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Cosmic microwave background (CMB)

Credit: WMAP
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Galaxy surveys

Credit: SDSS
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Observations on spherical manifolds
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Continuous wavelets on the sphere via stereographic projection

One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1 · ω), ω = (θ, ϕ) ∈ S2
, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .
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Continuous wavelet analysis

Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet Ψ:

{Ψa,ρ ≡ R(ρ)D(a)Ψ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Ψ(a, ρ) = 〈f ,Ψa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Wavelet coefficients live in SO(3)× R+
∗ ; thus, directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/
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Continuous wavelet synthesis

The inverse wavelet transform is given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Ψ(a, ρ) [R(ρ)L̂ΨΨa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Ψ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Ψa)`m |

2
<∞, ∀` ∈ N

where (Ψa)`m are the spherical harmonic coefficients of Ψa(ω).

Continuous wavelets used in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
Dark energy (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!
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Continuous wavelets on the sphere via harmonic dilation

Define dilation by scaling in harmonic space (McEwen et al. 2006, Sanz et al. 2006):

Ψ`m(a) =

√
2`+ 1

8π2
Υm(`a) ,

Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

Admissibility condition defined on the wavelet generating functions Υ

0 < C`Υ =
∑̀

m=−`

∫ ∞
0

dq
q
|Υm(q)|2 <∞ .

BUT...

still continuous so exact reconstruction not feasible in practice!
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Scale-discretised wavelets on the sphere

Exact reconstruction not feasible in practice with continuous wavelets!

Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008)
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Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space
cf. McEwen et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ
j
`m ≡ κ

j
(`)s`m ,

Construct wavelets to satisfy a resolution of the
identity:

|Φ`0|2 +

J∑
j=0

∑̀
m=−`

|Ψj
`m|

2
= 1 , ∀` .
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Scale-discretised wavelets on the sphere

(a) j = 4 (b) j = 3 (c) j = 2

Figure: Scale-discretised wavelets on the sphere.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨj
(ρ) ≡ (f ?Ψ

j
)(ρ) = 〈f , RρΨ

j〉 =

∫
S2

dΩ(ω)f (ω)(RρΨ
j
)
∗
(ω) ,

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) = 2π
∫
S2

dΩ(ω
′
)WΦ

(ω
′
)(Rω′L

d
Φ)(ω) +

J∑
j=0

∫
SO(3)

d%(ρ)WΨj
(ρ)(RρLd

Ψ
j
)(ω) .
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Steerability

The scale-discretised wavelet Ψ ∈ L2(S2) is defined in harmonic space in factorised form:

Ψ
j
`m ≡ κ

j
(`) s`m .

Without loss of generality, impose ∑
|m|≤`

|s`m|2 = 1 ,

such that localisation governed largely by the kernel κj and directionality by s`m.

By imposing an azimuthal band-limit N, i.e. s`m = 0, ∀m ≥ N, we recover steerable wavelets:

sγ(ω) =

M−1∑
g=0

z(γ − γg)sγg (ω) .

By the linearity of the wavelet transform, steerability extends to wavelet coefficients:

WΨj
(α, β, γ) =

M−1∑
g=0

z(γ − γg)WΨj
(α, β, γg) .
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Exact and efficient computation

Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

WΨj
(ρ) =

L−1∑
`=0

∑̀
m=−`

∑̀
n=−`

2`+ 1
8π2

(
WΨj)`

mn D`∗mn (ρ) ,

where (
WΨj)`

mn =
8π2

2`+ 1
f`mΨ

j∗
`n .

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski
2001).

Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

f (ω) ∼
J∑

j=0

∫
SO(3)

d%(ρ)WΨj
(ρ)(RρLd

Ψ
j
)(ω) =

J∑
j=0

∑
`mn

2`+ 1
8π2

(
WΨj)`

mnΨ
j
`nY`m(ω) ,

where (
WΨj)`

mn = 〈WΨj
, D`∗mn 〉 =

∫
SO(3)

d%(ρ)WΨj
(ρ)D`mn(ρ) , (1)

which can be computed efficiently via a factoring of rotations (Risbo 1996) and exactly by
employing the Driscoll & Healy (1994) sampling theorem.
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∫
SO(3)

d%(ρ)WΨj
(ρ)(RρLd

Ψ
j
)(ω) =

J∑
j=0

∑
`mn

2`+ 1
8π2

(
WΨj)`

mnΨ
j
`nY`m(ω) ,

where (
WΨj)`

mn = 〈WΨj
, D`∗mn 〉 =

∫
SO(3)

d%(ρ)WΨj
(ρ)D`mn(ρ) , (1)

which can be computed efficiently via a factoring of rotations (Risbo 1996) and exactly by
employing the Driscoll & Healy (1994) sampling theorem.
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Exact and efficient computation
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Figure: Numerical accuracy of the scale-discretised wavelet transform.
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Exact and efficient computation
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Figure: Computation time of the scale-discretised wavelet transform.
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Codes to compute scale-discretised wavelets on the sphere

S2DW code
http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

C, Matlab, IDL, Java

Supports only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

Jason McEwen Scale-Discretized Wavelets on the Sphere
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Outline

1 Continuous wavelets on the sphere
Stereographic projection
Harmonic dilation

2 Scale-discretised wavelets
Analysis and synthesis
Steerability
Exact and efficient computation

3 Future Extensions
Exploiting a new sampling theorem on the sphere
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Driscoll & Healy (DH) sampling theorem

Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

Figure: Sample positions of the DH sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

A new sampling theorem on the sphere (McEwen & Wiaux 2011).

⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

New sampling theorem follows by associating the sphere with the torus through a periodic
extension.

Similar in flavour to making a periodic extension in θ of a function f on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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Comparison

DH DH MW
Divide-and-conquer Semi-naive

Pixelisation scheme equiangular equiangular equiangular

Asymptotic complexity O(L5/2 log 1/2
2 L) O(L3) O(L3)

Precomputation Y N N

Stability N Y Y

Flexibility of Wigner recursion N N Y

Spin functions N N Y

Number of samples 4L2 4L2 2L2
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Code to compute spherical harmonic transforms

SSHT code: Spin spherical harmonic transforms
http://www.spinsht.org

A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

Fortran, C, Matlab

Supports scalar and spin functions on the sphere

Jason McEwen Scale-Discretized Wavelets on the Sphere
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Summary

Observations on spherical manifolds are prevalent.

Scale-discretized wavelets on the sphere afford the analysis of spatially localised,
scale-dependent content and the exact synthesis of a function from its wavelet coefficients.

Fast algorithms essential for the analysis of big data-sets.

All codes publicly available (see http://www.jasonmcewen.org).

Future work: by exploiting new sampling theorem on the sphere, we will develop yet more
efficient algorithms.
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