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Cosmic timeline
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Cosmic microwave background (CMB)

What is the origin of structure in our Universe?

Planck satellite CMB
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Epoch of reionisation

How did the first luminous objects in the Universe form?

Square Kilometre Array (SKA) lonised bubbles in neutral hydrogen
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Large-scale structure (LSS) of the Universe

What is the nature of dark energy?

Euclid satellite Large-scale structure
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Cosmological observations on the celestial sphere
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Cosmic textures on the celestial sphere

Characterization and generative modelling
of cosmic textures (patterns) on the celestial sphere.

CMB LSS


http://www.jasonmcewen.org

For use in simulation-based inference and beyond

Observations
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Why not use standard machine learning?

Aim
and of (patterns) on the

Standard machine learning techniques can be applied but:

» Requires substantial training data (which we typically do not have in cosmology).
» Suffers covariate shift (i.e. change in cosmological model).

» Fails to capture symmetries of data (unless encode in model architecture).
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Why not use standard machine learning?

Aim
and of (patterns) on the

Standard machine learning techniques can be applied but:

» Requires substantial training data (which we typically do not have in cosmology).
» Suffers covariate shift (i.e. change in cosmological model).

» Fails to capture symmetries of data (unless encode in model architecture).

= (inspired by CNNs).
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Wavelet scattering networks and representations

Wavelet scattering networks and representations inspired by CNNs but designed rather
than learned filters (Mallat 2012).

=
(McEwen et al. 2022, ICLR, arXiv:2102.02828)

=
(Mousset, Allys, Price, et al. McEwen, in prep.)
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Wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).
Wavelets ¢; € L?(S?) capture spatially-localised, high-frequency signal content at scale j.

Scaling function ¢ € L?(S?) captures spatially-localised, low-frequency content.

j=2,y=0° j=2,y=12° j=2, y=144°

Jj=3, y=0° J=3,y=72° j=3, y=144°

SC|A| Orthographic plot of spherical wavelets.
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Wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).
Wavelets ¢; € L?(S?) capture spatially-localised, high-frequency signal content at scale j.

Scaling function ¢ € L?(S?) captures spatially-localised, low-frequency content.

Spherical wavelet transform given by -

Wilp) = (Fx 45 )(p) = Szdu(of)f( W )(Rotj )* “‘
/

Spherical convolution Rotated wavele
Fast algorithms available
(e.g. McEwen et al. 2007, 2013, 2015).
SC|A| Orthographic plot of spherical wavelets.
| *UCH |
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Scattering transform on the sphere

Spherical scattering propagator for scale j:
UlIf = If >4l

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Jason McEwen i
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Scattering transform on the sphere

Spherical scattering propagator for scale j:
UlIf = If >4l

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:
Ulplf = [lIf %l x gl -+ 4],
for the path p = (j1, /2, .- .,Jjq) With depth d.

i
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Scattering transform on the sphere

Spherical scattering propagator for scale j:
UlIf = If >4l

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

ULPIf = [IF > g | % g, |- - - % 4,
for the path p = (j1, /2, .- .,Jjq) With depth d.
Scattering coefficients:

SIPIf = If | % | - - % 4y @

i
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
Spf = {S[p]f : p € P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1,J2,---+Ja) 1 Jo < )i <J,1<01<d, d e No}.
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Capture all information content at infinite depth and typically > 99% for depth d = 3.
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Latent representation is very well-behaved and satisfies a number of important
properties:

1. Rotational equivariance
2. Isometric invariance

3. Stability to diffeomorphisms
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Rotationally equivariance

Rotational Equivariance

14
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Rotationally equivariance

Rotational Equivariance

14



http://www.jasonmcewen.org

Isometric invariance

Isometric Invariance
Let ¢ € Tsom(S?), then there exists a constant C such that for all f € L2(S?),

|Seof — S, Vefllo < CL2(D +1)"2 No 1]l ooIfll2-

Difference in representation.

Scattering network representation is invariant to isometries up to a scale .
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Isometric invariance

Image Representation Scattering Representation
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Stability to diffeomorphisms

Stability to Diffeomorphisms

Let ¢ € Diff(S?). If ¢ = ¢ o & for some isometry ¢; € Isom(S?) and diffeomorphism
(; € Diff(S?), then there exists a constant C such that for all f € L*(S?),

ISpof = SeoVefll2. < CL2[L% [IGalloo + LY2(D +1)2X0 [|Glloo TIfll2-

Difference in representation.

Scattering network representation is stable to small diffeomorphisms about isometry .
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Stability to diffeomorphisms

Image Representation Scattering Representation

X \ Small\diffeomorphism

L]

Small diffeomorphi
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Stability to diffeomorphisms

Image Representation

Small diffeomorphi

Large diffeomorphjsm

Scattering Representation

X \‘3 Small\diffeomorphism
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Large diffeomorphism
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Toy problem: Gaussianity of the cosmic microwave background (CMB)

Gaussian Non-Gaussian

53% classification accuracy without scattering versus 95% with scattering network.

Jason McEwen 19
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Spherical scattering covariance for generative modelling

(Mousset, Allys, Price, et al. McEwen, in prep.)

Scattering covariance statistics:

1. SN f=E[Ifx¥al .

2. SN F=E[[fxoal].

3. S3[A1, A] f = Cov[ fxahn,, If x| * ¥y, |

4o S4[M, A2, As] f = Cov[ [f x| % s, [f * tha| b, |

20
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Spherical scattering covariance for generative modelling

(Mousset, Allys, Price, et al. McEwen, in prep.)

Scattering covariance statistics:

2. SN f=E[Ifx¥al*].
3. S3[A1, A] f = Cov[ fxahn,, If x| * ¥y, |
4. S[M, Ao, A3l f= Cov] [fxtn| * tng, [f % tha| x ¥, ]
Generative modelling by matching set of scattering covariance statistics S(f) with a

(single) target simulation:
31y IS(f) = S(frarget) I

Jason McEwen 20
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Differentiable and GPU-accelerated spherical transform codes (in JAX)

© Tets [ codecow [B5B) e [ pypi pocion i ot conutors ] €0 Openin o

Differentiable and accelerated spherical
transforms
Python package for computing Fourler transforms on the sphere and rotation group (i

using JAX or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deuluvablu
on hardware accelerators (e.g. GPUs and TPUs).

s2fft: Spherical harmonic transforms
https://github.com/astro-informatics/s2fft

s R codecow [ e

Differentiable scattering covariances on the sphere

S25CAT Is a Python package for computing scattering covariances on the sphere (: ) using JAX.
It exploits autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g.
GPUS and TPUS), leveraging the differentiable and accelerated spherical harmonic and wavelet transforms

implemented in and  respectively.

s2scat: Spherical scattering transforms
https://github.com/astro-informatics/s2scat
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Differentiable and accelerated wavelet transform
on the sphere

S24AV. is a python package for computing wavelet transforms on the sphere and rotation group, both in JAX and
PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on modern hardware
accelerators (e.g. GPUs and TPUs), and can be mapped across multiple accelerators.

s2wav: Spherical wavelet transforms
https://github.com/astro-informatics/s2wav

et o dos RRR)  codocov JF0%) icerce [ v st comeiors B

Scalable and Equivariant Spherical CNNs by
Discrete-Continuous (DISCO) Convolutions

Many problems across computer vision and the natural sciences require the analysis of spherical data, for which
representations may be learned efficiently by encoding equivariance to rotational symmetries. DISCO. provides
with the aim to support the development of

foundational convolutional layers which encode said equivariance,

s2ai: Spherical Al
Coming very soon! Contact us for early access.

21
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Generative modelling of large scale structure (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of weak lensing field.

Jason McEwen 22
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Generative modelling of large scale structure (LSS)
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Statistical validation.
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Generative modelling of cosmic strings in the CMB

Need to simulate full physics, evolving a network of strings through cosmic time, and
then ray-trace CMB photons through the string network (Ringeval et al. 2012).

A single simulation requires
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Generative modelling of cosmic strings in the CMB

Computation time: —

Still work in progress (statistical validation in progress).

SciAl

Jason McEwen 25
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Generative modelling of cosmic strings in the CMB

Computation time: —

Still work in progress (statistical validation in progress).

SciAl
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and of cosmic textures (patterns) on the
celestial sphere with

Advantages: Well-behaved latent representation:
» Little to no training data. 1. Rotational equivariance.
» No covariate shift. 2. Isometric invariance.
» Capture spherical symmetries. 3. Stability to diffeomorphisms.

to characterize cosmological fields or for generative
modelling (saving of 10° in computational time, rendering new analyses feasible).

Jason McEwen 26
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Extra slides

27
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Scalable and rotationally equivariant spherical CNNs
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