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Big cosmology: big science, big data and big algos

A new era of big cosmology is emerging.

Planck: full-sky observations of the CMB at unprecedented resolution, sensitivity and
frequency coverage.

Euclid: unprecedented survey of billion galaxies over more than one third of the sky.

Square Kilometre Array (SKA): sensitivity 50x that of previous radio telescopes with
phenomenal data rates.

Others. . .

(a) Planck (b) Euclid (c) SKA

New instruments must be complemented with novel analyses methodologies to extract new
science from big data-sets

→ sparsity.
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What is sparsity?

What is sparsity?

— representation of data in such a way that many data points are zero.
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What is sparsity?

Sparsifying
transform
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Why is sparsity useful?

Why is sparsity useful?

— efficient characterisation of information.
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Why is sparsity useful?

Add noise
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Why is sparsity useful?

Threshold
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Why is sparsity useful?

Inverse transform
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Why is sparsity useful?

(a) Original (b) Noisy (c) Denoised

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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How can we construct sparsifying transforms?

How can we construct sparsifying transforms?

— many signals in nature have spatially localised, scale-dependent features.
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How can we construct sparsifying transforms?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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How can we construct sparsifying transforms?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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How can we construct sparsifying transforms?

Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/tutorial/]
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Cosmological observations made on celestial sphere

Cosmological observations are inherently made on the celestial sphere.

Observations of the cosmic microwave background (CMB) are made on the sphere.

Observations tracing the large-scale structure (LSS) are made on the ball.

(a) CMB (WMAP) (b) Galaxy survey (SDSS)
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Scale-discretised wavelets on the sphere
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008) [arXiv:0712.3519]

Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008).
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Figure: Harmonic tiling on the sphere.
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Scale-discretised wavelets on the sphere

(a) j = 4 (b) j = 3 (c) j = 2

Figure: Scale-discretised wavelets on the sphere.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨj
(ρ) ≡ (f ?Ψ

j
)(ρ) = 〈f , RρΨ

j〉 =

∫
S2

dΩ(ω)f (ω)(RρΨ
j
)
∗
(ω) ,

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) = 2π
∫
S2

dΩ(ω
′
)WΦ

(ω
′
)(Rω′L

d
Φ)(ω) +

J∑
j=0

∫
SO(3)

d%(ρ)WΨj
(ρ)(RρLd

Ψ
j
)(ω) .
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Codes for scale-discretised wavelets on the sphere

S2DW code
http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008) [arXiv:0712.3519]

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
http://www.s2let.org

S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012) [arXiv:1211.1680]

C, Matlab, IDL, Java

Supports only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets
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Fourier-LAGuerre wavelets (flaglets) on the ball

Figure: Tiling of Fourier-Laguerre space.

Exact wavelets on the ball
Leistedt & McEwen (2012) [arXiv:1205.0792]

Extend scale-discretised wavelets on the sphere to the
ball.

Some subtleties (define translation and convolution on the
radial line).

Construct wavelets by tiling the `–p harmonic plane.

The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) ≡ (f ?Ψ

jj′
)(r) = 〈f |TrΨ

jj′ 〉B3 =

∫
B3

d3r′f (r′)(TrΨ
jj′

)(r′) .

The original function may be synthesised exactly in practice from its wavelet (and scaling)
coefficients:

f (r) =

∫
B3

d3r′WΦ
(r′)(TrΦ)(r′) +

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj′
(r′)(TrΨ

jj′
)(r′) .

Alternatives: Spherical 3D isotropic wavelets (Lanusse, Rassat & Starck 2012)
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Fourier-LAGuerre wavelets (flaglets) on the ball

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Codes for Fourier-LAGuerre wavelets (flaglets) on the ball

FLAG code: Fourier-Laguerre transform
http://www.flaglets.org

Exact wavelets on the ball
Leistedt & McEwen (2012) [arXiv:1205.0792]

C, Matlab, IDL, Java

Exact Fourier-LAGuerre transform on the ball

FLAGLET code: Fourier-Laguerre wavelets
http://www.flaglets.org

Exact wavelets on the ball
Leistedt & McEwen (2012) [arXiv:1205.0792]

C, Matlab, IDL, Java

Exact (Fourier-LAGuerre) wavelets on the ball – coined flaglets!
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Large-scale structure (LSS) of the Universe

Map Horizon simulation of large-scale structure (LSS) to Fourier-Laguerre sampling.

LSS fly through

Jason McEwen Sparsity, Euclid and the SKA
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Flaglet void finding

Find voids in the large-scale structure (LSS) of the Universe.

Perform Alcock & Paczynski (1979) test: study void shapes to constrain the nature of dark
energy (e.g. Sutter et al. 2012).

LSS voids
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Deep mathematical foundation (Candes et al. 2006, Donoho 2006).

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Compressive sensing

Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0+

 |Ψ1
|

α1+· · · → x = Ψα

Linear operator (algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Jason McEwen Sparsity, Euclid and the SKA
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Compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

Jason McEwen Sparsity, Euclid and the SKA
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Compressive sensing

The solutions of the `0 and `1 problems are often the same.

Geometry of `2 and `1 problems.[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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(b) (c)
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Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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Compressive sensing

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φp is the linear measurement operator, xp is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-component modulation C (responsible for the spread spectrum phenomenon);

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Jason McEwen Sparsity, Euclid and the SKA
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Radio interferometric imaging

SARA algorithm for radio interferometric imaging, building on compressive sensing techniques
(Carrillo, McEwen & Wiaux 2012) [arXiv:1205.3123].
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Continuous visibilities
PURIFY: realistic radio interferometric imaging with compressive sensing
(Carrillo, McEwen & Wiaux 2013) [arXiv:1307.4370].
http://basp-group.github.io/purify/
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Figure: Reconstructed images from continuous visibilities.Jason McEwen Sparsity, Euclid and the SKA
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Wide field-of-view

Wide fields give rise to the spread spectrum effect (Wiaux et al. 2009), which improves
reconstruction quality.

Recently studied in a more realistic setting
(Wolz, McEwen, Abdalla, Carrillo, Wiaux 2013) [arXiv:1307.3424].
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Figure: Reconstruction fidelity in the presence and absence of the spread spectrum effect.
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Wide field-of-view

Wide fields give rise to the spread spectrum effect (Wiaux et al. 2009), which improves
reconstruction quality.

Recently studied in a more realistic setting
(Wolz, McEwen, Abdalla, Carrillo, Wiaux 2013) [arXiv:1307.3424].
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Summary

For big cosmology we need novel analysis methods to deal with the data deluge of
forthcoming experiments (e.g. Euclid, SKA, . . . )

→ exploit sparsity.
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