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Merging paradigms

Statistics

e.g. Bayesian Inference,
Probability Theory

Physics Applied Math
. e.g. Physical e.g. Optimization,
S C I A | Properties, Models Harmonic Analysis

Jason McEwen
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Physics Enhanced Learning




Physics Enhanced Learning

Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~» ML model learns physics through training.

> Redshift augmentation of supernovae

observations (Boone 2019, Alves et al. 2022, @ -| i’
2023) A )
& I Ed ©
—
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https://arxiv.org/abs/1907.04690
https://arxiv.org/abs/2107.07531
https://arxiv.org/abs/2210.15690
http://www.jasonmcewen.org

Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.

& > Data efficiency suffers: data “used” to learn physics, rather than problem.
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.

> Geometric deep learning on the sphere (Cobb et al.
2021; McEwen et al. 2022; Ocampo, Price & McEwen 2023)

See Cosmo21 poster

CMB observed on the
celestial sphere

‘/

SC'A' Kevin Mulder


https://arxiv.org/abs/2010.11661
https://arxiv.org/abs/2010.11661
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/2209.13603
http://www.jasonmcewen.org

Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNS).
@ 2. Embed full (differentiable) physical models inside ML model.
~» Physics learned in training and embedded in model.
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNS).
@ 2. Embed full (differentiable) physical models inside ML model.
~» Physics learned in training and embedded in model.

> Physics informed neural networks (PINNs)
encode differentiable equations (e.g.
boundary conditions) in loss.

Training a physics-informed
neural network

nnnnn
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
@ 2. Embed full (differentiable) physical models inside ML model.
~+ Physics learned in training and embedded in model.

Telescope \

Measurements Model

> Differentiable physical models
» Radio interferometric telescope
(Mars et al. 2023, 2024) -

» Optical PSF
(Liaudat et al. 2023)
» JAX-Cosmo
(Campagneetal 2023) T y
. Te;\ﬂe:::lpe Neural Network
SCIA' Physics inside Al models for imaging data from

radio interferometric telescopes (Mars et al. 2024) 8


https://arxiv.org/abs/2301.10260
https://arxiv.org/abs/2405.08958
https://arxiv.org/abs/2203.04908
https://github.com/DifferentiableUniverseInitiative/jax_cosmo
https://arxiv.org/abs/2302.05163
https://arxiv.org/abs/2405.08958
http://www.jasonmcewen.org

Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNS).
@ 2. Embed full (differentiable) physical models inside ML model.
~» Physics learned in training and embedded in model.

> Differentiable mathematical methods

» Spherical harmonic transforms
(s2fft; Price & McEwen 2024)

» Spherical wavelet transforms
(s2wav; Price et al. 2024)

LA | b
— ¢
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https://github.com/astro-informatics/s2fft
https://arxiv.org/abs/2311.14670
https://github.com/astro-informatics/s2wav
https://arxiv.org/abs/2402.01282
http://www.jasonmcewen.org

Probabilistic Learning



Probabilistic Learning

Embed a probabilistic representation of data, models and/or outputs.
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(See Murray 2022.)
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https://probml.github.io/pml-book/book2.html
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

Data ; . Output


https://direct.mit.edu/neco/article-abstract/4/3/448/5654/A-Practical-Bayesian-Framework-for-Backpropagation?redirectedFrom=fulltext
http://www.jasonmcewen.org

Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

> MC Dropout (Gal & Ghahramani 2016): drop
nodes probabilistically to sample an
ensemble of networks.



https://direct.mit.edu/neco/article-abstract/4/3/448/5654/A-Practical-Bayesian-Framework-for-Backpropagation?redirectedFrom=fulltext
https://arxiv.org/abs/1506.02142
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

> Bayes by Backprop (Blundel et al. 2015): model
distribution of weights (by variational
inference).


https://direct.mit.edu/neco/article-abstract/4/3/448/5654/A-Practical-Bayesian-Framework-for-Backpropagation?redirectedFrom=fulltext
https://arxiv.org/abs/1505.05424
http://www.jasonmcewen.org

Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

> Encode epistemic uncertainty of model.
& > But what does the output distribution represent?
> Requires careful consideration of training data.


https://direct.mit.edu/neco/article-abstract/4/3/448/5654/A-Practical-Bayesian-Framework-for-Backpropagation?redirectedFrom=fulltext
http://www.jasonmcewen.org

Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

Jason McEwen i
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

> Emulation: sample from learned prior
(Perraudin et al. 2020, Allys et al. 2020, Price et al.
2023, Price et al. in prep., Mousset, Price, Allys,

McEwen in prep.)
See Cosmo21 poster

g / Em'ulated LSS .
e METE Matt Price (Mousset, Price, All)ys, McEwen in 1
prep.

)



https://arxiv.org/abs/2004.08139
https://arxiv.org/abs/2006.06298
https://arxiv.org/abs/2307.04798
https://arxiv.org/abs/2307.04798
http://www.jasonmcewen.org

Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al. 2023,
2024, Piras et al. in prep.)

» Only requires posterior samples.
» Agnostic to sampling technique:

~ Leverage efficient samplers. ‘
~ Variational inference. ) y

» Scale to high dimensions.

.
Cl


https://github.com/astro-informatics/harmonic
https://arxiv.org/abs/2111.12720
https://arxiv.org/abs/2307.00048
https://arxiv.org/abs/2405.05969
http://www.jasonmcewen.org

Bayesian inference

> Simulation-based inference (SBI)

ML techniques can be integrated into Bayesian frameworks to enhance accuracy

and computational efficiency, making some approaches accessible that were
previously intractable.

i B Scattering
(Alsing et al. 2018, Cranmer et al. 2021, Lin et al. 2022, in ?"‘“‘:'?0“?“
' ,ombpinec
prep., von Wietersheim-Kramsta et al. 2024)

> Model selection for SBI (Spurio Mancini et al. 2022)

VRN
See Cosmo21 poster
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(Lin et al. in prep.) 12
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Variational inference (Whitney et al. in prep.) A —————

See Cosmo21 talk

1501 1494 1508 150.1 1494

Mass mapping with uncertainties
by variational inference
(Whitney et al. in prep.)
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Intelligible Al

Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Jason McEwen 14
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

> Feature importances R
B Without redshift
(Lochner et al. 2016) : Ewith redshit
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Feature

Supernova feature importances

Jason McEwen 14
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

male

alaxy saliency mapping

> Saliency maps
(Bhambra et al. 2022)

Spiral Arms

Jason McEwen 14


https://arxiv.org/abs/2110.08288
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
& not able to comprehend underlying process.

Jason McEwen 14
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Deep priors learned from training data
(hybrid model-based and data-driven)
(Remy et al. 2022, McEwen et al. 2023)

See Cosmo21 poster

Compute Bayesian evidence for

del selection
| *UCH | mo
Jason McEwen Tobias Liaudat Henry Aldrldge Matt Price (proxnest, McEwen et al. 2023) 15



https://arxiv.org/abs/2201.05561
https://arxiv.org/abs/2307.00056
https://github.com/astro-informatics/proxnest
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Interpretable constraints on ML models,
e.g. convexity
(Liaudat et al. 2023)

000
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o
O

See Cosmo21 talk

Uncertainty
Quantification

Convexity

Impose convexity on learned model


https://arxiv.org/abs/2312.00125
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Reliability

@ Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.
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Reliability

@ Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Validity of statistical distributions % T
(Hermans et al. 2022, Lemos et al. 2023) A”ROC”“"

®m Groundtruth

Conservative

=

Posterior density
=

.2+ AUROC ~ 0.7

\ ;
1)) I . A U " S
~10 =5 0 5 10
¥

Validity of distribution

SC|A| (Hermans et al. 2022)
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Reliability

@ Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Validity of statistical distributions o
""" eriec \()\'(‘!Elg(‘ (,/
(Hermans et al. 2022, Lemos et al. 2023) Empirical coverage 2%

0.6 L

See Cosmo21 poster : 4

0,

00 02 04 06 08 10
Credibility level

Coverage analysis for SBI with
scattering (Lin et al. in prep.)

SCiAl
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Reliability

@ Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Diversity (avoiding mode-collapse)
(Price et al. 2023, Whitney et al. in prep.)

See Cosmo21 talk

Recover probability
distribution over full

Matt Price underlying manifold
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Summary
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Physics Enhanced Learning

Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.

& > Data efficiency suffers: data “used” to learn physics, rather than problem.

Jason McEwen 20
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.

2 > Highly computationally demanding.
> Always required?

> Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
7V 1 |nductive biases not enforced.

Jason McEwen 21
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
@ 1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

~+ Physics learned in training and embedded in model.

2 > PINNs only capture limited dynamics via loss.
> Full physical models requires differentiable programming frameworks.

> Capture full physics with differentiable models!
'\G > Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).

SC > Write new differentiable codes (e.g. s2f£t; Price & McEwen 2023).

Jason McEwen 22


https://github.com/alessiospuriomancini/cosmopower
https://arxiv.org/abs/2106.03846
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Probabilistic Learning

Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)

Physical Machine Learning
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Bayesian neural networks for uncertainty quantification

®

A

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

> Encode epistemic uncertainty of model.
> But what does the output distribution represent?
> Requires careful consideration of training data.

> Statistical validation (hold that thought... see upcoming Reliability section).

24
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

Availability and representativeness of training data.

B

Reliability, e.g. diversity of ML model often lacking.

v

Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).

\,é
v

Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).

v

Reliability (hold that thought... see upcoming Reliability section).

Jason McEwen 25


https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
@ and computational efficiency, making some approaches accessible that were
previously intractable.

> Availability and representativeness of training data.

& > Cost of training.

Reliability?

v

v

Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).

v

Amortized inference (training not repeated for new observations).

Y
\
v

Integrate in Bayesian framework to provide statistical guarantees.

Statistical validation (hold that thought... see upcoming Reliability section).

wn
(@]
v
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Intelligible Al

Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
& not able to comprehend underlying process.

Jason McEwen 28
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

> Designed models limit flexibility.
> Availability and representativeness of training data.

> Benefits of designed models often outweigh (minimal) reduced flexibility.
> Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
> Transfer learning, self-supervised learning.

29
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Reliability

®

Reliability critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Uncertainties not aways meaningful.
> Diversity of ML model often lacking.

> Integrate in statistical framework to inherit theoretical guarantees.
> Extensive validation tests (e.g. Hermans et al. 2022, Lemos et al. 2023).
> Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).

> Well-posed frameworks (e.g. physics enhanced, probabilistic).

30
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