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Symmetry in deep learning



Physics and deep learning

Physics

Understanding the world by
modelling from first principles
for generative models and inference.

Hard!

Deep Learning

Understanding the world by
learning informative representations
for generative models and inference.

Hard!
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Physics and deep learning

Physics ←→ Deep Learning

Here we focus on integrating physics→ deep learning
(in other works focus on reverse: physics← deep learning).

As we will see, this key factor driving the deep learning revolution.
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“Symmetry: key to nature’s secrets.”

— Steven Weinberg
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Symmetry

Mirror symmetry

Rotational symmetry
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Symmetry (invariance) to continuous transformation

In physics we typically consider continuous symmetries, where system is symmetric
(invariant) to continuous transformation.

→
t1
→

t2

Spatial translation

Rotation Time translation
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Noether’s theorem

Noether’s theorem
For every continuous symmetry of the universe, there exists a
conserved quantity.

Symmetries at the heart of physics:
• Translational symmetry⇔ conservation of momentum
• Rotational symmetry⇔ conservation of angular momentum
• Time translational symmetry⇔ conservation of energy

Emmy Noether
Jason McEwen 7
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Symmetry is the foundation underlying
the fundamental laws of physics.
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Symmetry in deep learning

Encoding symmetry in deep learning models captures fundamental properties about the
underlying nature of our world.

Key factor driving the deep learning revolution, with the advent of CNNs.

• CNNs resulted in a step-change in performance.
• Convolutional structure of CNNs capture translational symmetry
(i.e. translational equivariance).

Jason McEwen 8

http://www.jasonmcewen.org


Symmetry in deep learning

Encoding symmetry in deep learning models captures fundamental properties about the
underlying nature of our world.

Key factor driving the deep learning revolution, with the advent of CNNs.

• CNNs resulted in a step-change in performance.
• Convolutional structure of CNNs capture translational symmetry
(i.e. translational equivariance).

Jason McEwen 8

http://www.jasonmcewen.org


Equivariance

Equivariance
An operator A is equivariant to a transformation T if

T
(
A( f )

)
= A

(
T ( f )

)
for all possible signals f.

Transforming the signal after
application of the operator, is
equivalent to transformation of
the signal first, followed by
application of the operator.

X Y

X Y
A

A

T T
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Planar (Euclidean) CNNs exhibit translational equivariance

Planar (Euclidean) convolution is translationally equivariant.

A

A

T

T
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Importance of equivariance

Imposing inductive biases in deep learning models, such as equivariance to symmetry
transformations, allows models to be learned in a more principled and effective manner.

Capture fundamental physical understanding of generative process.
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Importance of equivariance

In some sense, equivariance to a transformation means a pattern need only be learnt
once, and may then be recognised in all transformed scenarios.

Cat Still a cat
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Geometric deep learning on the sphere



Earth & Climate 
Science

AstrophysicsMolecular 
Chemistry

Extended Reality 
( VR / AR / MR )

360° Photos 
& Video

Drones Autonomous 
Vehicles

Semantic 
Understanding

Spatial 
Audio

Medical 
Imaging

Communications

Surveillance & 
Monitoring

Data on the sphere arises
in many applications
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Cosmology and virtual reality

Whenever observe over angles, recover data on 2D sphere (or 3D rotation group).

Cosmic microwave background 360◦ virtual reality
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Why not standard (Euclidean) deep learning approaches?

Could project sphere to plane and then apply standard planar CNNs.

Projection

Greenland appears to be a similar size to Africa in the projected planar map, whereas it is
over 10 times smaller.
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Why not standard (Euclidean) deep learning approaches?

Projection breaks symmetries and geometric properties of sphere.

No projection of the sphere to the plane can preserve both shapes and areas
⇒ distortions are unavoidable.

(Formally: a conformal, area-preserving projection does not exist.)
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Goals of geometric deep learning on the sphere

1. Capture geometry and symmetry of the sphere (rotational equivariance)

2. Computationally scalable to support high-resolution data
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Rotational equivariance

On the sphere, the analog of translations are rotations.

Rotation

Would like spherical CNNs to exhibit rotational equivariance.

(Just as planar CNNs exhibit translational equivariance.)
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Capturing rotational equivariance in spherical CNNs

Well-known that regular discretisation of the sphere does not exist (e.g. Tegmark 1996).
⇒ Not possible to discretise sphere in a manner that is invariant to rotations.

Capturing strict equivariance with operations defined directly in discretised (pixel) space
not possible due to structure of sphere.
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Categorisation of spherical CNNs frameworks

Continuous Discrete

Discrete-Continuous (DISCO)

Equivariant Not Equivariant

Equivariant

Not Scalable Scalable

Scalable

(Cohen et al. 2018; Esteves et al. 2018;
Kondor et al. 2018; Cobb et al. 2021;
McEwen et al. 2022)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019)

(Ocampo, Price & McEwen, 2022)
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Continuous spherical CNNs



Spherical CNN

Spherical CNNs constructed by analog of Euclidean CNNs but using convolution on the
sphere and with pointwise non-linear activations functions, e.g. ReLU (Cohen et al. 2018;
Esteves et al. 2018).

S2 Conv.

ReLU

×N

Consider Fourier representation→ access to underlying continuous representations.
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Convolution of signals on the sphere

Convolution of signals in spatial domain
Convolution of two signals f, ψ ∈ L2(S2) is given by

(f ⋆ ψ)(ρ) = ⟨f,Rψ⟩ =
∫
S2
dµ(ω) f(ω)ψ∗(ρ−1ω), for ω ∈ S2, ρ ∈ SO(3),

where dµ(ω) denotes the Haar measure on S2 and ·∗ complex conjugation.
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Convolution of signals on the sphere

Since sphere is compact manifold, Fourier space is discrete and sampling theorems can
be leveraged to compute Fourier representations exactly for bandlimited signals (e.g.
McEwen & Wiaux 2011).

⇒ Provides access to underlying continuous signals and symmetries of sphere.

Convolution of signals in harmonic domain
Convolution of two signals f, ψ ∈ L2(S2) can be computed as a product in harmonic
space:

(̂f ⋆ ψ)ℓ = f̂ℓ ψ̂ℓ∗.

Jason McEwen 21
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Convolution is rotationally equivariant

Convolution is rotationally equivariant (when computed in harmonic domain):(
(Rρf) ⋆ ψ

)
(ρ′) = (Rρ(f ⋆ ψ))(ρ′).

A

A

Rρ

Rρ
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Spherical CNNs

Approach taken by Cohen et al. (2018) and Esteves et al. (2018).

Compute non-linear activation pixel-wise in spatial domain.

S2 Conv.

ReLU

×N

SO(3)
Conv.

ReLU

×N
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Harmonic space tensor product activations

Given two harmonic fragments f̂ℓ1 and f̂ℓ2 , then

(Cℓ1,ℓ2,ℓ)⊤(̂fℓ1 ⊗ f̂ℓ2),

where Cℓ1,ℓ2,ℓ are Clebsch-Gordan coefficients, which is non-linear in f and rotationally
equivariant (Kondor et al. 2018).
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Efficient generalized spherical CNNs

Consider the s-th layer of a generalized spherical CNN to
take the form of a triple (Cobb et al. 2021; arXiv:2010.11661)

A(s) = (L1,N ,L2),

such that

A(s)( f(s−1) ) = L2 (N (L1( f(s−1) ) ) ),

where
• L1,L2 : F L → F L are spherical convolution operators,
• N : F L → F L is a non-linear, spherical activation
operator.

Linear

Non-linear

Linear
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Efficient generalised spherical CNNs

• Build on other influential equivariant
spherical CNN constructions:

• Cohen et al. (2018)
• Esteves et al. (2018)
• Kondor et al. (2018)

• Encompass other frameworks as special
cases.

• General framework supports hybrids models.

• Significant efficiency improvements.

S2 Conv.

ReLU

I

Cohen et al. (2018),
Esteves et al. (2018)

I

Tensor
Products

Gen. Conv.

Kondor et al. (2018)
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Contributions to improve efficiency

1. Channel-wise structure

2. Constrained generalized convolutions

3. Optimized degree mixing sets

4. Efficient sampling theory on the sphere and rotation group
(McEwen & Wiaux 2011; McEwen et al. 2015)
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Computational cost and memory requirements

Computational cost Memory requirements
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Atomization energy prediction: problem

Predict atomization energy of molecule give the atom charges and positions.
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Atomization energy prediction: results

Test root mean squared (RMS) error for QM7 regression problem

RMS Params

Montavon et al. 2012 5.96 -
Cohen et al. 2018 8.47 1.4M
Kondor et al. 2018 7.97 >1.1M

Ours (MST) 3.16 337k
Ours (RMST) 3.46 335k
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Despite the efficient generalized approach

such equivariant spherical CNNs are limited to low-resolution data.
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Scattering networks on the sphere

Introduce new initial layer, with following properties:

1. Scalable
2. Allow subsequent layers to operate at low-resolution (i.e. mixes information to low frequencies)

3. Rotationally equivariant
4. Stable and locally invariant representation (i.e. effective representation space)

⇒ Scattering networks on the sphere (McEwen et al. 2022; arXiv:2102.02828)

Jason McEwen 31
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Scattering transform on the sphere

Scattering on the sphere follows by direct analogue of Euclidian construction (Mallat 2012).

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).

Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Modulus function is adopted for the activation function since non-expansive. Acts to mix
signal content to low frequencies.

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.

Jason McEwen 32
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Scattering networks are rotationally equivariant (since the spherical wavelet transform
and modulus operator are rotationally equivariant).
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Isometric invariance

Theorem (Isometric Invariance)

Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Difference in representation

Scattering network representation is invariant to isometries up to a scale .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism

Large diffeomorphism Large diffeomorphism

Jason McEwen 36

http://www.jasonmcewen.org


Stability to diffeomorphisms

Theorem (Stability to Diffeomorphisms)

Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Difference in representation

Scattering network representation is stable to small diffeomorphisms about isometry .

(Proof: Follows by straightforward extension of proof of Perlmutter et al. 2020.)
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Scalable and rotationally equivariant spherical CNNs

Scattering
Transform

Scattering
Transform

Scattering
Transform
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Network
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S2 Layer

S2 Conv.

I

SO(3)
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I
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Gen. Conv.

Tensor
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Gaussianity of the cosmic microwave background

Gaussian Non-Gaussian

At L = 1024 (∼2 million pixels), we achieve classification accuracy of:
53% without scattering network versus 95% with scattering network.
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While spherical scattering networks help to scale to high-resolution input data,

high-resolution outputs for dense predictions are not supported.
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Discrete-continuous spherical CNNs



Categorisation of spherical CNNs frameworks

Continuous Discrete

Discrete-Continuous (DISCO)

Equivariant Not Equivariant

Equivariant

Not Scalable Scalable

Scalable

(Cohen et al. 2018; Esteves et al. 2018;
Kondor et al. 2018; Cobb et al. 2021;
McEwen et al. 2022)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019)

(Ocampo, Price & McEwen, 2022)
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Discrete-continuous (DISCO) spherical convolution

Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions
(Ocampo, Price & McEwen 2022; arXiv:2209.13603)

Follows by a careful hybrid representation of the spherical convolution:

• some components left continuous, to facilitate accurate rotational equivariance;
• while other components are discretized, to yield scalable computation.

DISCO spherical convolution
Spherical convolution can be carefully approximated by the DISCO representation

(f ⋆ ψ)(R) =
∫
S2
f(ω)ψ(R−1ω)dω ≈

∑
i

f[ωi]ψ(R−1ωi)δωi,

where, for now, we consider 3D rotations R ∈ SO(3).
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Restricting rotations to SO(3)/SO(2)

While the DISCO spherical convolution is already efficient, we seek further computational
savings by reducing the space of rotations to SO(3)/SO(2).

Rotations restricted to the quotient space may be written R = Z(α)Y(β) ∈ SO(3)/SO(2).

Denote corresponding SO(3)/SO(2) convolution by f⃝⋆ ψ to avoid confusion.

Analogous to Euclidean planar CNNs, where filters are translated across the image but
are not rotated in the plane.

However, as the space SO(3)/SO(2) is not a group, when restricting rotations in this
manner important differences to the usual setting arise since we no longer have a group
convolution.
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SO(3) rotational equivariance

DISCO spherical convolution f ⋆ ψ for rotations Q,R ∈ SO(3) satisfies SO(3) rotational
equivariance:

((Qf) ⋆ ψ)(R) ≈
∑
i

(Qf)[ωi]ψ(R−1ωi)δωi

=
∑
i

f[ωi]ψ((Q−1R)−1ωi)δωi

(∗∗)
≈ (f ⋆ ψ)(Q−1R)
= (Q(f ⋆ ψ))(R).

Note that step (∗∗) only holds since SO(3) exhibits a group structure and so
Q−1R ∈ SO(3).
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Asymptotic SO(3)/SO(2) rotational equivariance

DISCO spherical convolution f⃝⋆ ψ for rotations Q,R ∈ SO(3)/SO(2) does not satisfy SO(3)
or SO(3)/SO(2) rotational equivariance (since SO(3)/SO(2) is not a group).

But DISCO spherical convolution f⃝⋆ ψ does satisfy asymptotic SO(3)/SO(2) equivariance.

Recover asymptotic SO(3)/SO(2) rotational equivariance as β → 0, for Q = Z(α)Y(β).

Asymptotic SO(3)/SO(2) equivariance of significant practical use since content in
spherical signals often orientated and similar content appears at similar latitudes,
particularly for 360◦ panoramic photos and video.
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Computationally scalable DISCO spherical convolution

DISCO convolution affords a computationally scalable implementation.

1. Spare tensor representation.

2. Memory compression.

3. Custom sparse gradients.

Linear scaling in number of pixels on the sphere O(N) = O(L2) for both computational
cost and memory usage.
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Computational cost and memory requirements

Computational cost Memory requirements

For 4k spherical image, 109 saving in computational cost and 104 saving in memory usage.
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DISCO spherical CNNs exhibit excellent rotational equivariance properties and

are computationally scalable

supporting high-resolution input and output data for dense-prediction tasks.
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Depth estimation for Pano3D

RGB

Truth

DISCO

Example predictions for depth estimation of Pano3D data (depth plotted in meters).
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Depth estimation for Pano3D

Model Parameters Depth Error Metrics Depth Accuracy Metrics

wRMSE wRMSLE wAbsRel wSqRel δico
1.05 δico

1.1 δico
1.25 δico

1.252

Planar UNet 27M 0.4520 0.1300 0.1147 0.0811 36.68% 60.59% 88.31% 96.96%

DISCO-Directional 658k 0.5063 0.1695 0.1109 0.0852 38.32% 62.12% 88.65% 97.29%
(Ours)
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Semantic segmentation for 2D3Ds dataset

RGB

Truth

DISCO

Example predictions for semantic segmentation of 2D3DS data.
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Semantic segmentation for 2D3Ds dataset

Model mIoU mAcc

Planar UNet 35.9 50.8
UGSCNN 38.3 54.7
GaugeNet 39.4 55.9
HexRUNet 43.3 58.6
SWSCNNs 43.4 58.7
CubeNet 45.0 62.5
MöbiusConv 43.3 60.9

DISCO-Axisymmetric (Ours) 39.7 54.1
DISCO-Directional-Separable (Ours) 43.9 60.9
DISCO-Directional (Ours) 45.2 61.5
DISCO-Directional-Aug (Ours) 45.7 62.7
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Semantic segmentation for Omni-SYNTHIA dataset

RGB

Truth

DISCO

Example predictions for semantic segmentation of Omni-SYNTHIA data.
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Semantic segmentation for Omni-SYNTHIA dataset

Model mIoU mAcc

Planar UNet 44.6 52.6
UGSCNN 37.6 48.9
HexUNet 48.3 57.1

DISCO-Directional-Separable (Ours) 48.3 59.3
DISCO-Directional-Separable-Aug (Ours) 49.2 63.7
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Summary

Continuous Discrete Discrete-Continuous (DISCO)

Equivariant Not Equivariant Equivariant
Not Scalable Scalable Scalable

(Cohen et al. 2018; Esteves et al. 2018;
Kondor et al. 2018; Cobb et al. 2021;
McEwen et al. 2022)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019)

(Ocampo, Price & McEwen, 2022)
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