peak set: IT(k58%) }4 77777

l

[ Find lowest peak: (x) }

l

[ Define aperture } [ Rbeesih e }

around peak: Qg

——

Remove peak from excursion
peak set: k%8¢ = Sk.Qn (x%8%)

|

In credible set?: Yes i
et e cn,? [T

:No
A

Min number of peaks:
ng™ = )|
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Mass-Mappin Hypothesis testing Credible intervals Peaks

Peak statistics
Results

—— Sparse DB8: MAP
99% Confidence.
68% Confidence

—%— Sparse DB8: MAP
99% Confidence.
68% Confidence

B

0

2000

Cumalative Peak Count (logarithmic)
Cumalative Peak Count (linear)

1000

H 5
Threshold (no) Threshold (no)
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Conclusions

@ Uncertainty quantification of increasing importance for principled, robust scientific
inference of large, complex data-sets.

Supported by:
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Conclusions

@ Uncertainty quantification of increasing importance for principled, robust scientific
inference of large, complex data-sets.

o Multidisciplinary techniques to quantify uncertainties in high-dimensional settings.
o Machine learning assisted Bayesian evidence computation
e Proximal MCMC sampling can support sparse priors in full Bayesian framework.

e Sparse regularisation by MAP estimation with approximate uncertainty quantification.

Supported by:
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Conclusions

@ Uncertainty quantification of increasing importance for principled, robust scientific
inference of large, complex data-sets.

o Multidisciplinary techniques to quantify uncertainties in high-dimensional settings.
o Machine learning assisted Bayesian evidence computation
e Proximal MCMC sampling can support sparse priors in full Bayesian framework.
e Sparse regularisation by MAP estimation with approximate uncertainty quantification.
@ Numerous uses in astronomy and beyond.
e Radio interferometric imaging.

o Mass-mapping via weak gravitational lensing.

Supported by:
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

@ Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = arg min ||Qax||1 subject to ||y — ®z|2 < €.
xT

analysis

e Contrast with synthesis-based approach:

x* =¥ - arg min ||a||1 subject to ||y — PVa2 <e.
«@

synthesis

For orthogonal bases Q = W' and the two approaches are identical.

High-dimensional uncertainty quantification  (Extra)



Analysis vs synthesis
Comparison

Coefficient Domain

Signal Domain

Compressed Sensing Domain

Measurement System

VS.

Synthesis
Dictionary
x=Dz

Sparsé coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

o Synthesis-based approach is more general, while analysis-based approach more restrictive.
@ More restrictive analysis-based approach may make it more robust to noise.

@ The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

e Consider the inverse problem:
y=0oWa+n.

o Assume Gaussian noise, yielding the likelihood:

P(y | ) o< exp(|ly — ®Wall3/(20%)) |

Consider the Laplacian prior:

P(a) o exp(—6||a||1) .

The maximum a-posteriori (MAP) estimate (with A = 2802) is

TMAP-synthesis = ¥ * arg max P(a|y) = W - arg min ||y — Va3 + Ml -

synthesis

@ One possible Bayesian interpretation!

o Signal may be {y-sparse, then solving ¢1 problem finds the correct £y-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

o Other Bayesian interpretations are also possible (Gribonval 2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

@ Analysis-based MAP estimate is

T AP.analysis = @1 - argmin |ly — @QF 513 + A1 -

~y Ecolumn space Q

analysis
o Different to synthesis-based approach if analysis operator Q is not an orthogonal basis.
@ Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Standard algorithms

Output Data
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
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PURIFY reconstruction
VLA observation of 3C129

100
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Figure: VLA visibility coverage for 3C129
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of 3C129

/

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129

mJy/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

10
50
=
< 0
—=50

-10955—100 =50 0 50 100 150
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Figure: VLA visibility coverage for Cygnus A
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of Cygnus A

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY
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PURIFY reconstruction
VLA observation of Cygnus A

Jy/Beam Jy/Beam Jy/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

v (k)

Figure: VLA visibility coverage for PKS J0334-39
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
ATCA observation of PKS J0334-39

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)

High-dimensional uncertainty quantification  (Extra)



Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)
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Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY

High-dimensional uncertainty quantification  (Extra)



PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)

High-dimensional uncertainty quantification

(Extra)



PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: ATCA visibility coverage for Cygnus A

High-dimensional uncertainty quantification  (Extra)
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PURIFY reconstruction
ATCA observation of PKS J0116-473

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)

High-dimensional uncertainty quantification  (Extra)
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PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)

High-dimensional uncertainty quantification  (Extra)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)

High-dimensional uncertainty quantification  (Extra)



Evidence Rl Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY

High-dimensional uncertainty quantification  (Extra)



PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)

High-dimensional uncertainty quantification

(Extra)
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PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36
PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24

High-dimensional uncertainty quantification

(Extra)
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