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Symmetry in deep learning



Physics and deep learning

Physics

Understanding the world by
modelling from first principles
for generative models and inference.

Hard!

Deep Learning

Understanding the world by
learning informative representations
for generative models and inference.

Hard!
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Physics and deep learning

Physics ←→ Deep Learning

Here we focus on integrating physics→ deep learning
(in other works focus on reverse: physics← deep learning).

As we will see, this key factor driving the deep learning revolution.
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“Symmetry: key to nature’s secrets.”

— Steven Weinberg
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Symmetry

Mirror symmetry

Rotational symmetry
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Symmetry (invariance) to continuous transformation

In physics we typically consider continuous symmetries, where system is symmetric
(invariant) to continuous transformation.

→
t1
→

t2

Spatial translation

Rotation Time translation
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Noether’s theorem

Noether’s theorem
For every continuous symmetry of the universe, there exists a
conserved quantity.

Symmetries at the heart of physics:
• Translational symmetry⇔ conservation of momentum
• Rotational symmetry⇔ conservation of angular momentum
• Time translational symmetry⇔ conservation of energy

(Energy not conserved in general relativity since time translation broken.)

Emmy Noether
8
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Symmetry is the foundation underlying
the fundamental laws of physics.
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Symmetry in deep learning

Encoding symmetry in deep learning models captures fundamental properties about the
underlying nature of our world.

Key factor driving the deep learning revolution, with the advent of CNNs.

• CNNs resulted in a step-change in performance.
• Convolutional structure of CNNs capture translational symmetry
(i.e. translational equivariance).
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Equivariance

Equivariance
An operator A is equivariant to a transformation T if

T
(
A( f )

)
= A

(
T ( f )

)
for all possible signals f.

Transforming the signal after
application of the operator, is
equivalent to transformation of
the signal first, followed by
application of the operator.

X Y

X Y
A

A

T T
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Planar (Euclidean) CNNs exhibit translational equivariance

Planar (Euclidean) convolution is translationally equivariant.

A

A

T

T
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Importance of equivariance

Imposing inductive biases in deep learning models, such as equivariance to symmetry
transformations, allows models to be learned in a more principled and effective manner.

Capture fundamental physical understanding of generative process.
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Importance of equivariance

In some sense, equivariance to a transformation means a pattern need only be learnt
once, and may then be recognised in all transformed scenarios.

Cat Still a cat
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Spherical CNNs



Data on the sphere is prevalent

Encode symmetries of the sphere and rotations
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Earth & Climate 
Science

AstrophysicsMolecular 
Chemistry

Extended Reality 
( VR / AR / MR )

360° Photos 
& Video

Drones Autonomous 
Vehicles

Semantic 
Understanding

Spatial 
Audio

Medical 
Imaging

Communications

Surveillance & 
Monitoring

Data on the sphere arises
in many applications
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Cosmology and virtual reality

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).

Cosmic microwave background 360◦ virtual reality
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Why not standard (Euclidean) deep learning approaches?

Could project sphere to plane and then apply standard planar CNNs.

Projection

Greenland appears to be a similar size to Africa in the projected planar map, whereas it is
over 10 times smaller.
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Why not standard (Euclidean) deep learning approaches?

Projection breaks symmetries and geometric properties of sphere.

17



Why not standard (Euclidean) deep learning approaches?

Projection breaks symmetries and geometric properties of sphere.

No projection of the sphere to the plane can preserve both shapes and areas
⇒ distortions are unavoidable.

(Formally: a conformal, area-preserving projection does not exist.)
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Why not graph-based geometric deep learning?

Could construct graph representation of sphere and apply graph CNNs.

Again, breaks symmetries and geometric properties of sphere.

Cannot capture rotational equivariance.
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Rotational equivariance

On the sphere, the analog of translations are rotations.

Rotation

Would like spherical CNNs to exhibit rotational equivariance.

(Just as planar CNNs exhibit translational equivariance.)
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Capturing rotational equivariance in spherical CNNs

Well-known that regular discretisation of the sphere does not exist (e.g. Tegmark 1996).
⇒ Not possible to discretise sphere in a manner that is invariant to rotations.

Capturing strict equivariance with operations defined directly in discretised (pixel) space
not possible due to structure of sphere.

Instead, consider Fourier approach→ access to underlying continuous representations.

20



Capturing rotational equivariance in spherical CNNs

Well-known that regular discretisation of the sphere does not exist (e.g. Tegmark 1996).
⇒ Not possible to discretise sphere in a manner that is invariant to rotations.

Capturing strict equivariance with operations defined directly in discretised (pixel) space
not possible due to structure of sphere.

Instead, consider Fourier approach→ access to underlying continuous representations.
20



Spherical CNN

Spherical CNNs constructed by analog of Euclidean CNNs but using convolution on the
sphere and with pointwise non-linear activations functions, e.g. ReLU (Cohen et al. 2018;
Esteves et al. 2018).

S2 Conv.

ReLU

×N

(Alternative, real space constructions have also been developed but do not exhibit rotational equivariance so
not considered further; e.g. Boomsma & Frellsen 2017, Jiang et al. 2019, Perraudin et al. 2019.)
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Rotation of signals

Rotation of signals in spatial domain
A signal f ∈ L2(Ω) on the sphere (Ω = S2) or rotation group (Ω = SO(3)) can be rotated
by ρ ∈ SO(3) by

Rρ f (ω) = f (ρ−1ω), for ω ∈ Ω.

Rotation
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Convolution of signals

Convolution of signals in spatial domain
Convolution of two signals f, ψ ∈ L2(Ω) is given by

(f ⋆ ψ)(ρ) = ⟨f,Rρψ⟩ =
∫
Ω

dµ(ω) f(ω)ψ∗(ρ−1ω), for ω ∈ Ω, ρ ∈ SO(3),

where dµ(ω) denotes the Haar measure on Ω and ·∗ complex conjugation.

23



Convolution of signals

Convolution of signals in spatial domain
Convolution of two signals f, ψ ∈ L2(Ω) is given by

(f ⋆ ψ)(ρ) = ⟨f,Rρψ⟩ =
∫
Ω

dµ(ω) f(ω)ψ∗(ρ−1ω), for ω ∈ Ω, ρ ∈ SO(3),

where dµ(ω) denotes the Haar measure on Ω and ·∗ complex conjugation.

Since no regular discretization of the sphere, compute in Fourier space to ensure equivariant.

24



Convolution of signals

Convolution of signals in spatial domain
Convolution of two signals f, ψ ∈ L2(Ω) is given by

(f ⋆ ψ)(ρ) = ⟨f,Rρψ⟩ =
∫
Ω

dµ(ω) f(ω)ψ∗(ρ−1ω), for ω ∈ Ω, ρ ∈ SO(3),

where dµ(ω) denotes the Haar measure on Ω and ·∗ complex conjugation.

Since no regular discretization of the sphere, compute in Fourier space to ensure equivariant.
24



Convolution is rotationally equivariant

Convolution is rotational equivariant (when computed in harmonic domain):(
(Rρf) ⋆ ψ

)
(ρ′) = (Rρ(f ⋆ ψ))(ρ′).

A

A

Rρ

Rρ
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Pointwise activation

While pointwise activations are rotationally equivariant in the continuous limit, they are
not equivariant in practice when applied to discretised signals (since regular discretisation of
sphere does not exist).

Equivariance errors

Layer Mean Relative Error∗

S2 to S2 conv. 4.4× 10−7

S2 to SO(3) conv. 5.3× 10−7

SO(3) to SO(3) conv. 9.3× 10−7

S2 ReLU 3.4× 10−1

SO(3) ReLU 3.7× 10−1

∗ Floating point precision.
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Spherical CNNs

Approach taken by Cohen et al. 2018 and Esteves et al. 2018.

Despite imperfect equivariance, find empirically that such models maintain a reasonable
degree of equivariance and generally perform well.

S2 Conv.

ReLU

×N

SO(3)
Conv.

ReLU

×N
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Efficient generalised spherical CNNs



Group theory is the mathematical study of symmetry.
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Since we’re concerned with rotational symmetry, leverage the machinery
from the study of angular momentum in quantum mechanics.

27



Generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to
take the form of a triple (Cobb et al. 2021)

A(s) = (L1,N ,L2),

such that

A(s)( f(s−1) ) = L2 (N (L1( f(s−1) ) ) ),

where
• L1,L2 : F L → F L are spherical convolution operators,
• N : F L → F L is a non-linear, spherical activation
operator.

Linear

Non-linear

Linear
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Generalised spherical CNNs

• Build on other influential equivariant
spherical CNN constructions:

• Cohen et al. (2018)
• Esteves et al. (2018)
• Kondor et al. (2018)

• Encompass other frameworks as special
cases.

• General framework supports hybrids models.

Existing spherical CNN layers are highly
computationally costly, particularly those
non-linear layers that satisfy strict rotational
equivariance.

S2 Conv.

ReLU

I

Cohen et al. (2018),
Esteves et al. (2018)

I

Tensor
Products

Gen. Conv.

Kondor et al. (2018)
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Contributions to improve efficiency

1. Channel-wise structure

2. Constrained generalized convolutions

3. Optimized degree mixing sets

4. Efficient sampling theory on the sphere and rotation group

30



Channel-wise structure

Split generalized signals in K channels and apply a tensor-product activation to each
channel separately.

Representational capacity then controlled through linear dependence on channels K,
rather than quadratic dependence (on generalized harmonic representation type τf).

N⊗

`=0 `=1 `=2

Prior approach to applying a tensor-product based non-linear operator

N⊗

`=0, 1, 2

Ours (Cobb et al. 2021)
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Constrained generalized convolutions

Under new multi-channel structure, decompose the generalized convolution into three
separate constrained linear operators:

1. Uniform convolution: linear projection uniformly across channels to project down
onto the desired type (interpreted as learned extension of tensor-product
activations to undo expansion of representation space).

2. Channel-wise convolution: linear combinations of the fragments within each
channel.

3. Cross-channel convolution: linear combinations to learn new features.

Computational and parameter efficiency significantly improved.
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Optimized degree mixing sets

Non-linear operators must perform degree mixing (equivariant linear operators cannot mix
information corresponding to different degrees).

But, it is not necessary to compute all possible tensor-product based fragments.

Degree mixing set Pℓ
L:

Pℓ
L = {(ℓ1, ℓ2) ∈ {0, ..., L− 1}2 : |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2}.

Consider subsets of Pℓ
L that scale better than O(L2).

33



Optimized degree mixing sets

Consider the graph Gℓ
L = (NL,Pℓ

L) with nodes NL = {0, ..., L− 1} and edges Pℓ
L.

• Some notion of relationship between ℓ1 and ℓ2 is captured if there exists a path
between the two nodes in Gℓ

L.
• Select smallest subgraph such that all relationships are preserved⇒ minimum
spanning tree (MST). Weight edges by computational cost to minimise overall cost.

• Consider logarithmic subsampling (reduced MST).

Computational complexity significantly reduced from O(L5) to O(L3 log L), where L
denotes resolution (bandlimit).
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Efficient sampling theory and fast harmonic transforms

Adopt efficient sampling theory and fast algorithms to compute harmonic transforms on
the sphere and rotation group.

Leverage to access underlying continuous signal representations, avoiding discretization
artifacts, and compute fast convolutions.

Novel sampling theorem on sphere
(McEwen & Wiaux 2011)

SSHT: Spin spherical harmonic transforms

www.spinsht.org

Novel sampling theorem on rotation group
(McEwen et al. 2015)

SO3: Fast Wigner transforms on rotation group

www.sothree.org
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Numerical results



Computational cost and memory requirements

Computational cost Memory requirements
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Rotational equivariance

Equivariance errors

Layer Mean Relative Error∗

Tensor-product activation → Generalized convolution 5.0× 10−7

S2 ReLU 3.4× 10−1

SO(3) ReLU 3.7× 10−1

∗ Floating point precision.
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Spherical MNIST: problem

Canonical benchmark problem of classifying MNIST digits projects onto the sphere.

Non-rotated (NR) Rotated (R)
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Spherical MNIST: architecture

ReLU

S2 Layer

S2 Conv.

I

SO(3)
Conv.

SO(3)
Layer

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Constrained

Gen. Conv.

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products
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Spherical MNIST: results

Test accuracy for spherical MNIST digits classification problem

NR/NR R/R NR/R Params

Planar CNN 99.32

90.74 11.36

58k
Cohen et al. 2018 95.59

94.62 93.40

58k
Kondor et al. 2018 96.40

96.60 96.00

286k
Esteves et al. 2018 99.37

99.37 99.08

58k

Ours (MST) 99.35

99.38 99.34

58k
Ours (RMST) 99.29

99.17 99.18

57k
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3D shape classification: problem

Classify 3D meshes and perform shape retrieval.

[Image credit: Esteves et al. 2018]
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3D shape classification: architecture

ReLU

Axisym.
S2 Layer

Axisym.
S2 Conv

I

S2 Conv.

S2 Layer

ReLU

I

SO(3)
Conv.

SO(3)
Layer

I

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products

Constrained

Gen. Conv.

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products
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3D shape classification: results

SHREC’17 object retrieval competition metrics (perturbed micro-all)

P@N R@N F1@N mAP NDCG Params

Kondor et al. 2018 0.707 0.722 0.701 0.683 0.756 >1M
Cohen et al. 2018 0.701 0.711 0.699 0.676 0.756 1.4M
Esteves et al. 2018 0.717 0.737 - 0.685 - 500k

Ours 0.719 0.710 0.708 0.679 0.758 250k
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Atomization energy prediction: problem

Predict atomization energy of molecule give the atom charges and positions.
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Atomization energy prediction: architecture

ReLU

S2 Layer

S2 Conv.

I

SO(3)
Conv.

SO(3)
Layer

ReLU

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Constrained

Gen. Conv.

Tensor
Products

I

Constrained

Gen. Conv.

Efficient

Gen. Layer

Tensor
Products
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Atomization energy prediction: results

Test root mean squared (RMS) error for QM7 regression problem

RMS Params

Montavon et al. 2012 5.96 -
Cohen et al. 2018 8.47 1.4M
Kondor et al. 2018 7.97 >1.1M

Ours (MST) 3.16 337k
Ours (RMST) 3.46 335k
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Summary

• Importance of encoding equivariance to symmetry transforms in order to capture
fundamental physical understanding of generative process.

• Need for geometric deep learning techniques constructed natively on manifolds,
such as the sphere.

• Reviewed spherical CNNs constructions, with a focus on rotational equivariance
(Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018).

• Efficient generalised spherical CNNs (Cobb et al. 2020; arXiv:2010.11661)
• General framework that encompasses others as special cases.
• Supports hybrid models to leverage strength of alternatives alongside each other.
• New efficient layers to be used as primary building blocks.
• State-of-the-art performance, both in terms of accuracy and parameter efficiency.

47
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www.kagenova.com

Unlocking the potential of (geometric) deep learning to solve a wide
range of problems in virtual reality (VR) and beyond.

We’re hiring!
hello@kagenova.com
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Read more in New Scientist, Digital Trends & Towards Data Science

tinyurl.com/47nc6ccy tinyurl.com/27zyc96b tinyurl.com/2y7ybeyj tinyurl.com/37pxkpen
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Questions?
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