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Unanswered fundamental questions

Big Bang

Cosmic Microwave Background (CMB)

t ~ 400 thousand years

Epoch of Reionization (EoR)

t ~ 400 million years

Large Scale Structure (LSS)

t ~ 14 billion years
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Unanswered fundamental questions

G [ What is the origin of structure? ]

What is the nature of dark energy

Cosmic Microwave Background (CMB) d dark matter?
and dark matter?

t ~ 400 thousand years

Epoch of Reionization (EoR)
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Large Scale Structure (LSS)

t ~ 14 billion years
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Unanswered fundamental questions

G [ What is the origin of structure? ]

What is the nature of dark energy
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t ~ 400 million years
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t ~ 14 billion years
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Distribution Online UQ ML

Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge

The SKA will use enough
optical fiber to wrap twice
around the Earth!

AN
&

The SKA will be so
sensitive that it will
be able to detect.
an airport radar on
a planet tens of
light years away.

The SKA will generate
enough raw data to fill 15
million 4GB iPods every day!

The dishes of the
SKA will produce
10 times the global
internet traffic.

The aperture arrays
in the SKA could
produce more than
100 times the global
internet traffic.

x 100,000,000
Personal C
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The SKA
central
computer
will have the
processing
power of
about one
hundred
million PCs.
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The SKA poses a considerable big-data challenge

The dishes of the
SKA will produce
10 times the global
internet traffic.
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Distribution Online UQ ML

Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Large Synoptic Survey Telescope (LSST)

Data Releases:

Number of Data Releases = 11

Date of DR1 release = Date of Operations Starts 12
months

Estimated numbers for DR-1 release

Objects = 18 billion Alert Production:

Sources - 350 billion (single epoch) Real-time alert latency = 60 seconds

Forced Sources = 0.75 trillion Average number of alerts per night= "about 10 millien”
Estimated numbers for DR-11 Data and compute sizes:

Objects - 37 billion Final image collection {DR11) = 0.5 Exabytes

Sources = 7 trillion (single epoch) Final database size {DR11) = 15 PB

Forced Sources = 30 trillion Final disk storage = 0.4 Exabytes

Visits observed = 275 million Peak number of nodes = 1750 nodes

Images collected = 5.5 million Peak compute power in LSST data centers = 1.8 PFLOPS
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Astrostatistics & Astroinformatics
Closing the loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Statistics / Mathematics

Astrophysics / Computer Science
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Astrostatistics & Astroinformatics
Closing the loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Statistics / Mathematics

Astrophysics / Computer Science

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

e UCL STFC CDT focused on Data Intensive Science (DIS), i.e. Data Science for Science.
https://www.hep.ucl.ac.uk/cdt-dis/

o Aims:
e Train next generation of leaders in the field of DIS (in both academic and industry).
o Promote development and application of novel DIS techniques.
o Promote knowledge transfer:
@ between academic fields;

@ between non-academic and academic organisations.

o Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

i & Science & Technology
@ Facilities Council
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https://www.hep.ucl.ac.uk/cdt-dis/

Distribution

UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

Who we are

Particle Physics
Dpt. of Physics and
Astronomy

(20 CDT Staff Members)

Department of
Space and Climate

Science
(20 CDT Staff Members)

Department of
Computer Science
(8 CDT Staff Members)

Department of
Electrical Engineering
(3 CDT Staff Members)

Online

uQ

ML

Astrophysics

Dpt. of Physics and
Astronomy

(20 CDT Staff Members)

Atomic & Molecular
Physics

Dpt. of Physics and Astronomy
(2 CDT Staff Members)

Department of
Mathematics
(9 CDT Staff Members)

Department of

Statistical Science
(5 CDT Staff Members)

Aim to foster closer collaboration between these areas to aid the development of novel
DIS techniques or applications to new areas.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

Industrial partners

J/ IT Comp_lanies\\\ Data Inten_sive Public_ Sef:tor Non-Academic
Companies Organisations Research
o The Economist Group
3 1 STALCOLN Y C
] sgi
S ]

PRIVITAR
a FOR LONDON

Blue Skies Space Ltd.

Juantemol $> Z Met Office

nccgroup®

Public-Private
Partnerships

@ European Bank .e

Wem

JIE

evelopment

CERNopeniab

o Students will undertake 6 month internships with partners on a DIS project

@ Promote knowledge transfer between academic and non-academic organisations.

@ More organisations joining since winning the bid.
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Outline

© Distributed and parallelised algorithms
© Online algorithms
© Uncertainty quantification

© Machine learning
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Outline

© Distributed and parallelised algorithms
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Distribution

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

>
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Distribution

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

AstroStatistics & Astrolnformatics



Distribution

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..
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Distribution

Radio interferometric inverse problem

@ Consider the ill-posed inverse problem of radio interferometric imaging:

|

where y are the measured visibilities, ® is the linear measurement operator, x is the
underlying image and m is instrumental noise.

@ Measurement operator, e.g.| ® = GFA |, may incorporate:

e primary beam A of the telescope;
o Fourier transform F;
e convolutional de-gridding G to interpolate to continuous uwv-coordinates;

o direction-dependent effects (DDEs). ..

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Distribution

Sparse regularisation
Motivated by compressive sensing

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”; + A ||a||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

AstroStatistics & Astrolnformatics



Distribution

Sparse regularisation
Motivated by compressive sensing

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”g + A ||o¢||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |
@x

Analysis framework
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Distribution Online UQ ML

Sparse regularisation
Motivated by compressive sensing

@ Sparse synthesis regularisation problem:

Tsynthesis = ¥ X arg;nin[”y — tb‘l’a”g + A ||o¢||1]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: .

@ Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

Tanatysis = arg min [y — @23 + A [|v'z], |
@x

Analysis framework

@ Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen,
Van De Ville, Thiran & Wiaux 2013) with overcomplete dictionary:

W= [V, W, W]
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Distribution Online UQ ML

Reconstruction
VLA observation of 3C129

(a) CLEAN (uniform) (b) PURIFY

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Distributed and parallelised algorithms

@ Solve resulting convex optimisation problems by proximal splitting.
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Distributed and parallelised algorithms

@ Solve resulting convex optimisation problems by proximal splitting.

@ Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet, & Wiaux 2016; Pratley,
Johnston-Hollitt & McEwen 2018; Pratley, McEwen et al. in prep.)

Y1 &, G M,
y=1| || |e=]|:|= : Fz
Yng ¢nd Gnd Mnd
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Distribution

Distributed and parallelised convex optimisation
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Distribution

Standard algorithms

Output Data

4

mﬂ %
CPU Raw Data

S

Many Cores
(CPU, GPU, Xeon Phi)
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms

Reconstruction

@ Hybrid w-stacking and w-projection distributed and parallelised reconstruction
(Pratley, Johnston-Hollitt & McEwen 2018)

e 100 millions visibilities (measurements)
o 4096x4096 pixel image (~17 million pixels)
o 17° field of view

o w-terms of £300 wavelengths (to account for wide fields)

Imaging with exact wide-field corrections for 100 million visibilities in 30 minutes.

Jason McEwen AstroStatistics & Astrolnformatics



Distribution

Public open-source codes

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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http://basp-group.github.io/sopt/

Outline

© Online algorithms
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Online algorithms

@ Many standard astrophysical data analyses are performed offline.
o Data are acquired. .. and then analysed.

@ Will not necessarily be possible in future.
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Online radio interferometric imaging

@ Online radio interferometric imaging: assimilating and discarding visibilities on arrival
(Cai, Pratley, McEwen 2018)

Observation
complete?

No
Load data block y;,

Delete data block y;,

Reconstruct image .
Current image ®
Output z*

Figure: Schematic of online imaging algorithm.
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nline

Online radio interferometric imaging

@ Data storage requirements reduced dramatically.

o Computational costs can also be reduced.

=)
©
EY

=)
o
3

=)
3
S

Maximum iteration number of
the standard method: 1.2

=)
=)

Relative storage requirements
o
o
Relative computational cost

=)

=)

40 60 80 100
Number of blocks

Figure: Storage and computational costs.
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Online radio interferometric imaging

@ Theoretical guarantees that recover images of same fidelity as offline approach.

|

134 Visibility storage
| requirements:

2 100%

2%
1 ]\ 1%
0.5%
0.3%
0.2%

Standard algorithm
7 Online algorithm (this work)
Extra iterations

o S0 100 150 200 250 300 50 400 40 500
Iteration number

Figure: Reconstruction fidelity vs iteration number.
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Outline

© Uncertainty quantification
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UQ

Proximal MCMC sampling and uncertainty quantification

[Observed visibilities in Rl imaging: y

‘ Sample full posterior by \

MCMC methods: p(x|y) HPD credible regions: Cq

\

Pixel-wise credible
intervals: (£—,&4)

( Point estimator: @* _)————(  Hypothesis testing
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UQ

MAP estimation and uncertainty quantification

[Observed visibilities in Rl imaging: y

N

MAP image Approximate HPD
estimation: Tmap credible regions: Cy

\

( Approximate local credible }

intervals: (£_,€.)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Analytic approximation of ~y4:

Yo = g(&*) + N(1a + 1)

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

where 7o, =

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.
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Approximate Bayesian credible regions for MAP estimation

@ Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

o Recall C, denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

@ Analytic approximation of vq:

Yo = g(&*) + N(1a + 1)

where 7o, =

161og(3/a)/N and « € (4dexp(—N/3),1) (Pereyra 2016b).

o Define approximate HPD regions by Co = {@ : g(x) < Fa}.

o Compute x* by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

AstroStatistics & Astrolnformatics



Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =x"(T-¢)+& |
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Q2 define the area (or pixel) over which to compute the credible interval (£_, €4 ) and ¢ be an index
vector describing Q (i.e. (; = 1 if 2 € Q and 0 otherwise).

Consider the test image with the 2 region replaced by constant value &:

' =z (Z-¢)+& |-

Given 7, and x*, compute the credible interval by

g = mgn{s | gy(2") < Ao, V€ € [—00,+00) },

Ee = mgx{s | 9y(x') < Aa, V€ € [—00,+00)} .
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Distribution Online UQ ML

Numerical experiments

4 |
4|

(a) point estimators

P-MALA

MAP

(b) local credible interval (c) local credible interval
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Distribution Online UQ ML

Numerical experiments

.,6 )

P-MALA

.'6‘.

MAP

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Distribution Online UQ ML

Numerical experiments

.’ﬁ.- _  .
B
N
B

(b) local credible interval (c) local credible interval

P-MALA

MAP

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Distribution Online UQ ML

Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval

MAP

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Distribution Online UQ ML

Numerical experiments

& |
1] |
4 |
1] |

(b) local credible interval (c) local credible interval

P-MALA

MAP

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Distribution Online UQ ML

Numerical experiments

P-MALA

MAP

(a) point estimators

(b) local credible interval (c) local credible interval
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Numerical experiments

.|

(b) local credible interval (c) local credible interval

P-MALA

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Numerical experiments

P-MALA

(b) local credible interval (c) local credible interval

MAP

(a) point estimators

(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Distribution Online UQ ML

Numerical experiments

(a) point estimators

P-MALA

MAP

(b) local credible interval (c) local credible interval
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

(b) local credible interval (c) local credible interval

P-MALA

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

(b) local credible interval (c) local credible interval

P-MALA

MAP

(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for W28 for the analysis model.
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Numerical experiments

A
é“

P-MALA

MAP

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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Numerical experiments

< - .
<

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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Numerical experiments

< - . -

. . (b) local credible interval (c) local credible interval
(a) point estimators o . . .
(grid size 10 X 10 pixels) (grid size 20 x 20 pixels)

Figure: Length of local credible intervals for 3C288 for the analysis model.
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Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

CPU time

Image  Method Analysis Synthesis

P-MALA 2274 1762

Cygnus A MYULA 1056 942
MAP .07 .04

P-MALA 1307 944

M31  MYULA 618 581
MAP .03 .02

P-MALA 1122 879

W28  MYULA 646 598
MAP .06 .04

P-MALA 1144 881

3C288 MYULA 607 538
MAP .03 .02
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.

@ Inpaint background (noise) into region, yielding surrogate image x'.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.
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Hypothesis testing
Method

@ Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

o Let C, denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1 — a)% defined by posterior iso-contour: Co, = {x : g(x) < Yo }.

Hypothesis testing of physical structure

© Remove structure of interest from recovered image x*.
@ Inpaint background (noise) into region, yielding surrogate image x'.

© Test whether ' € Cy:

o If &’ ¢ C,, then reject hypothesis that structure is an artifact with confidence
(1 — @)%, i.e. structure most likely physical.

o If &’ € C, uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Distribution Online UQ ML

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: HII region of M31
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Distribution Online UQ ML

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: HII region of M31
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Distribution Online UQ ML

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

Figure: HII region of M31
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Distribution Online UQ ML

Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Cygnus A
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Distribution Online UQ ML

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Distribution Online UQ ML

. 1. Cannot reject null
‘ hypothesis
' = cannot make strong
statistical statement about
origin of structure

(a) Recovered image (b) Surrogate with region removed

Hypothesis testing

Numerical experiments

Figure: Cygnus A
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Hypothesis testing

Numerical experiments

(a) Recovered image

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

1. Reject null hypothesis

= structure physical

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28
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Hypothesis testing

Numerical experiments

2[]

(a) Recovered image

Figure: 3C288
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Hypothesis testing

Numerical experiments

2[]
| ‘ ‘

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288
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Hypothesis testing

Numerical experiments

2[]
| ‘ ‘

(a) Recovered image (b) Surrogate with region removed

1. Reject null hypothesis

= structure physical

2. Cannot reject null
hypothesis

= cannot make strong
statistical statement about
origin of structure

Figure: 3C288
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Hypothesis testing

Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Test Ground Hypothesis
Image area truth Method test

P-MALA

M31 1 v MYULA
MAP

P-MALA

Cygnus A 1 v MYULA*
MAP

P-MALA

W28 1 v MYULA
MAP

P-MALA

1 v MYULA
MAP

P-MALA

2 X MYULA
MAP

3C288

3 X XN N NN N N[X X XSS

(* Can correctly detect physical structure if use median point estimator.)
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Outline

© Machine learning
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Distribution Online UQ ML

Deep learning methods for radio interferometric imaging

Visibilities Dirty image Convolutional layers Recovered image

Figure: Deep learning architecture for interferometric imaging (Allam & McEwen, in prep.)

AstroStatistics & Astrolnformatics



Deep learning methods for radio interferometric imaging

Visibilities

Distribution

Dirty image

Online

uUQ ML

Convolutional layers

Recovered image

Figure: Deep learning architecture for interferometric imaging (Allam & McEwen, in prep.)

Relative improvement in SNR
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Figure: Improvement in signal-to-noise-ratio (SNR)
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Distribution Online UQ ML

Artist impression of Supernova explosion
Thermonuclear explosion or core collapse

Jason McEwen AstroStatistics & Astrolnformatics



Supernova classification
Spectroscopic classification
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Figure: Spectroscopic observations
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Supernova classification
Photometric classification

u-band | g-band Jif wband | -band |

100
S e B ] N
Cop
~ 80
8 I 1
]
o
£ [ f
2 = f
i I I I
o - ] |
T T 0
0 I I 1
200 300 400 500 600 700 800 900 1000 1100
Wavelength(nm)

Figure: Photometric observations.
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Supernova classification
Photometric classification

o Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

o Limited training data.

@ Go beyond single techniques to study classes.

Object: DES_SN040299.DAT, :0.37, Type:1
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(a) Templates (b) Generic parameterisations (c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)

o Integrate physics into machine learning (scale and dilation invariance).

o Understand physical requirements: representative training, redshift.
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Astrostatistics & Astroinformatics
Closing the loop

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Statistics / Mathematics

Astrophysics / Computer Science

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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