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0 Radio interferometry (RI)
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RI

Next-generation of radio interferometry rapidly approachi

@ Square Kilometre Array (SKA) first observations
planned for 2019.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP, MeerKAT,

MWA.

@ New modelling and imaging techniques required
to ensure the next-generation of interferometric
telescopes reach their full potential.

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]

Jason McEwen Radio interferometric imaging with compressive sensing



RI

Next-generation of radio interferometry rapidly approachi

@ Square Kilometre Array (SKA) first observations
planned for 2019.

@ Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP, MeerKAT,

MWA.

@ New modelling and imaging techniques required
to ensure the next-generation of interferometric
telescopes reach their full potential.

(d) Epoch of reionization

Figure: SKA science goals. [Credit: SKA Organisation]

Jason McEwen Radio interferometric imaging with compressive sensing



RI

Fourier imaging

Hi, De. EF zaboeth?
Yeak Vh.. T acc»dcn’rq\lj teok
the FEuner transfocm of My cat ...

Qﬂ Meow

[Credit: xked]
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RI

Radio interferometry

@ The complex visibility measured by an interferometer is given by
&

aw) = [ @) x@) et 0O 0

2
Ciornd A7
= [ A@ %0 Q) e 5

where I = (I, m), ||I||* + n*(I) = 1 and the w-component C(]|I||») is given by
(i) = e.zw(uﬂ/ufulul) '
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RI

Radio interferometry

@ The complex visibility measured by an interferometer is given by
&

y(u, w) = " AD x. (1) e— 2w (i =11
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where I = (I, m), ||I||* + n*(I) = 1 and the w-component C(]|I||») is given by
(i) = e.zw(uﬂ/ufulul) '

@ Various assumptions are often made regarding the size of the field-of-view (FoV):
o Smallfield with 7] w < 1 = C(||l]l») ~ 1
o Smallfield with [|I||*w < 1 = C(||I||») ~ dimwlll|?
o Wide-field = C(l]n) = 2™ (1=v1=101%)
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RI

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

paia).

where y are the measured visibilities, @ is the linear measurement operator, x is the
underlying image and = is instrumental noise.
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RI

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

b

where y are the measured visibilities, @ is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator | ® = MF C A | may incorporate:

e primary beam A of the telescope;

e w-component modulation C (responsible for the spread spectrum phenomenon);

e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.
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RI

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

b

where y are the measured visibilities, @ is the linear measurement operator, x is the
underlying image and = is instrumental noise.

@ Measurement operator | ® = MF C A | may incorporate:

e primary beam A of the telescope;
e w-component modulation C (responsible for the spread spectrum phenomenon);
e Fourier transform F;

@ masking M which encodes the incomplete measurements taken by the interferometer.

@ Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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e An introduction to compressive sensing (CS)
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Ccs

Compressive sensing (CS)

@ “Nothing short of revolutionary.”
— National Science Foundation
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Ccs

Compressive sensing (CS)

@ “Nothing short of revolutionary.”
— National Science Foundation

@ Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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Ccs

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
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Ccs

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.

@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
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Ccs

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).

@ Move compression to the acquisition stage — compressive sensing.

Low-cost, fast, sensitive
optical detection
D,

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Ccs

Compressive sensing

@ Next evolution of wavelet analysis — wavelets are a key ingredient.
@ The mystery of JPEG compression (discrete cosine transform; wavelet transform).
@ Move compression to the acquisition stage — compressive sensing.

@ Acquisition versus imaging.

Low-cost, fast, sensitive
optical detection
D,

Xmtr
Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

DSP

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Ccs

An introduction to compressive sensing

@ Linear operator (linear algebra) representation of signal decomposition:

X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - —
i i | |
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Ccs

An introduction to compressive sensing

@ Linear operator (linear algebra) representation of signal decomposition:

| |
X(I) = ZO{;\I/[(I) - x= Z‘I/,-a[ = ‘1}0 oo+ ‘1{] - —

@ Linear operator (linear algebra) representation of measurement:

,@[),

yi=x®) — y= L .
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Ccs

An introduction to compressive sensing

@ Linear operator (linear algebra) representation of signal decomposition:

X(I) = ZO{,'\I/[(I) - x= Z‘I/,-a[ =Py | ap+ |V | a4+ - —
i i | |

@ Linear operator (linear algebra) representation of measurement:
— CI)() —

p=we) - oy= "M o
@ Putting it together: |y = Px = PV«

g
= WV
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Ccs

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a +n.
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Ccs

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 7, i.e. solve
the following ¢, optimisation problem:

a” = argmin||al|o suchthat ||y — ®Va|, < e,
«

where the signal is synthesising by x* = Ta*.

@ Recall norms given by:

12
llallo = no. non-zero elements  [laefls =D Jai| ]2 = (Z \a,\z)
i i
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Ccs

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 7, i.e. solve
the following ¢, optimisation problem:

a” = argmin||al|o suchthat ||y — ®Va|, < e,
«

where the signal is synthesising by x* = Ta*.

@ Recall norms given by:

12
llallo = no. non-zero elements  [laefls =D Jai| ]2 = (Z \a,\z)
i i

@ Solving this problem is difficult (combinatorial).
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Ccs

An introduction to compressive sensing

@ lll-posed inverse problem:
y=®x+n=>¥%a +n.

@ Solve by imposing a regularising prior that the signal to be recovered is sparse in 7, i.e. solve
the following ¢, optimisation problem:

a” = argmin||al|o suchthat ||y — ®Va|, < e,
«

where the signal is synthesising by x* = Ta*.

@ Recall norms given by:
2\ 1/2
llallo = no. non-zero elements  [laefls =D Jai| ]2 = (Z \a,\“) /
@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢, optimisation problem (convex):

o = argmin||«||; suchthat [y — @V, < e.
(a3
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Ccs

An introduction to compressive sensing

@ The solutions of the ¢, and ¢, problems are often the same.

@ Restricted isometry property (RIP):
(1= d0)llell < |0al; < (1 +6)llels

for K-sparse o, where © = W,

[RN

(@) (b) (©)

Figure: Geometry of (a) £, (b) £, and (c) £; problems. [Credit: Baraniuk (2007)]
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Ccs

An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
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Ccs

An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > ci’KlogN |

where K is the sparsity and N the dimensionality.
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Ccs

An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cii’KlogN |

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &) .
Lyl
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Ccs

An introduction to compressive sensing

@ In the absence of noise, compressed sensing is exact!
@ Number of measurements required to achieve exact reconstruction is given by
M > cii’KlogN |

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p= VN max |(¥;, &) .
Lyl

@ Robust to noise.
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Ccs

An introduction to compressive sensing

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
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Ccs

An introduction to compressive sensing

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

a* = argmin ||a||; suchthat [y — ®Ta|, < e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Ta*.

@ Analysis-based framework:

x* = argmin || ¥"x||; suchthat |ly — ®x|[, < e,
x

where the signal x* is recovered directly.
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Ccs

An introduction to compressive sensing

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

a* = argmin ||a||; suchthat [y — ®Ta|, < e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Ta*.

@ Analysis-based framework:

x* = argmin || ¥"x||; suchthat |ly — ®x|[, < e,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, JOM & Wiaux
2013)

U= [, ¥y, -, ¥, .
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Ccs

An introduction to compressive sensing

@ Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

@ Synthesis-based framework:

a* = argmin ||a||; suchthat [y — ®Ta|, < e.
a

where we synthesise the signal from its recovered wavelet coefficients by x* = Ta*.

@ Analysis-based framework:

x* = argmin || ¥"x||; suchthat |ly — ®x|[, < e,
x

where the signal x* is recovered directly.

@ Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, JOM & Wiaux
2013)

U= [, ¥y, -, ¥, .

@ Many new applications to real problems.
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CS+RI
Outline

e Compressed sensing for radio interferometric imaging (CS+-RI)
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CS+RI

Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem
y=®x+n with ® =MFCA,
by applying a prior on sparsity of the signal in a sparsifying dictionary .
@ Basis pursuit denoising problem

o = argmin||«||; suchthat [y — @Vl < e,
o

where the image is synthesised by x* = Yo *.
@ Total Variation (TV) denoising problem

x* = argmin||x||tv such that |ly — ®x||> < €.
X
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CS+RI

Interferometric imaging with compressed sensing

@ Solve the interferometric imaging problem
y=®x+n with ® =MFCA,
by applying a prior on sparsity of the signal in a sparsifying dictionary .
@ Basis pursuit denoising problem

o = argmin||«||; suchthat [y — @Vl < e,
o

where the image is synthesised by x* = Yo *.
@ Total Variation (TV) denoising problem

x* = argmin||x||tv such that |ly — ®x||> < €.
X

Various choices for sparsifying dictionary W, e.g. Dirac basis, Daubechies wavelets.

Analysis versus synthesis problems, e.g. SARA algorithm.

Recall the potential trade-off between sparsity and coherence.
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CS+RI
SARA for radio interferometric imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

thus W e RY*? with D = ¢N.

@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases
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CS+RI
SARA for radio interferometric imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

T = —[U,,T,,..., 0,

thus & e RY*P with D = ¢N.
@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min [Wo'%||, subjectto |ly— ®x|,<e and x>0,
XER!

where W € RP*? is a diagonal matrix with positive weights.
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CS+RI
SARA for radio interferometric imaging

@ Sparsity averaging reweighted analysis (SARA) for Rl imaging (Carrillo, JDM & Wiaux 2012)

@ Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

T = —[U,,T,,..., 0,

thus & e RY*P with D = ¢N.

@ We consider the following bases:
o Dirac, i.e. pixel basis
@ Haar wavelets (promotes gradient sparsity)
@ Daubechies wavelet bases two to eight.

= concatenation of 9 bases

@ Promote average sparsity by solving the reweighted ¢, analysis problem:

min [Wo'%||, subjectto |ly— ®x|,<e and x>0,
XER!

where W € RP*? is a diagonal matrix with positive weights.

@ Solve a sequence of reweighted ¢; problems using the solution of the previous problem as the
inverse weights — approximate the ¢, problem.
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(a) Original (b) BP (SNR=32.82 dB)

(d) BPDb8 (SNR=33.70 dB) (e) TV (SNR=33.89 dB) (f) SARA (SNR=38.43 dB)

Figure: Reconstruction example of M31 from 30% of visibilities.
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CS+RI
RA for radio interferometric imagin

(d) BPDb8 (SNR=24.53 dB) (e) TV (SNR=26.47 dB) (f) SARA (SNR=29.08 dB)

Figure: Reconstruction example of 30Dor from 30% of visibilities.
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CS+RI

SARA for Rl imaging

Coverage percentage Coverage percentage
(a) M31 (b) 30Dor

Figure: Reconstruction fidelity vs visibility coverage.
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Outline

0 Spread spectrum (SS) phenomenon
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SSs

Review of the spread spectrum phenomenon

@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).
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SSs

Review of the spread spectrum phenomenon

@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).

@ The w-component operator C has elements defined by

Cm) = e.zm‘(lf\/lf/lfuﬂ) ~ ™I o Mt w <1,

=/

(a) Real part (b) Imaginary part

giving rise to to a linear chirp.

Figure: Chirp modulation.
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SSs

Review of the spread spectrum phenomenon

@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).

@ The w-component operator C has elements defined by

Cm) = e.zm‘(lf\/lf/lfuﬂ) ~ ™I o Mt w <1,

=/

(a) Real part (b) Imaginary part

Figure: Chirp modulation.

@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is the
maximum modulus of the Fourier transform of the atoms of the sparsifying dictionary.
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SSs

Review of the spread spectrum phenomenon

@ The w-component modulation gives rise to the spread spectrum phenomenon first considered
by Wiaux et al. (2009b).

@ The w-component operator C has elements defined by

Cm) = e.zm‘(lf\/lf/lfuﬂ) ~ ™I o Mt w <1,

=/

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
@ For the (essentially) Fourier measurements of interferometric telescopes the coherence is the
maximum modulus of the Fourier transform of the atoms of the sparsifying dictionary.
@ Modulation by the chirp spreads the spectrum of the atoms of the sparsifying dictionary.

@ Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.
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SSs

Spread spectrum phenomenon for varying w

@ Improved reconstruction fidelity of the spread spectrum phenomenon demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to fixed w for simplicity.
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SSs

Spread spectrum phenomenon for varying w

@ Improved reconstruction fidelity of the spread spectrum phenomenon demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to fixed w for simplicity.
@ Recently, we have examined the spread spectrum phenomenon for varying w.

@ Work of Laura Wolz, in collaboration with JDM, Filipe Abdalla, Rafael Carrillo and Yves Wiaux.
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SSs

Spread spectrum phenomenon for varying w

@ Improved reconstruction fidelity of the spread spectrum phenomenon demonstrated with
simulations by Wiaux et al. (2009b).

@ However, previous analysis was restricted to fixed w for simplicity.
@ Recently, we have examined the spread spectrum phenomenon for varying w.

@ Work of Laura Wolz, in collaboration with JDM, Filipe Abdalla, Rafael Carrillo and Yves Wiaux.

@ Apply the w-projection algorithm (Cornwell et al. 2008) to shift the chirp modulation through
the Fourier transform:

®=MFCA = & =MCFA].

@ Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row of
C) to approximate C accurately by a sparse matrix.

Jason McEwen Radio interferometric imaging with compressive sensing



SSs

Spread spectrum phenomenon for varying w

@ Perform simulations to assess the effectiveness of the spread spectrum phenomenon in the
presence of varying w.

@ Consider idealised simulations with uniformly random visibility sampling.

Figure: M31 (ground truth).
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SSs

Spread spectrum phenomenon for varying w

(a) wg = 0 — SNR= 4.8dB

Figure: Reconstructed images for 10% coverage.
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SSs

Spread spectrum phenomenon for varying w

(a) wg = 0 — SNR= 4.8dB (©) wg = 1 — SNR= 19.8dB

Figure: Reconstructed images for 10% coverage.
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SSs

Spread spectrum phenomenon for varying w

(a) wg = 0 — SNR= 4.8dB (b) wq ~ U(0, 1) — SNR= 16.7dB (©) wg = 1 — SNR= 19.8dB

Figure: Reconstructed images for 10% coverage.
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SSs

Spread spectrum phenomenon for varying w

10) |
/'n -@-Wg=0

[ B o O<w <1
_E_wd=1

0.1 02 03 0.4 0.5 0.6 0.7
Visibility coverage proportion

(a) Daubechies 8 (Db8) wavelets
Figure: Reconstruction fidelity.

The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!
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SSs

Spread spectrum phenomenon for varying w

10 o T ik T
s @t o 0<w <1 5 g/ o 0<w <t
W=t a =W,
0.1 02 03 04 05 06 07 0.1 02 03 04 05 06 07

\Iisibility coverage proportion \Iisibiliti/ coverage proportion

(a) Daubechies 8 (Db8) wavelets (b) Dirac basis

Figure: Reconstruction fidelity.

The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!

@ As expected, for the case where coherence is already optimal, there is little improvement.
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e Continuous visibilities (CV)
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cv

Supporting continuous visibilities

@ Ideally we would like to model the continuous Fourier transform operator

d =F".

@ But this is slow!
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cv

Supporting continuous visibilities

@ Ideally we would like to model the continuous Fourier transform operator
d =F".

@ But this is slow!
@ We have incorporated gridding into our CS interferometric imaging framework.

@ Work of Rafael Carrillo, in collaboration with Yves Wiaux and JDM.
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cv

Supporting continuous visibilities

Ideally we would like to model the continuous Fourier transform operator

d =F".

But this is slow!
We have incorporated gridding into our CS interferometric imaging framework.

Work of Rafael Carrillo, in collaboration with Yves Wiaux and JDM.

Model with the measurement operator

where we incorporate:

convolutional gridding operator G;
fast Fourier transform F;
zero-padding operator Z to upsample the discrete visibility space;

normalisation operator D to undo the convolution gridding (reciprocal of the inverse
Fourier transform of the gridding kernel).

Jason McEwen Radio interferometric imaging with compressive sensing



cv

Reconstruction with continuous visibilities

(b) M31 (ground truth)

(c) Dirac basis — SNR= 8.2dB  (d) Db8 wavelets — SNR= 11.1dB (e) SARA — SNR= 13.4dB

Figure: Reconstructed images from continuous visibilities.
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Outline

e Outlook

Jason McEwen Radio interferometric imaging with compressive sensing



Outlook
Outlook

@ Effectiveness of compressive sensing for radio interferometric imaging demonstrated already
(Wiaux et al. 2009a, Wiaux et al.2009b, Wiaux et al. 2009¢, JDM & Wiaux 2011,
Carrillo et al. 2012).

@ Provide improvements in reconstruction fidelity, flexibility and computation time.

@ Important to take these methods to the realistic setting so that their advantages can be
realised on observations made by real radio interferometric telescopes.
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Outlook

Outlook

@ Taken first steps toward more realistic setting.
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Outlook

Outlook

@ Taken first steps toward more realistic setting.
@ Studied the spread spectrum phenomenon for varying w.

@ The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!
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Outlook
Outlook

@ Taken first steps toward more realistic setting.
@ Studied the spread spectrum phenomenon for varying w.

@ The improvement in reconstruction fidelity due to the spread spectrum phenomenon for
varying w is almost as large as the case of constant maximum w!

@ Incorporated a gridding operator into our framework to support continuous visibilities.
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Outlook
Outlook

@ BUT... so far we remain idealised.

@ We (Rafael Carrillo, JDM and Yves Wiaux) are developing an optimised C code (PURIFY) to
scale to the realistic setting.

@ Preliminary tests indicate that this code provides in excess of an order of magnitude speed
improvement and supports scaling to very large data-sets.
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Outlook
Outlook

@ BUT... so far we remain idealised.

@ We (Rafael Carrillo, JDM and Yves Wiaux) are developing an optimised C code (PURIFY) to
scale to the realistic setting.

@ Preliminary tests indicate that this code provides in excess of an order of magnitude speed
improvement and supports scaling to very large data-sets.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

@ We will integrate SARA into standard interferometric imaging packages (e.g. CASA) so that
their benefits are realised on observations made by real telescopes.
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Outlook
Outlook

@ BUT... so far we remain idealised.

@ We (Rafael Carrillo, JDM and Yves Wiaux) are developing an optimised C code (PURIFY) to
scale to the realistic setting.

@ Preliminary tests indicate that this code provides in excess of an order of magnitude speed
improvement and supports scaling to very large data-sets.

@ Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

@ We will integrate SARA into standard interferometric imaging packages (e.g. CASA) so that
their benefits are realised on observations made by real telescopes.

@ Many future extensions:
@ Direction dependent effects
@ Multi-spectral imaging
@ Calibration
@ Fully spherical interferometric imaging (the holy grail of radio interferometric imaging)
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