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Bayesian inference: setting the notation

Bayes’ theorem

p(x | y,M)

posterior

=
p(y | x,M)

likelihood

p(x |M)

prior

p(y |M)

evidence

=
L(x)

likelihood

π(x)
prior

z
evidence

,

for parameters x, model M and observed data y.

For model selection, must compute the Bayesian model evidence or marginal likelihood
given by the normalising constant

z = p(y |M) =

∫
dx L(x) π(x) .

→ Challenging computational problem.
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Nested sampling: reparameterising the likelihood

Nested sampling: ingenious approach to efficiently evaluate the evidence (Skilling 2006).

Group the parameter space Ω into a series of nested subspaces:
ΩL∗ = {x | L(x) ≥ L∗}.

Define the prior volume ξ within ΩL∗ by ξ(L∗) =
∫
ΩL∗

π(x)dx.

Evidence can then be rewritten as

z =
∫ 1

0
L(ξ)dξ.

Require computational strategy to compute likelihood level-sets
(iso-contours) Li and corresponding prior volumes 0 < ξi ≤ 1.
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Nested sampling: constrained sampling

Nested sampling (Skilling 2006)
1. Draw Nlive live samples from prior, with prior volume ξ0 = 1.
2. Remove sample with smallest likelihood, say Li.
3. Replace removed sample with new sample from the prior but constrained to a

higher likelihood than Li.
4. Estimate (stochastically) prior volume ξi enclosed by likelihood level-set Li.
5. Repeat 2–5.

Crux: sample from the prior, subject to the likelihood level-set constraint,
i.e. sample from the prior π(x), such that L(x) > L∗.

⇒ Exploit structure of common high-dimensional problems.
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Merging paradigms

Merging

Paradigms

Statistics

e.g. Bayesian Inference,

Probability Theory

Applied Math

e.g. Optimization,

Proximal Calculus

Computer Science

e.g. Machine Learning,

Scientific Computing
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Aside: Learned harmonic mean estimation of the marginal likelihood

▷ Learned harmonic mean estimator
(McEwen et al.; arXiv:2111.12720)

▷ Bayesian model comparison for simulation-based inference
(Spurio Mancini et al.; arXiv:2207.04037)

▷ Learned harmonic mean estimation with normalizing flows [MaxEnt poster!]
(Polanska et al.; arXiv:2307.00048)

Agnostic to sampling strategy (→ HMC, NUTS).
Code: https://github.com/astro-informatics/harmonic

Matt PriceAlicja Polanska Alessio Spurio ManciniJason McEwen 5
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Outline

1. Proximal calculus

2. Proximal nested sampling

3. Learned deep data-driven priors
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Proximal calculus



Motivating example: high-dimensional inverse imaging problems

Classical high-dimensional imaging problems often consider Gaussian likelihood and
sparsity-promoting prior (e.g. in wavelet representation Ψ):

p(y | x) ∝ exp
(
−
∥∥y−Φx

∥∥2
2/(2σ

2)
)

Likelihood

p(x) ∝ exp
(
−∥Ψ†x∥1

)
Prior

Often compute MAP estimator (variational regularisation):

argmax
x

log p(x | y) = argmin
x

[ ∥∥y−Φx
∥∥2
2

Data fidelity

+ λ∥Ψ†x∥1
Regulariser

]

⇒ Often solved by convex optimisation algorithms (e.g. proximal splitting algorithms).
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Convexity

Convex set
C is a convex set if for any x1, x2 ∈ C and
α ∈ (0, 1) we have

αx1 + (1− α)x2 ∈ C.

Convex function
The epigraph of a function f : Rn → R is
defined by

epi(f) = {(x, γ) ∈ Rn × R | f(x) ≤ γ}.

f is a convex function if and only if its
epigraph is convex.
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Sub-differentials

Subdifferential
The subdifferential of a convex function
f : Rn → R at x0 ∈ Rn is the set

∂f(x0) = {c | f(x) ≥ f(x0) + cT(x− x0)}.

Illustration of sub-gradients

▷ Each c ∈ ∂f(x0) called a subgradient.

▷ If f is differentiable at x0, then

∂f(x0) = {∇f(x0)}.

▷ Subdifferentials useful for optimising
non-differentiable convex functions:

0 ∈ ∂f(x⋆) ⇔ x⋆ minimises f.

Jason McEwen 9

http://www.jasonmcewen.org


Sub-differentials

Subdifferential
The subdifferential of a convex function
f : Rn → R at x0 ∈ Rn is the set

∂f(x0) = {c | f(x) ≥ f(x0) + cT(x− x0)}.

Illustration of sub-gradients

▷ Each c ∈ ∂f(x0) called a subgradient.

▷ If f is differentiable at x0, then

∂f(x0) = {∇f(x0)}.

▷ Subdifferentials useful for optimising
non-differentiable convex functions:

0 ∈ ∂f(x⋆) ⇔ x⋆ minimises f.

Jason McEwen 9

http://www.jasonmcewen.org


Proximity operator

Proximity operator
The prox of a convex function f : Rn → R
is given by

proxλf (x) = argmin
u

[
f(u) + ∥u− x∥2/2λ

]

Illustration of prox (Parikh & Boyd 2013)

▷ Thin black lines level curves of convex function.
▷ Thick black line indicates domain boundary of

function.
▷ Evaluating proxf at blue points 7→ red points.Jason McEwen 10
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Proximity operator as generalised projection operator

Recall proximity operator:

proxλf (x) = argmin
u

[
f(u)

Function

+ ∥u− x∥2/2λ
]

Generalisation of projection operator:

ΠC(x) = argmin
u

[
ıC(u)

Indicator

+ ∥u− x∥2/2
]
,

where ıC(u) = ∞ if u /∈ C and zero otherwise.

Jason McEwen 11
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Moreau-Yosida approximation

Morea-Yosida approximation
The Morea-Yosida approximation of a
convex function f : Rn → R is given by
the infimal convolution:

fλ(x) = infu∈RN
f(u) + ∥u− x∥2

2λ

Moreau-Yosida envelope of |x| for varying λ.

Important properties of fλ(x):

1. As λ → 0, fλ(x) → f(x)

2. ∇fλ(x) = (x− proxλf (x))/λ

▷ Regularise non-differentiable function
(e.g. likelihood level-set constraint!)

▷ Compute gradient by prox.

▷ Leverage gradient-based Bayesian
computation.

Jason McEwen 12
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Proximal nested sampling



Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

⇒ Proximal nested sampling (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

Xiaohao Cai Marcelo Pereyra
Jason McEwen 13
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Constrained sampling formulation

Consider case where likelihood and prior of the form

L(x) = exp(−g(x))

Likelihood

, π(x) = exp(−f(x))

Prior

,

where g = − logL is convex lower semicontinuous function (prior need not be log-convex).

Let ιL∗(x) and χL∗(x) be the indicator and characteristic functions:

ιL∗(x) =
{
1, L(x) > L∗,
0, otherwise,

and χL∗(x) =
{
0, L(x) > L∗,
+∞, otherwise.

(1)

Then let πL∗(x) = π(x)ιL∗(x) represent the prior distribution with hard likelihood
constraint.

Jason McEwen 14
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Constrained sampling formulation

Taking the logarithm, we can write

− log πL∗(x) = − log π(x) + χBτ
(x) ,

where χBτ
(x) is the characteristic function associated with the convex set

Bτ := {x | − logL(x) < τ},

for τ = − log L∗.

Jason McEwen 15
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MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.
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http://www.jasonmcewen.org


MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2∇ log p

(
x(t)

)
dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.

Jason McEwen 16

http://www.jasonmcewen.org


MCMC sampling with Langevin dynamics

Require MCMC sampling strategy that can scale to high-dimensions.

If target distribution p(x) differentiable can adopt Langevin dynamics.

Langevin diffusion process x(t), with p(x) as stationary distribution:

dx(t) = 1
2 ∇ log p

(
x(t)

)
Gradient

dt+ dw(t),

where w is Brownian motion.

Need gradients so not directly applicable ⇒ adopt Morea-Yosida approximation.

Jason McEwen 16

http://www.jasonmcewen.org


Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

▷ Constrained sampling formulation
▷ Langevin MCMC sampling
▷ Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+

√
δw(k+1) .

Jason McEwen 17
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain (from previous slide):

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]

+
√
δw(k+1).

1. x(k) is already in Bτ : term
[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the
convex set Bτ . Acts to push the Markov chain back
into the constraint set Bτ if it wanders outside of it.

Jason McEwen 18
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Proximal nested sampling

A subsequent Metropolis-Hastings step can be introduced to guarantee hard likelihood
constraint is satisfied.

For sparsity-promoting non-differentiable priors f(x) (e.g. − log π(x) = ∥Ψ†x∥1), can also
make Moreau-Yosida approximation fλ(x) and leverage prox to compute gradient ∇fλ:

x(k+1) = x(k) − δ

2λ
[
x(k) − proxλ− log π(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .

Jason McEwen 19
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Explicit forms of proximal nested sampling

But how do we compute the proximity operators?

Consider common imaging problem as example:

− logL(x) =
∥∥y−Φx

∥∥2
2 + const.

Likelihood

Straightforward when Φ is identity.

Otherwise express as equivalent
saddle-point problem and solve using
primal-dual method.

− log π(x) =
∥∥Ψ†x

∥∥
1 + const.

Prior

proxλ− log π(x) = x+Ψ
(
softλµ(Ψ†x′)−Ψ†x

)
,

Jason McEwen 20
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Computing proximal operator for likelihood

Prox for the likelihood is equivalent to the saddle-point problem:

min
x∈Rd

max
z∈CK

{
z†Φx− χ∗

B′
τ′
(z) + ∥x− x′∥22/2

}
.

Solve iteratively by primal dual method:

1. z(i+1) = z(i) + δ1Φx̄(i) − proxχB′
τ′
(z(i) + δ1Φx̄(i)),

where proxχB′
τ′
(z) = projB′

τ′
(z) =

z, if z ∈ B′
τ ′ ,

z−y
∥z−y∥2

√
2τσ2 + y, otherwise.

2. x(i+1) = (x′ + x(i) − δ2Φ
†z(i+1))/2

3. x̄(i+1) = x(i+1) + δ3(x(i+1) − x(i))
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Validation on Gaussian problem
lo
g
(V

×
Z
)

Dimension

lo
g
(V

×
Z
)

Dimension

Comparison of proximal nested sampling (red), naive MC integration (blue) and ground truth (black).

Dimension 106

Ground truth: 2.3850× 105 Proximal nested sampling (10 trials): (2.3851± 0.0002)× 105
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Denoising wavelet dictionary experiment

Clean image Noisy image

Ψ = I Ψ = DB2 Ψ = DB8Jason McEwen 23
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Denoising wavelet dictionary experiment

Prior log z RMSE (Requires ground truth)

Ψ = I −6.54× 104 41.07
Ψ = DB2 −3.06× 104 14.29
Ψ = DB8 −3.09× 104 14.51

Evidence computed by proximal nested sampling correctly compares wavelet dictionaries.
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Proxnest code

Github: https://github.com/astro-informatics/proxnest

Docs: https://astro-informatics.github.io/proxnest
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Learned deep data-driven priors



Empirical Bayes: deep data-driven priors

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough.

Consider empirical Bayes approach with data-driven priors learned from training data.

Aim: integrate learned deep data-driven priors into proximal nested sampling.

Proximal nested sampling requires only likelihood to be convex, so prior can be arbitrarily
complex (e.g. deep learned model).

Score matching and denoising diffusion models achieve state-of-the-art performance in
deep generative modelling ⇒ denoising closely related to data-driven priors.
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Proximal nested sampling with deep data driven-priors

Proximal nested sampling with data driven-priors for physical scientists
(McEwen, Liaudat, Price, Cai & Pereyra 2023; arXiv:2307.00056)

Tobias Liaudat Xiaohao Cai Marcelo PereyraMatt Price
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Tweedie’s formula

Tweedie’s formula
Consider noisy observations z ∼ N (x, σ2I) of x sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z+ σ2∇ log p(z),

where p(z) is the marginal distribution of z.

▷ Can be interpreted as a denoising strategy.

▷ Can be used to relate a denoiser (potentially a trained deep neural network) to the
score ∇ log p(z).
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Learning score of regularised prior

No guarantee that data-driven prior is well-suited for gradient-based Bayesian
computation, e.g. it may not be differentiable.

⇒ Consider regularised prior defined by Gaussian smoothing:

πϵ(x) = (2πϵ)−d/2
∫

dx′ exp(| x− x′∥22/(2ϵ)) π(x′).

Consider learned denoiser Dϵ trained to recover x from noisy observations xϵ ∼ N (x, ϵI).

By Tweedie’s formula the score of the regualised prior related to the learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).
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Proximal nested sampling with learned data-driven priors

Substituting the denoiser ∇ log πϵ(x) = ϵ−1(Dϵ(x)− x) into the proximal nested
sampling Markov chain update:

x(k+1) = x(k) − δ

2ϵ
[
x(k) − Dϵ(x(k))

]
− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .
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Hand-crafted vs data-driven priors

Consider simple radio interferometric imaging inverse problem with:
▷ hand-crafted prior based on sparsity-promoting wavelet representation;
▷ data-driven prior based on a deep convolutional neural network (Ryu et al. 2019).
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Summary



Summary

▷ Proximal nested sampling framework scales to high-dimensions, opening up
Bayesian model comparison for, e.g., imaging problems.

▷ Constrained to log-convex likelihoods, which are ubiquitous in imaging sciences.

▷ Prior not constrained to be log-convex so can be a deep neural network.

▷ Recently developed learned proximal nested sampling approach to support
data-driven priors in an empirical Bayes setting.

Github: https://github.com/astro-informatics/proxnest

Docs: https://astro-informatics.github.io/proxnest
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