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Towards a fundamental understanding of our Universe

Euclid Roman Rubin-LSST

SKA

LiteBIRD Simons

What is the origin of structure?

How did luminous large-scale structure form?

What is the nature of dark energy and dark matter?
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Harnessing AI for science…
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Harnessing AI for science… without hallucinations
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The AI hammer
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Screw
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Statistics as the Key to Unlocking AI for Science

Statistical Scientific AI

Statistical Physical Intelligible

Bayesian Inference

Implicit Inference

Generative Models

Augmentation

Physical Properties

Physical Models

Explainable

Interpretable

Reliable
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Harnessing modern computing paradigms

Automatic differentiation Probabilistic programming GPU acceleration
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Outline

1. Statistical scientific AI

2. AI-enhanced Bayesian inference

3. Geometric AI on spherical manifolds

4. Scalable Bayesian inference with data-driven AI priors
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Statistical scientific AI



Statistical AI
Embed a statistical representation of data, models and/or outputs.

(See Murray 2022.)
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Bayesian inference

AI techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.
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Bayesian inference

AI techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

. Enhanced MCMC for parameter estimation
(Grabrie et al. 2022, Karamanis et al. 2022).

Learned proposal distributions

Jason McEwen 10

https://arxiv.org/abs/2105.12603
https://arxiv.org/abs/2207.05652


Bayesian inference

AI techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

. Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al.
McEwen 2023, 2024, Piras et al. McEwen 2024,
Spurio Mancini et al. McEwen 2023, 2024).

Learned harmonic mean estimator
(harmonic)

Jason McEwen 10
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Implicit inference

AI techniques can be used to learn surrogates of implicit distributions when they
are not tractable or are computationally infeasible.
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Implicit inference

AI techniques can be used to learn surrogates of implicit distributions when they
are not tractable or are computationally infeasible.

. Simulation-based inference
(Cranmer et al. 2021).

sbi
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Implicit inference

AI techniques can be used to learn surrogates of implicit distributions when they
are not tractable or are computationally infeasible.

. Variational inference
(Whitney et al. McEwen 2024).

Mass mapping with uncertainties
by variational inference

(Whitney et al. McEwen 2024)
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https://arxiv.org/abs/arXiv:2410.24197
https://arxiv.org/abs/arXiv:2410.24197


Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probability densities.
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probability densities.

. Emulation: sample from learned prior
(Price et al. McEwen 2023, Price et al. McEwen in
prep., Mousset et al. McEwen 2024)

Emulated cosmic string maps
(stringgen, Price et al. McEwen 2023,

Price et al. McEwen in prep.)
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probability densities.

. Integrate learned priors into analysis
(McEwen et al. 2023, Liaudat et al. McEwen 2024)

Learn radio galaxy prior
(Liaudat et al. McEwen 2024)
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https://arxiv.org/abs/2307.00056
https://arxiv.org/abs/arXiv:2312.00125
https://arxiv.org/abs/arXiv:2312.00125


Physics Enhanced AI
Embed physical understanding of the world into AI models.

(See review by Karniadakis et al. 2021.)
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https://www.nature.com/articles/s42254-021-00314-5


Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ AI model learns physics through training.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ AI model learns physics through training.

. Common to augment image data-set
with rotations, flips, shifts, scales,
contrast, …

Image augmentation
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ AI model learns physics through training.

. Redshift augmentation of supernovae
(Boone 2019, Alves et al. (inc. McEwen) 2022,
2023)

Redshift augmentation
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https://arxiv.org/abs/1907.04690
https://arxiv.org/abs/2107.07531
https://arxiv.org/abs/2210.15690


Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into AI models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of AI model.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into AI models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of AI model.

. Key factor CNNs so successful is due to
encoding translational equivariance.

Translational equivariance
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into AI models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of AI model.

. Geometric deep learning on the sphere
(Cobb et al. 2021, McEwen et al. 2022,
Ocampo, Price & McEwen 2023)

CMB observed on the
celestial sphere
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https://arxiv.org/abs/2010.11661
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/2209.13603


Physical models: PINNS and differentiable physics

Encode physical models of world into AI models:

1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside AI model.

⇝ Physics learned in training and embedded in model.
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Encode physical models of world into AI models:

1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside AI model.

⇝ Physics learned in training and embedded in model.

. Differentiable physical models
■ Instrument models

(Mars et al. McEwen 2023, 2024, Liaudat et al.
McEwen 2024)

■ Physical models
(Piras et al. McEwen 2024, Spurio Mancini et al.
McEwen 2024, Whitney et al. McEwen in prep.)

Hybrid physics-enhanced AI model
(Mars et al. McEwen 2023, 2024)
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Physical models: PINNS and differentiable physics

Encode physical models of world into AI models:

1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside AI model.

⇝ Physics learned in training and embedded in model.

. Differentiable mathematical methods
■ Fourier transforms
■ Spherical harmonic transforms

(s2fft; Price & McEwen 2023)
■ Spherical wavelet transforms

(s2wav; Price et al. McEwen 2024)
■ Spherical scattering transforms

(s2scat; Mousset et al. McEwen 2024) Differentiable and GPU-friendly recursions
(Price & McEwen 2023)
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Intelligible AI
AI methods that are able to be understood by humans and are reliable.

(See Weld & Bansal 2018, Ras et al. 2020.)
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https://arxiv.org/abs/1803.04263
https://arxiv.org/abs/2004.14545


Explainability

Explainable AI techniques may or may not be interpretable themselves but their
outputs can be explained to humans.
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Explainability

Explainable AI techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

. Feature importances
(Lochner et al. (inc. McEwen) 2016)

Supernova feature importances
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https://arxiv.org/abs/1603.00882


Explainability

Explainable AI techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

. Saliency maps
(Bhambra et al. 2022)

Galaxy saliency mapping
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https://arxiv.org/abs/2110.08288


Interpretability

Interpretable AI models are white boxes that can be understood by humans.
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Interpretability

Interpretable AI models are white boxes that can be understood by humans.

. Designed models such as wavelet
scattering networks
(McEwen et al. 2022, Mousset et al. McEwen
2024)
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Scattering network (McEwen et al. 2022)
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Interpretability

Interpretable AI models are white boxes that can be understood by humans.

. Interpretable constraints on AI models
(Liaudat et al. McEwen 2024)

Impose convexity on learned model
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Interpretability

Interpretable AI models are white boxes that can be understood by humans.

. Deep priors learned from training data
(McEwen et al. 2023, Liaudat et al. McEwen
2024)

Compute Bayesian evidence for
model selection

(McEwen et al. 2023)
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Reliability

Reliability and validity critical for science to have confidence in results of AI
models. Closely coupled with a meaningful statistical distribution of outputs.
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Reliability

Reliability and validity critical for science to have confidence in results of AI
models. Closely coupled with a meaningful statistical distribution of outputs.

. Validity of statistical distributions
(Lueckmann et al. 2021, Hermans et al. 2022,
Cannon et al. 2023)

Validity of distribution
(Hermans et al. 2022)
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Reliability

Reliability and validity critical for science to have confidence in results of AI
models. Closely coupled with a meaningful statistical distribution of outputs.

. Integrate into statistical frameworks to
inherit theoretical guarantees
↪→ statistical component critical
(McEwen et al. 2023, Liaudat et al. McEwen 2024,
McEwen et al. 2021, Polanska et al. McEwen 2023,
2024, Piras et al. McEwen 2024) Inherit guarantees from overarching

statistical frameworks
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Reliability

Reliability and validity critical for science to have confidence in results of AI
models. Closely coupled with a meaningful statistical distribution of outputs.

. Design to ensure conservative and avoid
mode collapse (Delaunoy et al. 2022, Price et al.
McEwen 2023, Whitney et al. McEwen 2024)

Recover probability
distribution over full

underlying data manifold
(Price et al. McEwen 2023)
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Reliability

Reliability and validity critical for science to have confidence in results of AI
models. Closely coupled with a meaningful statistical distribution of outputs.

. Extensive validation checks:
■ Coverage testing (Lemos et al. 2023)
■ Simulation-based calibration checks

(Talts et al. 2020)
■ Classifier two-sample tests (C2ST)

(Lopez-Paz & Oquab 2017)
■ …

Coverage analysis
(Cannon et al. 2023)

Jason McEwen 20

https://arxiv.org/abs/2302.03026
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1610.06545
https://arxiv.org/abs/2209.01845


AI-enhanced Bayesian inference



Bayesian inference: parameter estimation

First, let’s set the notation (and colour code)…

Bayes’ theorem

p(θ | x,M)

posterior

=
p(x | θ,M)

likelihood

p(θ |M)

prior

p(x |M)

marginal likelihood

=
L(θ)

likelihood

π(θ)

prior

z
marginal likelihood

,

for parameters θ, model M and observed data x.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model comparison

By Bayes’ theorem for model Mj:

p(Mj | x) =
p(x |Mj)p(Mj)∑
j p(x |Mj)p(Mj)

.

For model comparison, consider posterior model
odds:

p(M1 | x)
p(M2 | x)

posterior odds

=
p(x |M1)

p(x |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the marginal likelihood (aka. Bayesian model evidence) given by the
normalising constant

z = p(x |M) =

∫
dθ L(θ) π(θ) .

⇝ Challenging computational problem.
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Challenge of Bayesian model selection

Naive Monte Carlo integration to compute marginal likelihood not effective.

Require tailored computational techniques.

Challenges:
. Support aribtrary sampling strategies (e.g. accelerated).
. Support implicit inference (e.g. simulation-based inference and variational
inference).

. Scale to high-dimensions (e.g. images).

. Support data-driven AI priors (e.g. priors captured by generative models).
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The problem of nested sampling

Nested sampling (Skilling 2006) has been the method of choice for almost two decades!

Many highly effective nested sampling algorithms (for a review see Ashton et al. 2022).

However, nested sampling has a fundamental problem…

Nested sampling tightly couples sampling strategy to marginal likelihood calculation.

As the name suggests, one must sample in a nested manner.
▷ Precludes many alternative accelerated sampling strategies that scale to high-dimensions.
▷ Precludes use in many simulation-based inference (SBI) and variational inference (VI)

settings, where one draws posterior samples directly.
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Learning model posterior odds ratio

Alternatively, learn model posterior odds ratio directly by leveraging the likelihood ratio
trick (Goodfellow et al. 2014, Cranmer et al. 2020).

Train a classifier to distinguish models, e.g. with cross-entropy loss, which learns ratio

r(x) = p(M1 | x)
p(M2 | x)

.

Numerous works considering this approach or variants (Radev et al. 2021, Elsemüller et al.
2024, Jeffrey et al. 2024, Karchev et al. 2023).

⇝ No consistency guarantees for M-open scenario.

Jason McEwen 25
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Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

ρ = Ep(θ | x)

[
1

L(θ)

]

=

∫
dθ 1

L(θ)
p(θ | x) =

∫
dθ 1

L(θ)
L(θ)π(θ)

z =
1
z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1
N

N∑
i=1

1
L(θi)

, θi ∼ p(θ | x)

Only requires posterior samples! But can fail catastrophically! (Neal 1994)
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Learned harmonic mean estimator

Propose the learned harmonic mean estimator, leveraging AI to solve the catastrophic
failure of the original harmonic mean (McEwen et al. 2021).

Matt PriceChris Wallis Alessio Spurio Mancini
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Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | x) = 1

z

∫
dθ π(θ)

p(θ | x)p(θ | x)

importance sampling

.

Importance sampling interpretation:

. Importance sampling target distribution is prior π(θ).

. Importance sampling density is posterior p(θ | x).

For importance sampling, want sampling density to have fatter tails than target.

Importance sampling failure mode when sampling density is posterior and target is prior.
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Re-targeted harmonic mean estimator

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ = Ep(θ | x)

[
ϕ(θ)

L(θ)π(θ)

]
=

1
z

Normalised distribution ϕ(θ) now plays the role of the importance sampling target
⇝ must not have fatter tails than posterior.

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1
N

N∑
i=1

ϕ(θi)

L(θi)π(θi)
, θi ∼ p(θ | x)

⇝ How set importance sampling target distribution ϕ(θ)?
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How set importance sampling target distribution φ(θ)?

Variety of cases been considered:

. Multi-variate Gaussian (e.g. Chib 1995)

. Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target: (McEwen et al. 2021)

ϕoptimal(θ) =
L(θ)π(θ)

z .

But clearly not feasible since requires knowledge of the evidence z (recall the target must
be normalised)⇝ requires problem to have been solved already!
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Learned harmonic mean estimator

Learn an approximation of the optimal target distribution:

ϕ(θ)
AI≃ ϕoptimal(θ) =

L(θ)π(θ)
z .

. Approximation not required to be highly accurate.

. Critically, must not have fatter tails than posterior.
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Constraining tails of target approach 1: bespoke optimisation problem

Fit density estimator by minimising variance of resulting estimator, with possible
regularisation:

min σ̂2 + λR subject to ρ̂ = µ̂1.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select density estimation model and hyperparameters.
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Rosenbrock example

Rosenbrock function is the classical example of a pronounced thin curving degeneracy,
with likelihood defined by

f(θ) =
n−1∑
i=1

[
(a− θi)

2 + b(θi+1 − θ2i )
2
]
, log(L(θ)) = −f(θ) .

Posterior by MCMC sampling Reciprocal evidence
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Atacama Cosmology Telescope (ACT) analysis

Compare ΛCDM (Einstein’s cosmological constant) vs w0waCDM (dynamical dark energy)
using learned harmonic mean (McEwen et al.2021) with ACT data (Aiola et al. 2020).

Atacama Cosmology
Telescope (ACT)

CMB observations

7D vs 9D models: ΛCDM w0waCDM log BFΛCDM-w0waCDM

Nested sampling −168.92± 0.35 −169.38± 0.24 0.46± 0.42
Learned harmonic mean −168.87± 0.29 −169.32± 0.25 0.45± 0.38

⇝ ΛCDM mildly favoured ⇝ 3× acceleration
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Constraining tails of target approach 2: normalizing flows

Learned harmonic mean with normalizing flows (Polanska et al. 2023, 2024)

Elegant way to constrain tails of target distribution ϕ(θ).

Alicja Polanska Davide Piras Alessio Spurio ManciniMatt Price
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Constraining tails of target approach 2: normalizing flows

z0 z1
f1(z0)

zi. . .
fi(zi−1)

zk. . .
fk(zk−1)

= x

z0 ∼ p0(z0) zk ∼ pk(zk)

Flexible: no bespoke training; can vary T after training.
Robust: only one hyperparameter T that does not require fine tuning.
Scalable: flows scale to higher dimensions than classical density estimators.
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Harmonic code

Github: https://github.com/astro-informatics/harmonic

Docs: https://astro-informatics.github.io/harmonic

JAX: Automatic differentiation + GPU acceleration
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Leveraging AI to accelerate Bayesian inference further

4 pillars of AI-accelerated Bayesian inference (Piras et al. McEwen 2024).

1. Emulation to accelerate physical model encapsulated in likelihood,
e.g. CosmoPower (Spurio Mancini et al. 2022, Piras & Spurio Mancini 2023)

2. Differentiable and probabilistic programming to accelerate gradient calculations
and development of statistical models, e.g. JAX, NumPyro

3. Scalable (gradient-based) MCMC sampling to accelerate sampling and parameter
estimation, e.g. NUTS

4. Scalable and decoupled marginal likelihood computation to accelerate model
selection, e.g. learned harmonic mean (McEwen et al.2021, Polanska et al. 2023, 2024)
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Euclid (Stage IV survey)-like analysis

Compare ΛCDM vs w0waCDM leveraging 4 pillars
of AI-acceleration with Euclid-like lensing and
clustering simulations (Piras et al. 2024).

Euclid satellite Observation field

37D vs 39D models: log(zΛCDM) log(zw0waCDM) log BFΛCDM-w0waCDM Total computation time

Classical −107.03± 0.27 −107.81± 0.74 0.78± 0.79 8 months (48 CPUs)
AI-accelerated (ours) 40956.55± 0.06 40955.03± 0.04 1.53± 0.07 2 days (12 GPUs)

⇝ 120× acceleration
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Euclid-Rubin-Roman (3× Stage IV survey)-like analysis

Extend to combined 3× Stage IV
Survey-like lensing and clustering
simulations (Piras et al. 2024).

Euclid satellite Rubin observatory Roman satellite

157D vs 159D models: log(zΛCDM) log(zw0waCDM) log BF Total computation time

Classical Unfeasible Unfeasible Unfeasible 12 years projected (48 CPUs)
AI-accelerated (ours) 406689.6+0.5

−0.3 406687.7+0.5
−0.3 1.9+0.7

−0.5 8 days (24 GPUs)

⇝ Opens up new analyses (550× acceleration)
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Simulation-based inference (SBI)

Simulation-based inference (aka. likelihood-free inference) seeks to perform Bayesian
inference by estimating the posterior p(θ | xo,M) of parameters θ for observed data xo
using simulations only.

Key advantages:

. Forward modelling of complex physics, systematics, observational process.

. No assumptions on the form of the likelihood.
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Neural simulation-based inference (SBI)

Neural posterior estimation
(Papamakarios & Murray 2016)

Learn surrogate of posterior by
minimising loss

L = −Ex,θ∼p(x|θ)p(θ)[log qϕ(θ | x)].

Simulations from prior.
Density estimator architecture.
Draw samples from surrogate.
Theoretical accuracy guarantees.

Neural likelihood estimation
(Papamakarios et al. 2019)

Learn surrogate of likelihood by
minimising loss

L = −Ex,θ∼p(x|θ)p̃(θ)[log qϕ(x | θ)].

Simulations from any proposal.
Density estimator architecture.
MCMC sampling.
Theoretical accuracy guarantees.
Surrogate likelihood available.

Neural ratio estimation
(Hermans et al. 2020, Durkan et al. 2020)

Learn surrogate of posterior-to-prior
ratio by training classifier with loss

L =− Ex,θ,θ′∼p(x|θ)p(θ)p(θ′)[log(σ(log rϕ(θ; x)))

+ log(−σ(log rϕ(θ′; x)))],

where σ(·) is the sigmoid function.

Simulations from prior.
Flexible architecture.
MCMC sampling.
Density chasm problem.
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Field-level SBI pipeline for weak gravitational lensing
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Effectiveness of field-level SBI for weak gravitational lensing

Effectiveness of field-level SBI demonstrated already in small-field planar setting.
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Bandpowers
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Field-level SBI with scattering transforms (Lin, Joachimi & McEwen 2024)

⇝ Tightest cosmic shear constraints to date from SBI
(Gatti et al. 2023, Jeffrey et al. 2024, Cheng et al. 2024).
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Could field-level SBI distinguish dynamical dark energy?

Recent results from DESI experiment provide tantalising hints of dynamical dark energy
(Adame et al. 2024a, 2024b).

If these results reflected true underlying nature of the Universe, could a field-level SBI
analysis of a Stage IV survey distinguish dynamical dark energy definitively?
(Spurio Mancini et al. 2024)

Kiyam LinAlessio Spurio Mancini
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Wide-field surveys require analysis techniques on spherical manifolds

Rubin-LSST Euclid

Sky coverage of imminent Stage IV galaxy surveys

⇝ Wide-field surveys require spherical analysis methods
defined on the curved sky.
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Geometric AI on spherical manifolds



Statistical characterization and generative modelling of fields on the sphere

Wavelet scattering network representations are an excellent representation space for
statistical characterization and generative modelling of fields.

Inspired by CNNs but designed rather than learned filters (Mallat 2012).

⇝ Scattering networks on the sphere
(McEwen et al. 2022)

⇝ Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset et al. McEwen 2024)
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Wavelets on the sphere

Adopt scale-discretized wavelets on the sphere (e.g. McEwen et al. 2018, McEwen et al. 2015).

Wavelets ψj ∈ L2(S2) capture spatially-localised, high-frequency signal content at scale j.

Scaling function φ ∈ L2(S2) captures spatially-localised, low-frequency content.

Spherical wavelet transform given by

Wj(ρ) = ( f ? ψj )(ρ) =

∫
S2
dµ(ω′)f(ω′)( Rρψj )

∗(ω′).

Spherical convolution Rotated wavelet

Fast algorithms available
(e.g. McEwen et al. 2007, 2013, 2015).

Orthographic plot of spherical wavelets.
Jason McEwen 49
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Wavelet localisation of Gaussian random fields on the sphere

Wavelet Localisation
(McEwen et al. 2016)
Directional scale-discretised wavelets
ψj ∈ L2(S2), defined on the sphere S2 and
centred on the North pole, satisfy the
localisation bound:

∣∣ψj(θ, φ)
∣∣ ≤ C(j)

1(
1+ C(j)

2 θ
)ξ

(there exist strictly positive constants
C(j)
1 , C

(j)
2 ∈ R+

∗ for any ξ ∈ R+
∗ ).

Wavelet Asymptotic Uncorrelation
(McEwen et al. 2016)
For Gaussian random fields on the sphere,
directional scale-discretised wavelet
coefficients are asymptotically uncorrelated.
The directional wavelet correlation satisfies the
bound:

corrjj′(ρ1, ρ2) ≤
C(j)
1(

1+ C(xj)
2 β

)ξ ,

where β ∈ [0, π) is an angular separation
between Euler angles ρ1 and ρ2 (there exist
strictly positive constants C(j)

1 , C
(j)
2 ∈ R+

∗ for any
ξ ∈ R+

∗ , ξ ≥ 2M, where M is the azimuthal
band-limit of the wavelet and |j− j′| < 2).Jason McEwen 50
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Scattering transform on the sphere

Spherical scattering propagator for scale j:

U[j]f = |f ? ψj|.

Modulus function is adopted for the activation function (since non-expansive and
preserves stability of wavelet representation).

Spherical cascade of propagators:

U[p]f = |||f ? ψj1 | ? ψj2 | . . . ? ψjd |,

for the path p = (j1, j2, . . . , jd) with depth d.

Scattering coefficients:
S[p]f = |||f ? ψj1 | ? ψj2 | . . . ? ψjd | ? φ.
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Scattering networks on the sphere

Spherical scattering network is collection of scattering transforms for a number of paths:
SPf = {S[p]f : p ∈ P}, where the general path set P denotes the infinite set of all possible
paths P = {p = (j1, j2, . . . , jd) : J0 ≤ ji ≤ J, 1 ≤ i ≤ d, d ∈ N0} .

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Capture all information content at infinite depth and typically > 99% for depth d = 3.
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Properties

Latent representation is very well-behaved and satisfies a number of important
properties:

1. Rotational equivariance

2. Isometric invariance

3. Stability to diffeomorphisms
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Rotationally equivariance

Rotational Equivariance (McEwen et al. 2022)(
(Rρf) ? ψ

)
(ρ′) = (Rρ(f ? ψ))(ρ′).

A

A

Rρ

Rρ
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Isometric invariance

Isometric Invariance (McEwen et al. 2022)

Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

Difference in representation.
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Isometric invariance

Image Representation Scattering Representation

Isometry
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Stability to diffeomorphisms

Stability to Diffeomorphisms (McEwen et al. 2022)

Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

Difference in representation.
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism
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Stability to diffeomorphisms

Image Representation Scattering Representation

Small diffeomorphism Small diffeomorphism

Large diffeomorphism Large diffeomorphism
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Scattering for simulation-based inference (SBI)

Wavelet scattering as a representation space for SBI (Lin, Joachimi & McEwen 2024).
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Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset et al. McEwen 2024; s2scat code)

Erwan AllysLouise Mousset Matt Price
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Spherical scattering covariance for generative modelling

Scattering covariance statistics:

1. S1[λ] f = E
[
|f ? ψλ|

]
.

2. S2[λ] f = E
[
|f ? ψλ|2

]
.

3. S3[λ1, λ2] f = Cov
[
f ? ψλ2 , |f ? ψλ1 | ? ψλ2

]
.

4. S4[λ1, λ2, λ3] f = Cov
[
|f ? ψλ1 | ? ψλ3 , |f ? ψλ2 | ? ψλ3

]
.

Generative modelling by matching set of scattering covariance statistics S(f) with a
(single) target simulation:

min
f

∥S(f)− S(ftarget)∥2.
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Differentiable and GPU-accelerated spherical transform codes (in JAX)

s2fft: Spherical harmonic transforms
https://github.com/astro-informatics/s2fft

s2wav: Spherical wavelet transforms
https://github.com/astro-informatics/s2wav

s2scat: Spherical scattering transforms
https://github.com/astro-informatics/s2scat

s2ai: Spherical AI
Coming very soon! Contact us for early access.

Jason McEwen 62

https://github.com/astro-informatics/s2fft
https://github.com/astro-informatics/s2wav
https://github.com/astro-informatics/s2scat


Generative modelling of large scale structure (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of weak lensing field.
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Generative modelling of large scale structure (LSS)

Pixel distribution Power spectrum Minkowski functionals

Statistical validation.

Jason McEwen 64



Equivariant learning for spherical fields

Continuous Discrete Discrete-Continuous (DISCO)

Equivariant Not Equivariant Equivariant
Not Scalable Scalable Scalable

(Cohen et al. 2018, Esteves et al. 2018,
Kondor et al. 2018, Cobb et al. McEwen
2021, McEwen et al. 2022, …)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019, …)

(Ocampo, Price & McEwen 2023)
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Equivariant learning for spherical fields of different spin

Wind⇝ vector (spin-1) field

CMB polarization⇝ spin-2 field

Equivariant learning for spherical fields of different spin

Fibre bundle representation:
▷ Base space B = S2 ≃ SO(3)/SO(2)
▷ Fibre H = SO(2)
▷ Fibre bundle G = SO(3)

Spin equivariant approach:
1. Equivariant lifting:

f ↑SO(3) (ρ) = ϱ(h−1(ρ)) f(P(ρ)), for projection P : SO(3) → S2,
twist h : SO(3) → SO(2) and representation ϱ : SO(2) → R.

2. Group convolution on SO(3).

3. Equivariant projection:
f ↓S2 (ω) = f ↑SO(3) (S(ω)), for section S : S2 → SO(3).

B = S2

H = SO(2)
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Scalable Bayesian inference with
data-driven AI priors



Exascale imaging

Artist impression of the Square Kilometer Array (SKA)
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Sampling vs optimisation

MCMC sampling

Based on sampling so computationally
demanding.
Uncertatinties encoded in posterior.
Hand-crafted priors (traditionally).

MAP estimation

Based on optimisation so computationally
efficient.
No uncertainties (traditionally).
Hand-crafted priors (traditionally).
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Computational imaging strategy

Goals:

Computationally efficient (optimisation + distribution).
Quantifies uncertainties (for scientific inference).
Data-driven AI priors (enhance reconstruction fidelity).

Solution:

1. Statistical framework: Bayesian inference and MAP estimation.
2. Mathematical theory: probability concentration theorem for log-convex distributions.
3. Constrained AI model: convex AI model with explicit potential.
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Scalable Bayesian uncertainty quantification with data-driven AI priors

Scalable Bayesian uncertainty quantification with data-driven priors for radio
interferometric imaging
(Liaudat et al. McEwen 2024)

Tobias Liaudat Marcelo PereyraMatthijs Mars Marta BetckeMatt Price
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Solve optimisation problem

Solve optimisation problem (MAP estimation by variation regularisation):

x̂MAP = arg max
x

[
log p(y | x)

]
= arg min

x

[ ∥∥y−Φx
∥∥2
2 + λ R(x)

regulariser

]

Traditionally, hand-crafted regularisers used
(e.g. R(x) = ∥Ψ†x∥1 to promote sparsity in some (wavelet) dictionary Ψ).

Instead, adopt data-driven AI prior for regulariser trained on simulations.

Solve by highly distributed and parallelised optimisation algorithms, with low
communication overhead (Pratley, McEwen et al. 2016, Pratley, Johnston-Hollitt & McEwen 2018,
2019, Pratley & McEwen 2019).
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Block distribution

Solve resulting convex optimisation problem by proximal splitting.

Block algorithm to distribute data and compute (telescope model):
(Carrillo, McEwen & Wiaux 2014; Onose et al. (inc. McEwen) 2016; Pratley, Johnston-Hollitt & McEwen 2019; Pratley,
McEwen et al. 2019; Pratley, Johnston-Hollitt & McEwen 2020)

y =

 y1
...

ynd

 , Φ =

 Φ1
...

Φnd

 =

 G1M1
...

GndMnd

 FZ .

. Stochastic updates to support big-data.

. Two internal distribution strategies:
1. Distribute image (i.e. distribute Φi)
2. Distribute Fourier grid (i.e. distribute GiMi)
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Block distributed alternating direction method of multipliers (ADMM) algorithm

...

...
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Block distributed primal dual algorithm
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Block distributed primal dual algorithm with AI prior
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Convex probability concentration for uncertainty quantification

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Bound of HPD region for log-concave distributions (Pereyra 2017)
Suppose the posterior log p(x|y) ∝ logL(x) + log π(x) is log-concave on RN. Then, for any
α ∈ (4e[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : logL(x) + log π(x) ≤ γ̂α = logL(x̂MAP) + log π(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

Need only evaluate logL+ log π for the MAP estimate x̂MAP!
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Hypothesis testing

Hypothesis testing of physical structure
(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

1. Remove structure of interest from recovered image x⋆.
2. Inpaint background (noise) into region, yielding surrogate image x′.
3. Test whether x′ ∈ Cα:

■ If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence (1− α)%, i.e.
structure most likely physical.

■ If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical nature of
the structure.
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Local Bayesian credible intervals

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an
index vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x′ = x⋆(I − ζ) + ξζ .

Given γ̃α and x⋆, compute the credible interval by

ξ̃− = min
ξ

{
ξ | logL(x′) + log π(x′) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | logL(x′) + log π(x′) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.

Jason McEwen 78

https://arxiv.org/pdf/1711.04819


Convex data-driven AI prior

Adopt neural-network-based convex regulariser R
(Goujon et al. 2022; Liaudat et al. McEwen 2024):

R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

. ψn are learned convex profile functions with Lipschitz continuous derivative;

. NC learned convolutional filters hn.

Properties:
1. Convex + explicit potential ⇒ leverage convex UQ theory.
2. Smooth regulariser with known Lipschitz constant ⇒ convergence guarantees.
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Reconstructed images
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Hypothesis testing of structure
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Approximate local Bayesian credible intervals

mean = 0.3844
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QuantifAI code

Github: https://github.com/astro-informatics/QuantifAI

PyTorch: Automatic differentiation (including instrument model) + GPU acceleration
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Exascale imaging codes

GitHub: https://github.com/astro-informatics/purify GitHub: https://github.com/astro-informatics/sopt
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Summary



Statistics as the Key to Unlocking AI for Science

Statistical Scientific AI

Statistical Physical Intelligible

Bayesian Inference

Implicit Inference

Generative Models

Augmentation

Physical Properties

Physical Models

Explainable

Interpretable

Reliable
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