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Compressive sensing (CS)

“Nothing short of revolutionary.”
— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

@ Next evolution of wavelet analysis.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
°

Acquisition versus imaging.
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An(other!) introduction to compressive sensing

@ Linear operator (linear algebra) representation of signal decomposition:

| |
X([):Zai‘l/,‘(f) — x:Z\Iliaf:(‘lllo> a0+(\111)a]+.4. —

@ Linear operator (linear algebra) representation of measurement:
— Py —

PR
@ Putting it together: |y = &x = PV«
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An(other!) introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 0, i.e. solve
the following ¢, optimisation problem:
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An(other!) introduction to compressive sensing

ll-posed inverse problem:
y=®x+n=>¥%a +n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in U, i.e. solve
the following ¢, optimisation problem:

a” = argmin||al|o suchthat ||y — ®V |, < e,
(a3
where the signal is synthesising by x* = W a*.

@ Recall norms given by:

1/2
llallo = no. non-zero elements  [larfls =D Jai| ]2 = (Z \a,\z)

i i

Solving this problem is difficult (combinatorial).

Instead, solve the ¢, optimisation problem (convex):

o™ = argmin||«||; suchthat [y — PV, < e.
(a3
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An(other!) introduction to compressive sensing

@ The solutions of the ¢y, and ¢, problems are often the same.

RN

(a) (b) (©)

Figure: Geometry of (a) £y (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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An(other!) introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > c'p,zKlogN s
where K is the sparsity and N the dimensionality.
@ The coherence between the measurement and sparsity basis is given by

p= VN max [(¥;, ;)] .
isj

@ Robust to noise.

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity) and new
applications.
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@ Consider the ill-posed inverse problem of radio interferometric imaging:
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where y are the measured visibilities, @ is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

i)

where y are the measured visibilities, @ is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator | ® = MF C A | may incorporate:

e primary beam A of the telescope;

e w-component modulation C (responsible for the spread spectrum phenomenon);

e Fourier transform F;

e masking M which encodes the incomplete measurements taken by the interferometer.
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Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem
y=®x+n with ® =MFCA,
by applying a prior on sparsity of the signal in a sparsifying dictionary ¥.
@ Solve basis pursuit denoising problem

o’ = argmin||a|; suchthat ||y — ®Va|, < e,
[

where the image is synthesised by x* = Yo *.
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Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem
y=®x+n with ®=MFCA,
by applying a prior on sparsity of the signal in a sparsifying dictionary ¥.
@ Solve basis pursuit denoising problem

o’ = argmin||a|; suchthat ||y — ®Va|, < e,
[

where the image is synthesised by x* = Yo *.

Various choices for sparsifying dictionary W, e.g. Dirac basis, Daubechies wavelets.

Analysis versus synthesis problems, e.g. SARA algorithm (see following talk by Yves Wiaux).

Recall the potential trade-off between sparsity and coherence.
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Review of the spread spectrum phenomenon
@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).
@ The w-component operator C has elements defined by

C(l,m) = exp{izmw(1 — V1 — 2 —m?)} ~ exp(imw|ll|*) for |II*w <1,

giving rise to to a linear chirp.
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Figure: Chirp modulation.
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@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is the
maximum modulus of the Fourier transform of the atoms of the sparsifying dictionary.
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Review of the spread spectrum phenomenon

@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).

@ The w-component operator C has elements defined by
C(l,m) = exp{izmw(1 — V1 — 2 —m?)} ~ exp(imw|ll|*) for |II*w <1,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is the
maximum modulus of the Fourier transform of the atoms of the sparsifying dictionary.
@ Modulation by the chirp spreads the spectrum of the atoms of the sparsifying dictionary.

@ Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.
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Spread spectrum phenomenon for varying w

@ Improved reconstruction fidelity of the spread spectrum phenomenon demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to fixed w for simplicity.
@ Recently, we have examined the spread spectrum phenomenon for varying w.

@ Work of Laura Wolz, in collaboration with JDM, Filipe Abdalla, Rafael Carrillo and Yves Wiaux.

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the chirp modulation through
the Fourier transform:

®=MFCA = & =MCFA].

@ Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row of
C) to approximate C accurately by a sparse matrix.
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Spread spectrum phenomenon for varying w

@ Perform simulations to assess the effectiveness of the spread spectrum phenomenon in the
presence of varying w.

@ Consider idealised simulations with uniformly random visibility sampling.

Figure: M31 (ground truth).
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Spread spectrum phenomenon for varying w
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(a) Daubechies 8 (Db8) wavelets
Figure: Reconstruction fidelity.

The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!
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Spread spectrum phenomenon for varying w
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(a) Daubechies 8 (Db8) wavelets (b) Dirac basis

Figure: Reconstruction fidelity.

The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement.
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Spread spectrum phenomenon for varying w

(a) wg = 0 — SNR= 4.8dB (b) wy ~ U(0, 1) — SNR= 16.7dB (©) wg = 1 — SNR= 19.8dB

Figure: Reconstructed images for 10% coverage.



Continuous Visibilities

Outline

e Continuous visibilities



Continuous Visibilities
[ Je]

Supporting continuous visibilities
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Supporting continuous visibilities

Ideally we would like to model the continuous Fourier transform operator

d =F".

But this is slow!
We have incorporated gridding into our CS interferometric imaging framework.

Work of Rafael Carrillo, in collaboration with Yves Wiaux and JDM.

Model with the measurement operator

& =GFZD |,

where we incorporate:

convolutional gridding operator G;
fast Fourier transform F;
zero-padding operator Z to upsample the discrete visibility space;

normalisation operator D to undo the convolution gridding (reciprocal of the inverse
Fourier transform of the gridding kernel).
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Reconstruction with continuous visibilities

(b) M31 (ground truth)

(c) Dirac basis — SNR= 8.2dB  (d) Db8 wavelets — SNR= 11.1dB (e) SARA — SNR= 13.4dB

Figure: Reconstructed images from continuous visibilities.



Summary

@ Effectiveness of compressive sensing for radio interferometric imaging demonstrated already
(Wiaux et al. 2009a, Wiaux et al.2009b, Wiaux et al. 2009¢, McEwen & Wiaux 2011,
Carrillo et al. 2012).

@ Provide improvements in reconstruction fidelity, flexibility and computation time.

@ Important to take these methods to the realistic setting so that their advantages can be
realised on observations made by real radio interferometric telescopes.
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Summary

@ Taken first steps toward more realistic setting.
@ Studied the spread spectrum phenomenon for varying w.

@ The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!

@ Incorporated a gridding operator into our framework to support continuous visibilities.



Outlook

@ BUT... so far we remain idealised.

@ We (Rafael Carrillo, JDM and Yves Wiaux) are developing an optimised C code (PURIFY) to
scale to the realistic setting.

@ Preliminary tests indicate that this code provides in excess of an order of magnitude speed
improvement and supports scaling to very large data-sets.
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