Differentiable and accelerated spherical transforms

Jason D. McEwen www.jasonmcewen.org

Scientific Ai (SciAI) Team, Mullard Space Science Laboratory (MSSL) University College London (UCL)

Durham HPC Days, June 2025

SciAl

Data observed on the sphere are prevalent

Others

Harnessing modern computing paradigms

G Differential programming **G** AI models

GPU acceleration

G Leverage high throughput of modern hardware accelerators

s2x suite of codes

4

s2x suite of codes

s2fft: Spherical harmonic transforms

https://github.com/astro-informatics/s2fft

s2scat: Spherical wavelet
scattering transforms

https://github.com/astro-informatics/s2scat

s2wav: Spherical wavelet transforms

https://github.com/astro-informatics/s2wav

s2ai: Scalable and equivariant spherical AI

https://github.com/astro-informatics/s2ai

s2fft: spherical harmonic and Wigner transforms

Spherical harmonic transform (Fourier transform on the sphere)

A field $f \in L^2(\mathbb{S}^2)$ can be decomposed into its harmonic representation by

$$f(heta,\phi) = \sum_{\ell,m} f_{\ell m} Y_{\ell m}(heta,\phi),$$

where the spherical harmonic coefficients are given by the usual projection onto the basis functions:

$$f_{\ell m} = \int_{\mathbb{S}^2} f(heta, \phi) Y^*_{\ell m}(heta, \phi) \sin heta \mathrm{d} heta \mathrm{d} \phi.$$

Driscoll & Healy (1995), ..., McEwen & Wiaux (2011), Price & McEwen (2024)

Spherical harmonics

s2fft: spherical harmonic and Wigner transforms

s2fft: Differentiable and Accelerated Spherical Harmonic Transforms

s2fft is a Python package for computing Fourier transforms on the sphere and rotation group (Price & McEwen 2024) using JAX or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g. GPUs and TPUs).

https://github.com/astro-informatics/s2fft

s2wav: wavelet transforms on the sphere

Wavelets capture signal content localised in both scale and space.

s2wav: wavelet transforms on the sphere

Wavelets capture signal content localised in both scale and space.

Spherical wavelet transform

Spherical wavelet transform, with wavelet ψ_j and scaling function φ , given by

$$W_{j}(\rho) = (f \star \psi_{j})(\rho) = \int_{\mathbb{S}^{2}} f(\theta, \phi) (R_{\rho}\psi_{j})^{*}(\theta, \phi) d\mu(\theta, \phi)$$
Spherical convolution

Wavelets carefully constructed to satisfy admissibility condition so that field can be reconstructed exactly from its wavelet coefficients.

McEwen et al. (2007), Wiaux, McEwen et al. (2008), McEwen et al. (2013), McEwen et al. (2015), McEwen et al. (2018)

s2wav: wavelet transforms on the sphere

s2wav: Differentiable and Accelerated Wavelet Transforms on the Sphere

C Tests passing	Codecov	92%	License	MIT	pypi package	1.0.4	arXiv	240
			1	CO	Open in Colab			

s2wav is a python package for computing wavelet transforms on the sphere and rotation group, both in JAX and PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on modern hardware accelerators (e.g. GPUs and TPUs), and can be mapped across multiple accelerators.

https://github.com/astro-informatics/s2wav

s2scat: wavelet scattering transforms on the sphere

Spherical scattering network

Scattering coefficients for path *p* given by cascade of wavelet transforms with modulus activation function:

 $S[p]f = |||f \star \psi_{j_1}| \star \psi_{j_2}| \ldots \star \psi_{j_d}| \star \varphi.$

Spherical scatting networks is a collection of scattering transforms for a number of paths.

Mallat (2011), McEwen et al. (2022), Mousset et al. McEwen (2024)

Spherical scattering network

s2scat: wavelet scattering transforms on the sphere

s2scat is a Python package for computing scattering covariances on the sphere (Mousset et al. 2024) using JAX. It exploits autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g. GPUs and TPUs), leveraging the differentiable and accelerated spherical harmonic and wavelet transforms implemented in s2fft and s2wav, respectively. Scattering covariances are useful both for field-level generative modelling of complex non-Gaussian textures and for statistical compression of high dimensional field-level data, a key step of e.g. simulation based inference.

Open in Colab

https://github.com/astro-informatics/s2scat

all contributors

s2ai: spherical AI

Equivariant and scalable AI for spherical fields.

Discrete

(Jiang et al. 2019, Zhange et al. 2019, Perraudin et al. 2019, Cohen et al. 2019, Continuous

(Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018, Cobb et al. McEwen 2021, McEwen et al. 2022, ...)

Discrete-Continuous (DISCO)

(Ocampo, Price & McEwen 2021)

s2ai: spherical AI

Many problems across computer vision and the natural sciences require the analysis of spherical data, for which representations may be learned efficiently by encoding equivariance to rotational symmetries as an inductive bias. s2ai provides foundational convolutional layers which encode said equivariance, with the aim to support the development of state-of-the-art machine learning techniques on both the sphere and rotation group.

https://github.com/astro-informatics/s2ai

code style black

Generative modelling of cosmological fields

Scattering covariance statistics:

- 1. $S_1[\lambda] f = \mathbb{E} \left[\left| f \star \psi_{\lambda} \right| \right]$
- $2. \quad S_2[\lambda] \ f = \mathbb{E}ig \left[\left| f \star \psi_\lambda
 ight|^2
 ight]$
- $3. \quad S_3[\lambda_1,\lambda_2] \, f = \operatorname{Cov} \left[\left. f \star \psi_{\lambda_2}, \left| f \star \psi_{\lambda_1} \right| \star \psi_{\lambda_2} \right. \right| \right.$
- 4. $S_4[\lambda_1, \lambda_2, \lambda_3] f = \operatorname{Cov} \left[|f \star \psi_{\lambda_1}| \star \psi_{\lambda_3}, |f \star \psi_{\lambda_2}| \star \psi_{\lambda_3} \right]$

Scattering covariance statistics:

$$1. \hspace{0.2cm} S_1[\lambda] \hspace{0.1cm} f = \mathbb{E}ig[\left| f \star \psi_\lambda
ight| ig]$$

$$2. \quad S_2[\lambda] \ f = \mathbb{E}ig[\ |f \star \psi_\lambda|^2 \ ig]$$

$$3. \quad S_3[\lambda_1,\lambda_2] \ f = \operatorname{Cov} \big[\ f \star \psi_{\lambda_2}, |f \star \psi_{\lambda_1}| \star \psi_{\lambda_2} \, \big]$$

$$4. \quad S_4[\lambda_1,\lambda_2,\lambda_3] \ f = \operatorname{Cov} \big[\ |f \star \psi_{\lambda_1}| \star \psi_{\lambda_3}, |f \star \psi_{\lambda_2}| \star \psi_{\lambda_3} \, \big]$$

Generative modelling by matching set of scattering covariance statistics with a (single) target simulation:

$$\min_{f} \|\mathcal{S}(f) - \mathcal{S}(f_{ ext{target}})\|$$

Solve by gradient-based optimisation, leverging autodiff (requires s2fft, s2wav, s2scat)

2

Symmetry breaking phase transitions in the early Universe \rightarrow topological defects.

Cosmic strings well-motivated phenomenon that arise when axial/cylindrical symmetry broken \rightarrow line-like discontinuities in the fabric of the Universe.

Observed transitions string-like topological defects in other media.

Detection of cosmic strings would open a **new window** into the physics of the Universe.

Optical microscope photograph of liquid crystal following temperature quench (Chuang et al. 1991)

Contact between theory and observation via high-resolution simulations (Ringeval et al. 2012).

Need to **simulate full physics**, evolving a network of string through cosmic time and then raytracing CMB photons through the string network.

A single simulation requires 800,000 CPU hours on a supercomputer.

In total there are three full-sky string maps in existence.

Instead of simulating full physics, emulate with a scattering covariance generative model.

Requires only single target simulation.

Instead of simulating full physics, emulate with a scattering covariance generative model.

Requires only single target simulation.

Jason McEwen

21

Generative modelling of large-scale structure (LSS)

Which field is simulated and which emulated?

Logarithm (for visualisation) of weak lensing field.

Generative modelling of large-scale structure (LSS)

Validation of higher-order statistics.

Pixel distribution

Power spectrum

Minkowski functionals

All contributors

Matt Graham

sfmig

<u>Devaraj</u> Gopinathan

Francois Lanusse

Kevin Mulder ۹.

Philipp Misof 🌯 🛄

Elis Roberts 🌯 🂷

<u>Wassim</u> KABALAN 💻 <u>00 </u>

Mayeul

d'Avezac

Alicja Polanska

Ikko Eltociear Ashimine

Jessica Whitney

You?

s2x suite of codes

s2fft: Spherical harmonic
transforms

https://github.com/astro-informatics/s2fft

s2scat: Spherical wavelet
scattering transforms

https://github.com/astro-informatics/s2scat

s2wav: Spherical wavelet transforms

https://github.com/astro-informatics/s2wav

s2ai: Scalable and equivariant spherical AI

https://github.com/astro-informatics/s2ai