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© A unified framework for radio interferometric imaging
© Compressive sensing for SKA imaging

© Uncertainty quantification
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Rl Imaging Bayesian inference Regularisation Compressive Sensing
Outline

© A unified framework for radio interferometric imaging
@ Bayesian inference
@ Regularisation
o Compressive sensing
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Rl Imaging Bayesian inference Regularisation Compressive Sensing

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>
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Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.
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Radio interferometric inverse problem

o Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..
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Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Bayesian evolution

{YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

= S

HOMO HOHO HOHO HOHO HOHO
AFRIORIUS PRAGHATICUS FREQUEHTISTUS SAPIENS BAYESIANIS

o
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Bayesian inference

o Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.
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Bayesian inference

o Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

o Bayes to the rescue:

Py |z, M) P(z| M)
P(y| M)

Pz |y, M) =

Bayes Theorem

o Bayes theorem in words:

. likelihood X prior
posterior = ———
evidence
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Bayesian inference

Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

Bayes to the rescue:

Py |z, M) P(z| M)
P(y| M)

Pz |y, M) =

Bayes Theorem

Bayes theorem in words:

. likelihood X prior
posterior = ———
evidence

@ How do we perform Bayesian inference in practice?
= maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)

(and many others)
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Bayes in practice
MAP and MCMC sampling

(@

Figure: Probability distribution to explore in 2D
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Bayes in practice
MAP and MCMC sampling

Figure: Maximum a-posteriori (MAP) estimate
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Bayes in practice
MAP and MCMC sampling

@

Figure: Markov Chain Monte Carlo (MCMC) sampling
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Bayes in practice
MAP and MCMC sampling

(@

Figure: Markov Chain Monte Carlo (MCMC) sampling
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Bayes in practice
MAP and MCMC sampling

@

Figure: Markov Chain Monte Carlo (MCMC) sampling
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MAP estimation and regularisation
Hint: they're the same thing!

@ Many interferometric imaging approaches are based on regularisation
(i.e. minimising an objective function comprised of a data-fidelity penalty and a
regularisation penalty).

o Consider the MAP estimation problem. ..
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):

P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Next-generation radio interferometric imaging (Extra)



Rl Imaging Bayesian inference Regularisation Compressive Sensing

MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y| ) o exp(—||y — ®=||3/(20)) ’

Likelihood
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y|x) < exp(—”y — 0:1:”3/(202)) ’ P(z) x exp (—R(m)) ’

Likelihood Prior
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y|x) < exp(—”y — 0:1:”3/(202)) ’ P(z) x exp (—R(m)) ’

Likelihood Prior

Consider log-posterior:

logP(z|y) = —|ly — ¢m||§/(20'2) — R(x) + const.
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y|x) < exp(—”y — 0:1:”3/(202)) ’ P(z) x exp (—R(m)) ’

Likelihood Prior

Consider log-posterior:

logP(z|y) = —|ly — ¢m||§/(20'2) — R(x) + const.

@ MAP estimator:

Tmap = arg max [log P(x| y)]
xX
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y|x) < exp(—”y — 0:1:”3/(202)) ’ P(z) x exp (—R(m)) ’

Likelihood Prior

Consider log-posterior:

logP(z|y) = —|ly — ¢m||§/(20'2) — R(x) + const.

@ MAP estimator:

Tmap = argmax [log P(x| y)] = arg min [— log P(x | y)}
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MAP estimation and regularisation
Hint: they're the same thing!

o Start with Bayes Theorem (ignore normalising evidence):
P(z|y) x P(y|x)P(x), ie. posterior  likelihood x prior

Define likelihood (assuming Gaussian noise) and prior:

P(y|x) < exp(—”y — 0:1:”3/(202)) ’ P(z) x exp (—R(m)) ’

Likelihood Prior

Consider log-posterior:

logP(z|y) = —|ly — ¢z||§/(20'2) — R(x) + const.

@ MAP estimator:

Tmap = arg max [10g P(x| y)] = arg min [— log P(x | y)} = arg min[ ||y - ¢:c||§ +:|

Data fidelity Regulariser
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Norms often considered for regularisation

@ Recall norms given by:
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Figure: Norms in 1D [Credit: Qiao 2014]
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Norms often considered for regularisation

@ Recall norms given by:

el = Z o )? ey = Z |og |lee|lo = no. non-zero elements
i i
l2 norm ¢1 norm £y, norm (p < 1)
sparse sparse sparse
z, solutions z, solutions 29  solutions

non-sparse
solutions

Figure: Norms in 2D [Credit: Kudo et al. 2013]
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Bayesian inference Regularisation Compressive Sensing
CLEAN and MEM as MAP estimators

e CLEAN
Consider the sparse prior: P(x) exp<fﬂ H:c”O)
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Bayesian inference Regularisation Compressive Sensing
CLEAN and MEM as MAP estimators

e CLEAN
Consider the sparse prior: P(x) exp<fﬁ H:c”O)

Corresponding MAP estimator is:

Lclean =~ argmin[”y - ¢mH§ +A ||m||0]
x
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Bayesian inference Regularisation Compressive Sensing
CLEAN and MEM as MAP estimators

e CLEAN
Consider the sparse prior: P(x) exp<fﬁ H:c”O)

Corresponding MAP estimator is:

Lclean =~ argmin[”y - ¢mH§ +A ||m||0]
x

e MEM
Consider the entropic prior: P(x) o« exp (—,8 xt log :c)
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CLEAN and MEM as MAP estimators

e CLEAN
Consider the sparse prior: P(x) exp<fﬁ H:c”O)

Corresponding MAP estimator is:

Lclean =~ argmin[”y - ¢mH§ +A ||z||0]
x

e MEM
Consider the entropic prior: P(x) o« exp (—,8 xt log :c)

Corresponding MAP estimator is:

Lmem = arg min[“y — ¢w||§ + et logw]
@x
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CLEAN and MEM as MAP estimators

e CLEAN
Consider the sparse prior: P(x) exp<fﬁ H:c”O)

Corresponding MAP estimator is:

Lclean =~ argmin[”y - ¢mH§ +A ||z||0]
x

e MEM
Consider the entropic prior: P(x) o« exp (—,8 xt log :c)

Corresponding MAP estimator is:

Lmem = arg min[“y — ¢w||§ + et logw]
@x

(In practice some differences: CLEAN does not solve MAP problem exactly;
MEM considered in Rl imposes additional constraints.)
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Compressive sensing as MAP estimator

o Naive compressive sensing

Consider the Laplacian prior: P(x) o exp(—,B H:z:”l)
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Compressive sensing as MAP estimator

o Naive compressive sensing
Consider the Laplacian prior: P(z) o exp(—,@ H:z:Hl)

Corresponding MAP estimator is:

Les = argmin[”y - d)515||§ +A ||:1:H1]
@x
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Compressive sensing as MAP estimator

o Naive compressive sensing
Consider the Laplacian prior: P(z) o exp(—,@ H:z:Hl)

Corresponding MAP estimator is:

Les = argmin[”y - d)515||§ +A ||:1:H1]
@x

(This is one possible Bayesian interpretation of compressive sensing but there are others.)
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Compressive sensing
Synthesis framework

o Consider sparsifying representation (e.g. wavelet basis):

| |
mzz\uiaiz Volag+ (Vi|ar+--- =

i |
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Compressive sensing
Synthesis framework

o Consider sparsifying representation (e.g. wavelet basis):

| |
mzz\uiaiz Volag+ (Vi|ar+--- =

i | |

@ Recover (wavelet) coefficients a of image @.
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Compressive sensing
Synthesis framework

o Consider sparsifying representation (e.g. wavelet basis):

| |
mzz\uiaiz Volag+ (Vi|ar+--- =

i | |

@ Recover (wavelet) coefficients a of image @.

o Consider the Laplacian prior on coefficients: P(a) o< exp(—ﬂ ||a||1>
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Compressive sensing
Synthesis framework

o Consider sparsifying representation (e.g. wavelet basis):

| |
mzz\uiaiz Volag+ (Vi|ar+--- =

i | |

@ Recover (wavelet) coefficients a of image @.

o Consider the Laplacian prior on coefficients: P(a) o< exp(—ﬂ ||a||1)

@ Sparse synthesis regularisation problem:

Toynthesis = W X arg min[Hy —owal+ A ||a||1]
o

Synthesis framework
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Compressive sensing
Analysis framework

o Typically sparsity assumption justified by analysing example signals in transformed domain.

e Different to synthesising signals.
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Compressive sensing
Analysis framework

o Typically sparsity assumption justified by analysing example signals in transformed domain.
e Different to synthesising signals.

@ Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Comalisis = argmin[”y — ¢w”§ + A ||‘UfEH1]
@x

Analysis framework

(For orthogonal bases Q = Ut and the two approaches are identical.)
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Compressive sensing
Analysis vs synthesis

@ Synthesis-based approach is more general, while analysis-based approach more restrictive.

Coefficient Domain

Signal Domain
Compressed Sensing Domain
z=Qx

Analysis
Operator

Measurement System

Synthesis
y Dictionary
7 x=Dz
Sparse coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)]
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Compressive sensing
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Compressive sensing
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.
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Compressive sensing
SARA algorithm

o Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

@ Overcomplete dictionary composed of a concatenation of orthonormal bases:

U= (W, Wy, ..., W]

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight = concatenation of 9 bases.

o Promote average sparsity by solving the constrained reweighted ¢; analysis problem:

min [|[WWix|; subjectto |ly—®x|2<e and x>0
RN

SARA
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Outline

© Compressive sensing for SKA imaging
e PURIFY
@ Reconstruction fidelity
@ Scaling to big-data
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CS for SKA

Public open-source codes

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

Next-generation radio interferometric imaging
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CS for SKA PURIFY Reconstruction Fidelity Scaling to Big-Data

Robust application of PURIFY to real interferometric observations

@ Robust sparse image reconstruction of radio interferometric observations with PURIFY
(Pratley, McEwen, et al. 2016; arXiv:1610.02400).
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CS for SKA PURIFY Reconstruction Fidelity Scaling to Big-Data

Robust application of PURIFY to real interferometric observations

@ Robust sparse image reconstruction of radio interferometric observations with PURIFY
(Pratley, McEwen, et al. 2016; arXiv:1610.02400).

@ All parameters are set automatically (but can be refined).
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CS for SKA PURIFY Reconstruction Fidelity Scaling to Big-Data

Robust application of PURIFY to real interferometric observations

@ Robust sparse image reconstruction of radio interferometric observations with PURIFY
(Pratley, McEwen, et al. 2016; arXiv:1610.02400).

@ All parameters are set automatically (but can be refined).

Table: Description of main user parameters for using PURIFY to reconstruct an observation.

Parameter PURIFY option Description Value
n -12_bound Parameterisation of the fidelity constraint: n = 1.4 (default); n € [1,10]
en =nvVMonp. (typical).
B8 -beta Parameterisation of the step size of the algo- B = 1073 (default)

rthm: 5; = Wiz,  (default). One
can also fix v = BH'UTE(O) oo -

Sadapt -relative_gamma_adapt Relative difference criteria for adapting ;. Sadapt = 0-01 (default).

iadapt -adapt_iter Number of iterations to consider adapting the iadapt = 100 (default).
step size «; (should be before convergence).

s -relative_variation Relative difference convergence crite- 5§ =5 x 1073 (default).
ria on the {¢g-norm of the solution:

i i—1
e —a(=1,,
D <.
[le{®) ],
I3 -residual_convergence Convergence criteria on the ¢5 residual norm: & = 1 (default); require € > 1.

ly — ozllg, < éen

imax -niters Maximum number of iterations. imax = oo (default).
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PURIFY Reconstruction Fidelity Scaling to Big-Data
Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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PURIFY reconstruction
VLA observation of 3C129
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Figure: VLA visibility coverage for 3C129
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Rl Imaging CS for SKA Uncertainty Quantification PURIFY Reconstruction Fidelity Scaling to Big-Data

PURIFY reconstruction
VLA observation of 3C129

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)

Jason McEwen Next-generation radio interferometric imaging (Extra)
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PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129

mJy/Beam """ my/Beam mJy/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)

Next-generation radio interferometric imaging

(Extra)



CS for SKA PURIFY Reconstruction Fidelity Scaling to Big-Data

PURIFY reconstruction
VLA observation of Cygnus A
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=
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Figure: VLA visibility coverage for Cygnus A

(Extra)
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PURIFY reconstruction
VLA observation of Cygnus A

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

i w ‘ ) .
as00)
0 ) 4000
@ | ™
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Jy/Beam Jy/Beam Jy/Beam

—:E

Pixels
Pixels

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

v (k)

Figure: VLA visibility coverage for PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

mJy/Beam * my/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)

Next-generation radio interferometric imaging (Extra)
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CS for SKA

PURIFY reconstruction
ATCA observation of PKS J0116-473

PURIFY Reconstruction Fidelity Scaling to Big-Data
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Figure: ATCA visibility coverage for Cygnus A
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PURIFY reconstruction
ATCA observation of PKS J0116-473

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY

Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473

Pixels

mJy/Beam

(a) CLEAN (natural) (b) CLEAN (uniform) (c¢) PURIFY
Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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CS for SKA PURIFY Reconstruction Fidelity Scaling to Big-Data

Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.
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Distributed and parallelised convex optimisation

@ Solve resulting convex optimisation problems by proximal splitting.

@ Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016)

Y1 (03] G:1M;
Y= : s o = . = X Fz
Yng @y Gnd My,

Next-generation radio interferometric imaging (Extra)
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Distributed and parallelised convex optimisation

& FB step 91’ 9y e dng

DuALFB &

sub-iterations S~

Sparsity 1 Sparsity ny,
. _(0) o
sequential steps sequential steps V1 = v, 2
@ (k) » )
proximal step proximal step dy d(nh
5, Phng
FB step FB step
RO -0 forward step forward step

—
D ux o ,x Sawig{ o} 5»\\'1'\\5{ }

a(l‘):ag"])Jrg( ) (”* ol ”+g( ~—~ ~—~

backward step backward step
\_, ak) gtk atk)
& FB step af” el e # FB step atagh o a)
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing
Outline

© Uncertainty quantification
@ Proximal MCMC
@ Compressive sensing with Bayesian credible intervals
@ Hypothesis testing
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Alternative is to sample full posterior distribution P(x | y).

= Provides uncertainly (error) information.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Alternative is to sample full posterior distribution P(x | y).

= Provides uncertainly (error) information.

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
o Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Alternative is to sample full posterior distribution P(x | y).

= Provides uncertainly (error) information.

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
o Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

o Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

o Assume isotropic Gaussian process prior characterised by power spectrum Cl.
o Sample from conditional distributions:

T — P(x|Cl,y) and C;T' « P(Ce|2't).
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

o Alternative is to sample full posterior distribution P(x | y).

= Provides uncertainly (error) information.

o MCMC methods for high-dimensional problems (like interferometric imaging):
o Gibbs sampling (sample from conditional distributions)
o Hamiltonian MC (HMC) sampling (exploit gradients)

o Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

o Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

o Assume isotropic Gaussian process prior characterised by power spectrum Cl.
o Sample from conditional distributions:

T — P(x|Cl,y) and C;T' « P(Ce|2't).

Require MCMC approach to support sparse priors, which shown to be highly effective.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

o exp [—]

Posterior Convex

P(z|y) =
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(x|y) :-o< exp[—]

Posterior Convex

o If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

o Langevin dynamics model molecular dynamics (includes friction and occasional high
velocity collisions that perturb the system).
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

MCMC sampling with gradients

Langevin dynamics

o Consider posteriors of the following form (and more compact notation):

P(x|y) :-o< exp[—]

Posterior Convex

If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

o Langevin dynamics model molecular dynamics (includes friction and occasional high
velocity collisions that perturb the system).

Based on Langevin diffusion process L£(t), with 7 as stationary distribution:
1
dL(t) = 5v1og7r(.f:(t))dt+dW(t), L£(0) =1

where W is Brownian motion.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

MCMC sampling with gradients

Langevin dynamics

@ Based on Langevin diffusion process £(t), with 7 as stationary distribution:

dﬁ(t):% Viogn(£(8) |dt +dW(r), £(0) =10

Gradient

where W is Brownian motion.

o Need gradients so cannot support sparse priors.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximity operators
A brief aside

@ Define proximity operator:

proxg(z) = arg;nin [g('u,) + |lu — m||2/2)\]

o Generalisation of projection operator:
Pc(x) = arg min [zc(u) + ||lu — a:HQ/Q] ,
u

where 1¢(u) = oo if u ¢ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Moreau approximation

o Follow Pereyra (2016a) and consider Moreau approximation of m:

2
u—x
mx(x) = sup w(u)exp il
weRN 2\

Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Moreau approximation

o Follow Pereyra (2016a) and consider Moreau approximation of m:

2
u—x
mx(x) = sup w(u)exp il
weRN 2\

o Important properties of 7 (x):
Q@ As )\ —0,my\(x) = 7(x)

Q@ Viogmy(x) = (prox;‘(z) —x)/X € 310g7r(prox;‘(:n))

Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

@ Consider log-convex posteriors: P(x | y) = m(x) x exp [—

Convex
-
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

o Consider log-convex posteriors: P(z |y) = m(x) o exp[—| g

Convex
-

@ Langevin diffusion process £(t), with 7 as stationary distribution ()V Brownian motion):

dL(t) = %v log 7 (£(t))dt + dW(t), L(0) =lo .
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

o Consider log-convex posteriors: P(z | y) = m(x) o exp[—| g(

Convex
-

@ Langevin diffusion process £(t), with 7 as stationary distribution ()V Brownian motion):
1
dL(t) = 5v log 7 (£(t))dt + dW(t), L(0) =lo .
@ Discretise and apply Moreau approximation:

s I
pm+) — glm) o = Viegm(@™) |+ Vow ™ .

Vieg ma(x) = (proxf]‘ () — @)/
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

o Consider log-convex posteriors: P(z |y) = m(x) o exp[—| g

Convex
-

@ Langevin diffusion process £(t), with 7 as stationary distribution ()V Brownian motion):
1
dL(t) = 5v log 7 (£(t))dt + dW(t), L(0) =lo .

@ Discretise and apply Moreau approximation:

+ Vow™ .

s
DI (C O 3| Vieg™

Vieg ma(x) = (proxf]‘ () — @)/

@ Metropolis-Hastings accept-reject step.
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CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

o Consider log-convex posteriors: P(z |y) = m(x) o exp[—| g

Convex

@ Langevin diffusion process £(t), with 7 as stationary distribution ()V Brownian motion):
1
dL(t) = 5v10g7r(£(t))dt +dw(t), L£(0)=1o.
@ Discretise and apply Moreau approximation:

d
(m+D) — g 0m) > Vlogw(l(m)) + Vow'™

Vieg ma(x) = (prox;‘(m) —x)/A

@ Metropolis-Hastings accept-reject step.

Need to compute proxg/2 for problem (Cai, Pereyra & McEwen, in prep.):

5/2 5/2
~ prox>\1|_Hl (a —swiof (¢llla — y)) ~ proxkﬂwvn1 (:c — 5ot (0:1: — y))

Synthesis framework Analysis framework
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations

(a) Dirty image

Figure: HII region of M31
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KA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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(a) Dirty image (b) Mean recovered image

Figure: HII region of M31
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CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
(b) Mean recovered image (c) Standard deviation image

(a) Dirty image

Figure: HII region of M31
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CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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(a) Dirty image

Figure: Supernova remnant W28
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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(a) Dirty image (b) Mean recovered image

Figure: Supernova remnant W28
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
(a) Dirty image (b) Mean recovered image (c) Standard deviation image
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Figure: Supernova remnant W28
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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(a) Dirty image

Figure: 3C288
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CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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(a) Dirty image (b) Mean recovered image

Figure: 3C288

Next-generation radio interferometric imaging (Extra)



CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC

Preliminary results on simulations
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:

(a) Dirty image (b) Mean recovered image (c) Standard deviation image

Figure: 3C288
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions for compressive sensing

o | Combine error estimation with fast sparse regularisation (cf. compressive sensing).
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions for compressive sensing

o | Combine error estimation with fast sparse regularisation (cf. compressive sensing).

o Let C denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — )% defined by posterior iso-contour: Co = {x : g(x) < va}.

@ Analytic approximation 7o = g(®*) + N (7o + 1) (Pereyra 2016b).
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions for compressive sensing

o | Combine error estimation with fast sparse regularisation (cf. compressive sensing).

Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — )% defined by posterior iso-contour: Co = {x : g(x) < va}.

@ Analytic approximation 7o = g(®*) + N (7o + 1) (Pereyra 2016b).

o Compute x* by sparse regularisation and estimate local Bayesian credible intervals.

Next-generation radio interferometric imaging (Extra)



Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions for compressive sensing

@ | Combine error estimation with fast sparse regularisation (cf. compressive sensing).

o Let C denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — )% defined by posterior iso-contour: Co = {x : g(x) < va}.

@ Analytic approximation 7o = g(®*) + N (7o + 1) (Pereyra 2016b).

o Compute x* by sparse regularisation and estimate local Bayesian credible intervals.

Local Bayesian credible intervals for sparse reconstruction (Cai, Pereyra & McEwen, in prep.)

Let © define the area (or pixel) over which to compute the credible interval (£_,£.) and ¢ be an index
vector describing Q (i.e. ¢; = 1 if i € Q and 0 otherwise).

Given 7, and *, compute the credible interval by

€- = min {¢] gy(2") < Fa, VE € [-00, +00)}

&y = mgx{f | gy(2') < Ao, V€ € [—00,+00) },

where

' =z (T-¢)+& |

v
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations

(a) Recovered image

Figure: HII region of M31
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations

(a) Recovered image (b) Credible intervals for
regions of size 10 X 10

Figure: HII region of M31
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

L

(a) Recovered image (b) Credible intervals for  (c) Credible intervals for (d) Credible intervals for
regions of size 10 X 10 regions of size 20 x 20 regions of size 30 x 30

Bayesian credible regions
Preliminary results on simulations

Figure: HII region of M31
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations

(a) Recovered image

Figure: Supernova remnant W28
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations

< J& BREE

(a) Recovered image (b) Credible intervals for (c) Credible intervals for (d) Credible intervals for
regions of size 10 X 10 regions of size 20 X 20 regions of size 30 X 30

Figure: Supernova remnant W28
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations
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(a) Recovered image

Figure: 3C288
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Bayesian credible regions
Preliminary results on simulations

B2

(a) Recovered image (b) Credible intervals for (c) Credible intervals for (d) Credible intervals for
regions of size 10 X 10 regions of size 20 X 20 regions of size 30 X 30

Figure: 3C288
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
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Hypothesis testing
Method

@ Is structure in an image physical or an artefact?

@ Can we make precise statistical statements?
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Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image ..
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image ..

@ Inpaint background (noise) into region, yielding surrogate image x’.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image ..
@ Inpaint background (noise) into region, yielding surrogate image x’.

© Test whether ' € Cy:
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image ..
@ Inpaint background (noise) into region, yielding surrogate image x’.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artefact with confidence
(1 — @)%, i.e. structure most likely physical.
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Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing
Method

@ Is structure in an image physical or an artefact?
@ Can we make precise statistical statements?

o Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

@ Cut out region containing structure of interest from recovered image ..
@ Inpaint background (noise) into region, yielding surrogate image x’.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artefact with confidence
(1 — @)%, i.e. structure most likely physical.

o If ' € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

(a) Recovered image

Figure: HII region of M31
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

| ‘
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‘ ’ ‘

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

»
' . Reject null hypothesis
-
' = structure physical

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Preliminary results on simulations

Figure: HII region of M31
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing
Hypothesis testing

Preliminary results on simulations

(a) Recovered image

Figure: Supernova remnant W28
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Hypothesis testing

Preliminary results on simulations

(a) Recovered image

(b) Surrogate with region removed

Figure: Supernova remnant W28
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

‘

(a) Recovered image

Figure: 3C288
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Rl Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Hypothesis testing

Preliminary results on simulations

1 ‘ Reject null hypothesis
. ’ = structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Conclusions

@ Unified framework for interferometric imaging.
Sparse priors (cf. compressive sensing) shown to be highly effective and scalable to big-data.

PURIFY package provides robust framework for imaging interferometric observations
(http://basp-group.github.io/purify/).

Supported by:

M & Science & Technology
Recemren Coonel o SEeneeS @ Facilities Council
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Conclusions

@ Unified framework for interferometric imaging.
Sparse priors (cf. compressive sensing) shown to be highly effective and scalable to big-data.

PURIFY package provides robust framework for imaging interferometric observations
(http://basp-group.github.io/purify/).

@ Seek statistical interpretation to recover error information.
Proximal MCMC sampling can support sparse priors in full statistical framework.
Combine error estimation with fast sparse regularisation (cf. compressive sensing):
o Recover Bayesian credible regions.

o Perform hypothesis testing to test whether structure physical.

Supported by:

M & Science & Technology
Recemren Coonel o SEeneeS @ Facilities Council

Next-generation radio interferometric imaging (Extra)
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Extra Slides

L vy v e
PURIFY reconstructions
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Compressive sensing
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An introduction to compressive sensing
Operator description

o Linear operator (linear algebra) representation of signal decomposition:

x(t):ZaﬂI!i(t) — w:Z‘Iliaiz Yo |lag+ | V1 | a1 +--- —
[ 7

o Linear operator (linear algebra) representation of measurement:

— ®y —

yi=(@o) — y=|"""|a 5 [y=0a

e Putting it together: y=0x =0V

Y b \ a
—_——

= WV
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An introduction to compressive sensing
Promoting sparsity via £1 minimisation

o lll-posed inverse problem:

[y:¢m+n:¢‘lla+n].

Solve by imposing a regularising prior that the signal to be recovered is sparse in U, j.e.
solve the following ¢ optimisation problem:

)

a* = arg min||a||o subject to ||y — PPa|2 <€
@

where the signal is synthesised by * = Va*.

o Recall norms given by:

allo = no. non-zero elements  [lafli = > fas|  flelF = |eul?
7 1

@ Solving this problem is difficult (combinatorial).

@ Instead, solve the ¢; optimisation problem (convex):

a* = arg min||a||1 subject to ||y — PTa|2 <€
(a7
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____RI Imaging _CS for SKA_Uncertainty Quantification |
An introduction to compressive sensing

Union of subspaces

@ Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

RN

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing
Restricted isometry property (RIP)

@ Solutions of £y and ¢; problems often the same.

o Restricted isometry property (RIP):

(1= ba) |1 — @2|3 < [|Om1 — Oz2 |5 < (14 Saxc) |1 — @2|3
for K-sparse 1 and @2, where @ = ®W.

@ Measurement must preserve geometry of sets of sparse vectors.

RN RM
b
—
T2
T1 by
Do

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing
Intuition

@ Solutions of £y and ¢; problems often the same.

o Geometry of £y, 2 and £; problems.

RV & H
g
s s s
(b) (c)

(a)

Figure: Geometry of (a) £y (b) £2 and (c) £1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Sparsity and coherence

@ In the absence of noise, compressed sensing is exact!

@ Number of measurements required to achieve exact reconstruction is given by

M > cu?Klog N |,

where K is the sparsity and N the dimensionality.

@ The coherence between the measurement and sparsity basis is given by

p=VN max |(¥;, ;)|
K2¥)

= Va
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

@ Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x* = arg min ||Qax||1 subject to ||y — ®z|2 < €.
xT

analysis

e Contrast with synthesis-based approach:

x* =¥ - arg min ||a||1 subject to ||y — PVa2 <e.
«@

synthesis

For orthogonal bases Q = W' and the two approaches are identical.
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Analysis vs synthesis
Comparison

Coefficient Domain

Signal Domain

Compressed Sensing Domain

Measurement System

VS.

Synthesis
) Dictionary
g x=Dz

Sparsé coefficient

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

o Synthesis-based approach is more general, while analysis-based approach more restrictive.
@ More restrictive analysis-based approach may make it more robust to noise.

@ The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

e Consider the inverse problem:
y=0oWa+n.

o Assume Gaussian noise, yielding the likelihood:

P(y|a) o exp(lly — oWal3/(20%)) .

Consider the Laplacian prior:

Pla) exp(—,6’||a\|1> .

The maximum a-posteriori (MAP) estimate (with A = 2802) is

TMAP-synthesis = ¥ * arg max P(er[y) =¥ - arg min [|y — Va3 + Ml -

synthesis

@ One possible Bayesian interpretation!

o Signal may be {y-sparse, then solving ¢1 problem finds the correct £y-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

o Other Bayesian interpretations are also possible (Gribonval 2011).

@ Minimum mean square error (MMSE) estimators

C synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

C MAP estimators

MAP

Penalised LS
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

@ Analysis-based MAP estimate is

T AP.analysis = @1 - argmin |ly — @QF 513 + A1 -

~y Ecolumn space Q

analysis
o Different to synthesis-based approach if analysis operator Q is not an orthogonal basis.
@ Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (natural) reconstruction
VLA observation of 3C129
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (uniform) reconstruction
VLA observation of 3C129
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Rl Imaging CS for SKA Uncertainty Quantification

PURIFY reconstruction
VLA observation of 3C129
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (natural) reconstruction
VLA observation of Cygnus A

Next-generation radio interferometric imaging (Extra)



Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (uniform) reconstruction
VLA observation of Cygnus A
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Rl Imaging CS for SKA Uncertainty Quantification

PURIFY reconstruction
VLA observation of Cygnus A
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (natural) reconstruction
ATCA observation of PKS J0334-39
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (uniform) reconstruction
ATCA observation of PKS J0334-39
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Rl Imaging CS for SKA Uncertainty Quantification

PURIFY reconstruction
ATCA observation of PKS J0334-39
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (natural) reconstruction
ATCA observation of PKS J0116-473
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Rl Imaging CS for SKA Uncertainty Quantification

CLEAN (uniform) reconstruction
ATCA observation of PKS J0116-473
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Rl Imaging CS for SKA Uncertainty Quantification

PURIFY reconstruction
ATCA observation of PKS J0116-473
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Rl Imaging CS for SKA Uncertainty Quantification |
PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural)  (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36
PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24
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