Geometric deep learning for atmospheric science

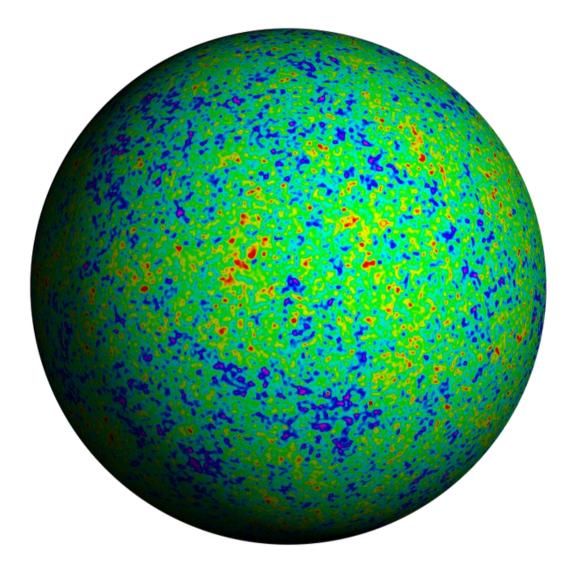
Jason D. McEwen www.jasonmcewen.org

Mission Director, Fundamental Research, Alan Turing Institute Scientific AI Team, Department Space & Climate Physics, UCL

Physics-Informed Machine Learning for Atmospheres, Exeter, July 2025

Engineering and Physical Sciences Research Council

Cosmological and planetary data live on the sphere

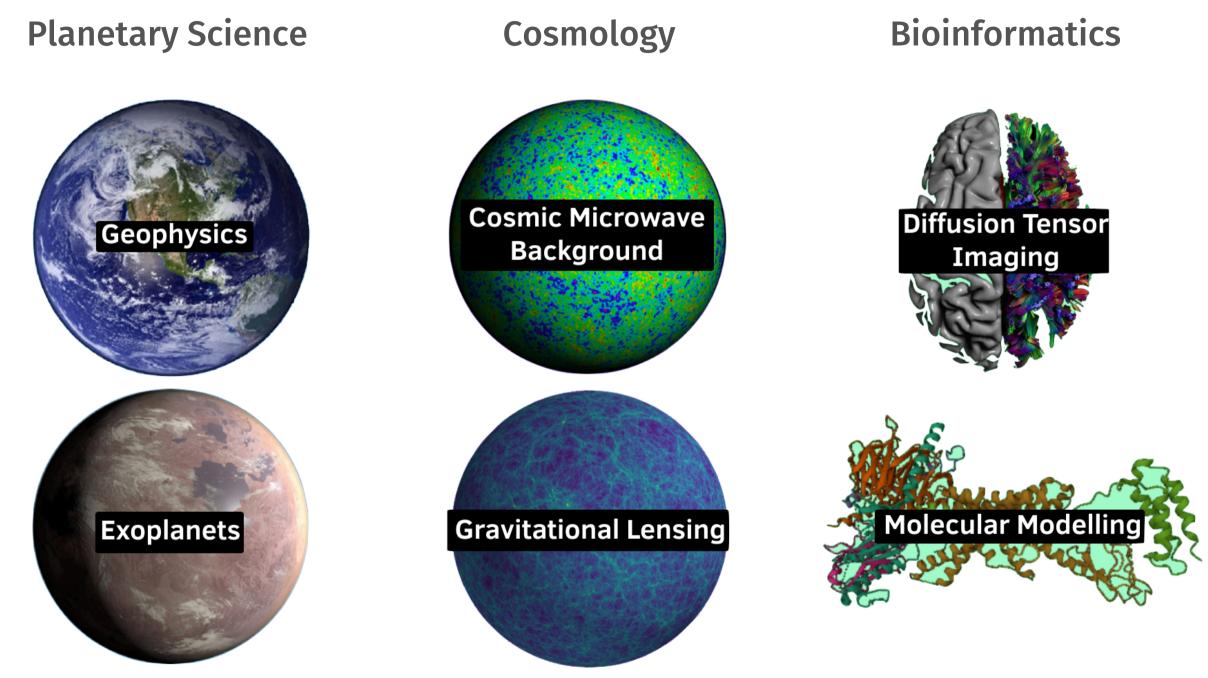


Cosmic microwave background

Jason McEwen

Earth observation

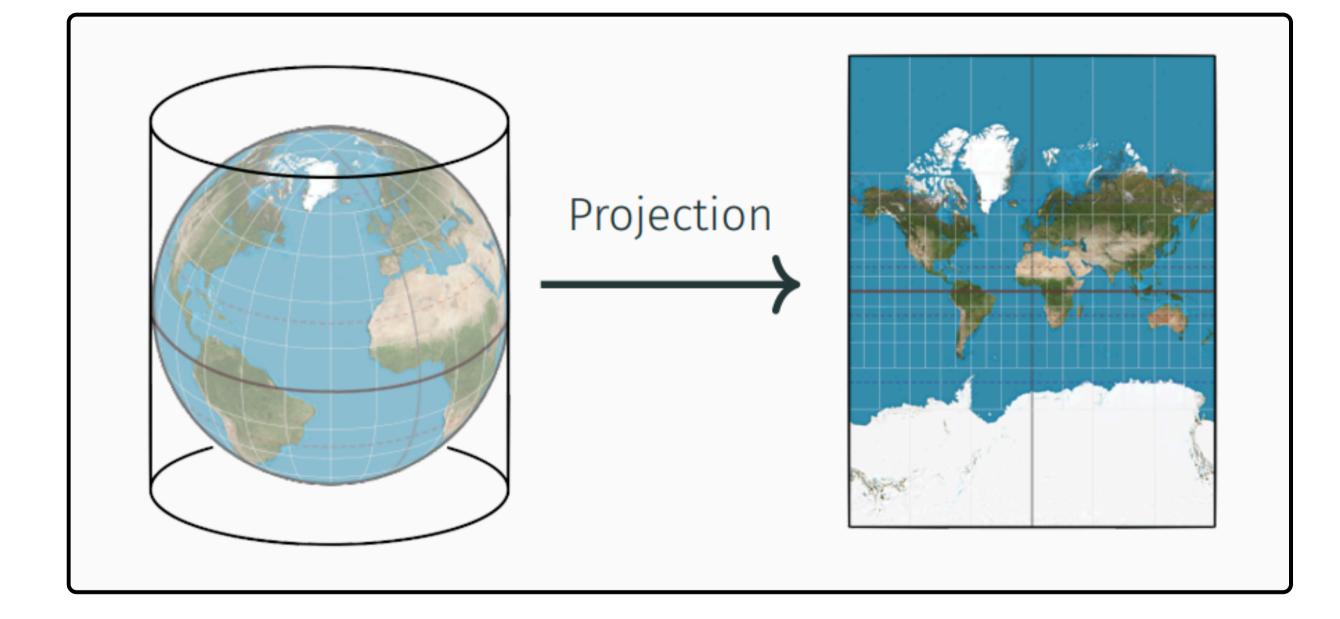
Data observed on the sphere are prevalent



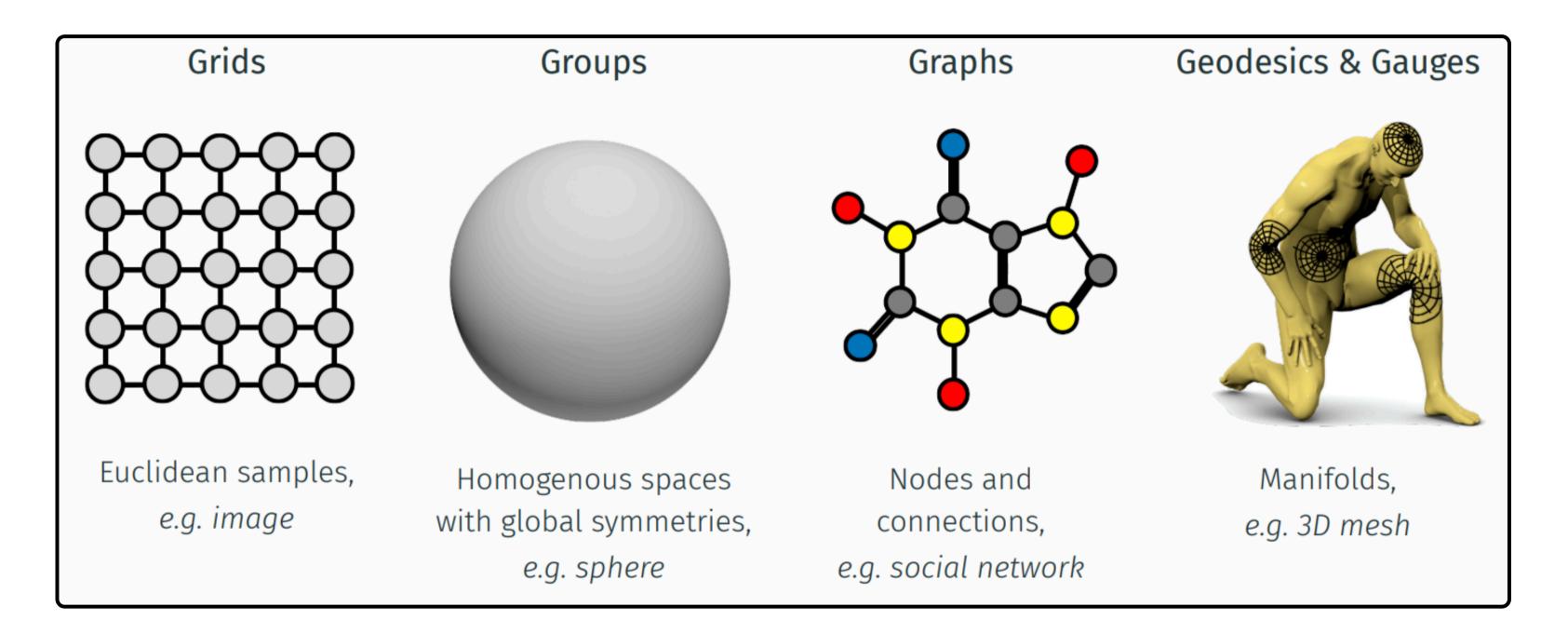
Jason McEwen

Others

Projection breaks symmetries and geometric properties

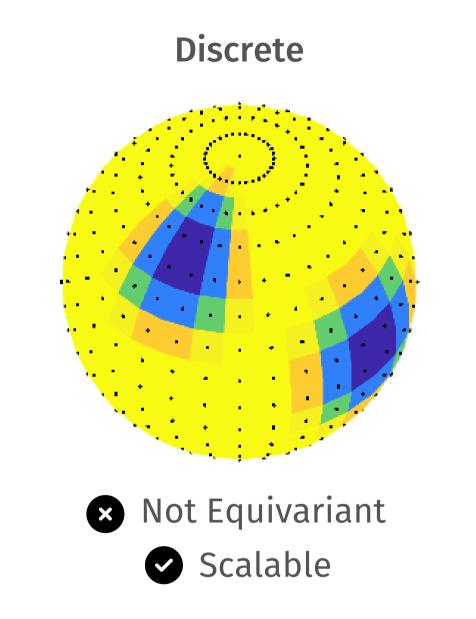


Geometric deep learing



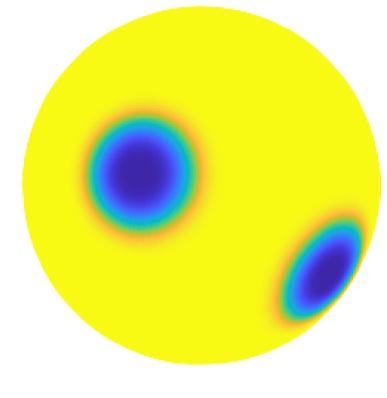
(Bronstein et al. 2022)

Scalable and equivariant deep learning on the sphere



(Jiang et al. 2019, Zhange et al. 2019, Perraudin et al. 2019, Cohen et al. 2019, ...)

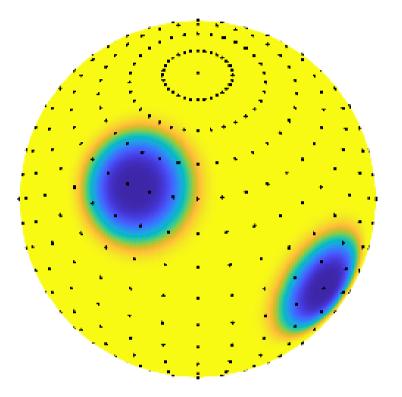
Continuous



(Cohen et al. 2018, Esteves et al. 2018, Kondor et al. 2018, Cobb et al. McEwen 2021, McEwen et al. 2022, ...)

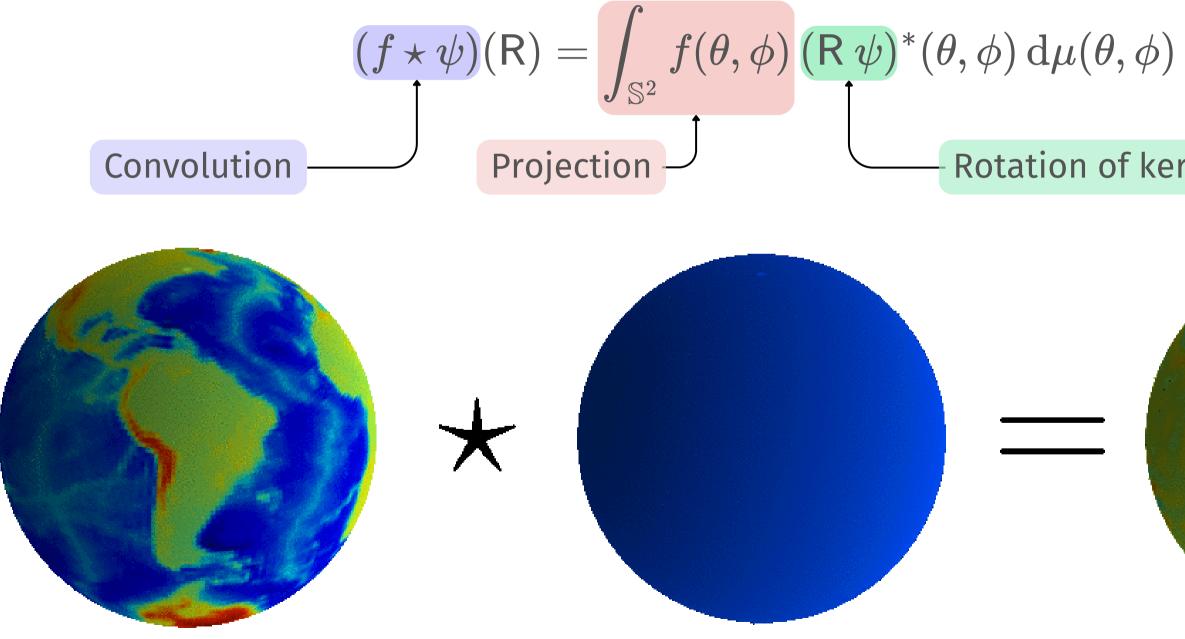
Jason McEwen

Discrete-Continuous (DISCO)

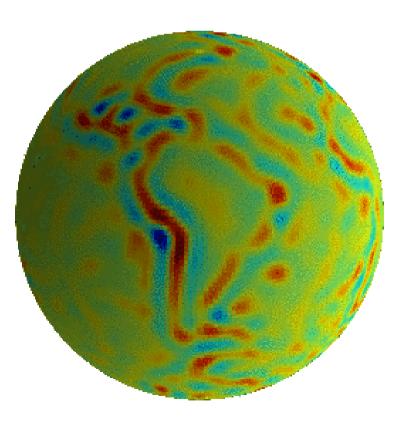


(Ocampo, Price & McEwen 2021)

Convolutions are the only linear equivariant layers (Kondor & Trivedi 2018). Spherical convolution:



- Rotation of kernel



Scalable and equivariant spherical CNNs by DISCO convolutions

Scalable and Equivariant Spherical CNNs by <u>DIScrete-COntinuous</u> (DISCO) Convolutions (Ocampo, Price & McEwen, ICLR, 2023)

Follows by a careful hybrid representation of the spherical convolution:

- some components left continuous to facilitate accurate rotational equivariance;
- while other components are discretized to yield scalable computation.

DISCO spherical convolution

Spherical convolution can be carefully approximated by DISCO representation:

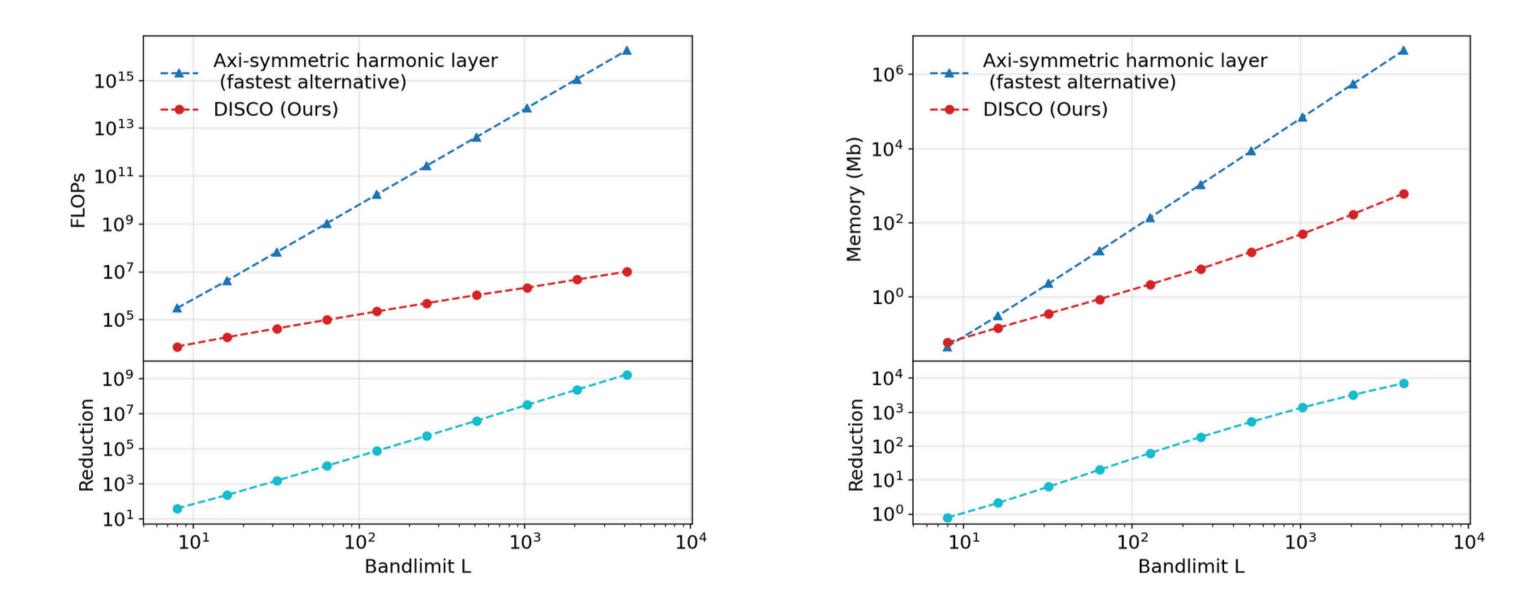
$$(f \star \psi)(\mathsf{R}) = \int_{\mathbb{S}^2} f(\theta, \phi) \, (\mathsf{R} \, \psi)^*(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \approx \sum_i q(\theta_i, \phi_i) f(\theta, \phi) \, \mathrm{d}\mu(\theta, \phi) \, \mathrm{d}$$

for spherical signal and filter kernel $f, \psi : \mathbb{S}^2 \to \mathbb{R}$, spherical coordinates $(heta, \phi) \in \mathbb{S}^2$, and 3D rotations $R \in SO(3)$. Leverage sampling theory of McEwen & Wiaux (2011).

 $f[heta_i,\phi_i]\psi(\mathsf{R}^{-1}(heta_i,\phi_i))$

Scalable and equivariant spherical CNNs by DISCO convolutions

Dramatic computational savings in FLOPs and memory.

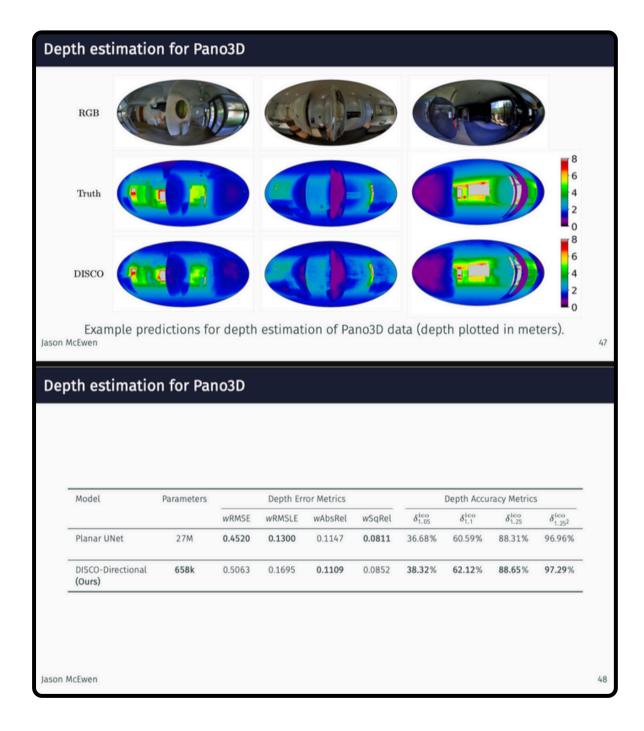


For 4k spherical image, 10⁹ saving in computational cost and 10⁴ saving in memory usage.

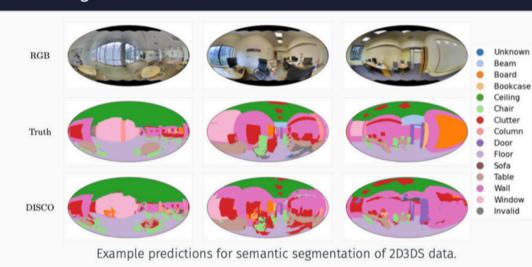
Jason McEwen

9

DISCO achieves SOTA performance



Semantic segmentation for 2D3Ds dataset

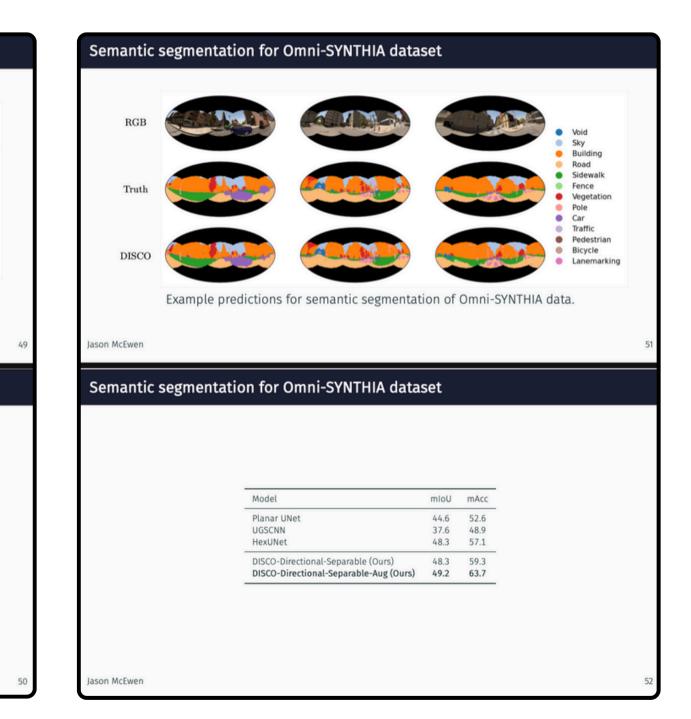


Jason McEwen

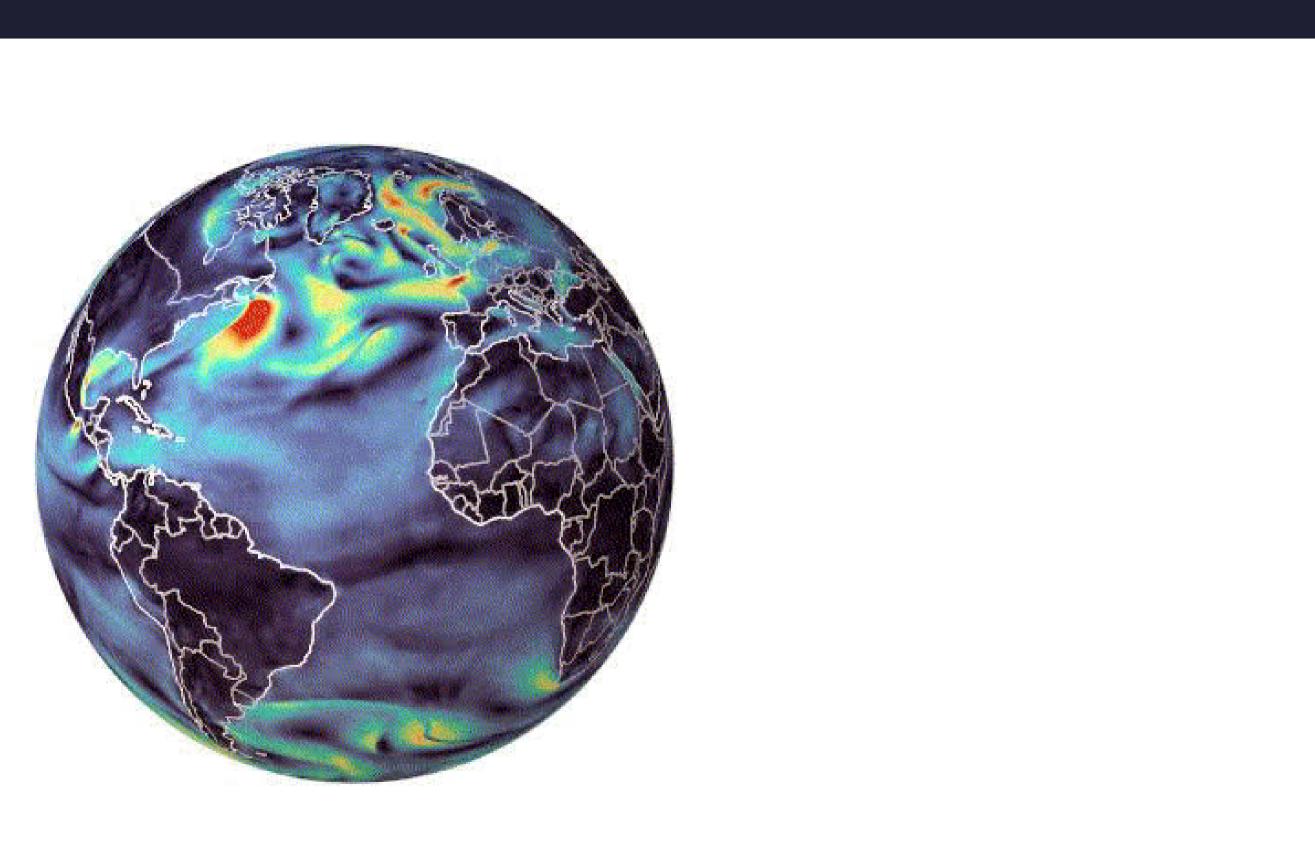
Semantic segmentation for 2D3Ds dataset

Model	mIoU	mAco
Planar UNet	35.9	50.8
UGSCNN	38.3	54.7
GaugeNet	39.4	55.9
HexRUNet	43.3	58.6
SWSCNNs	43.4	58.7
CubeNet	45.0	62.5
MöbiusConv	43.3	60.9
DISCO-Axisymmetric (Ours)	39.7	54.1
DISCO-Directional-Separable (Ours)	43.9	60.9
DISCO-Directional (Ours)	45.2	61.5
DISCO-Directional-Aug (Ours)	45.7	62.7

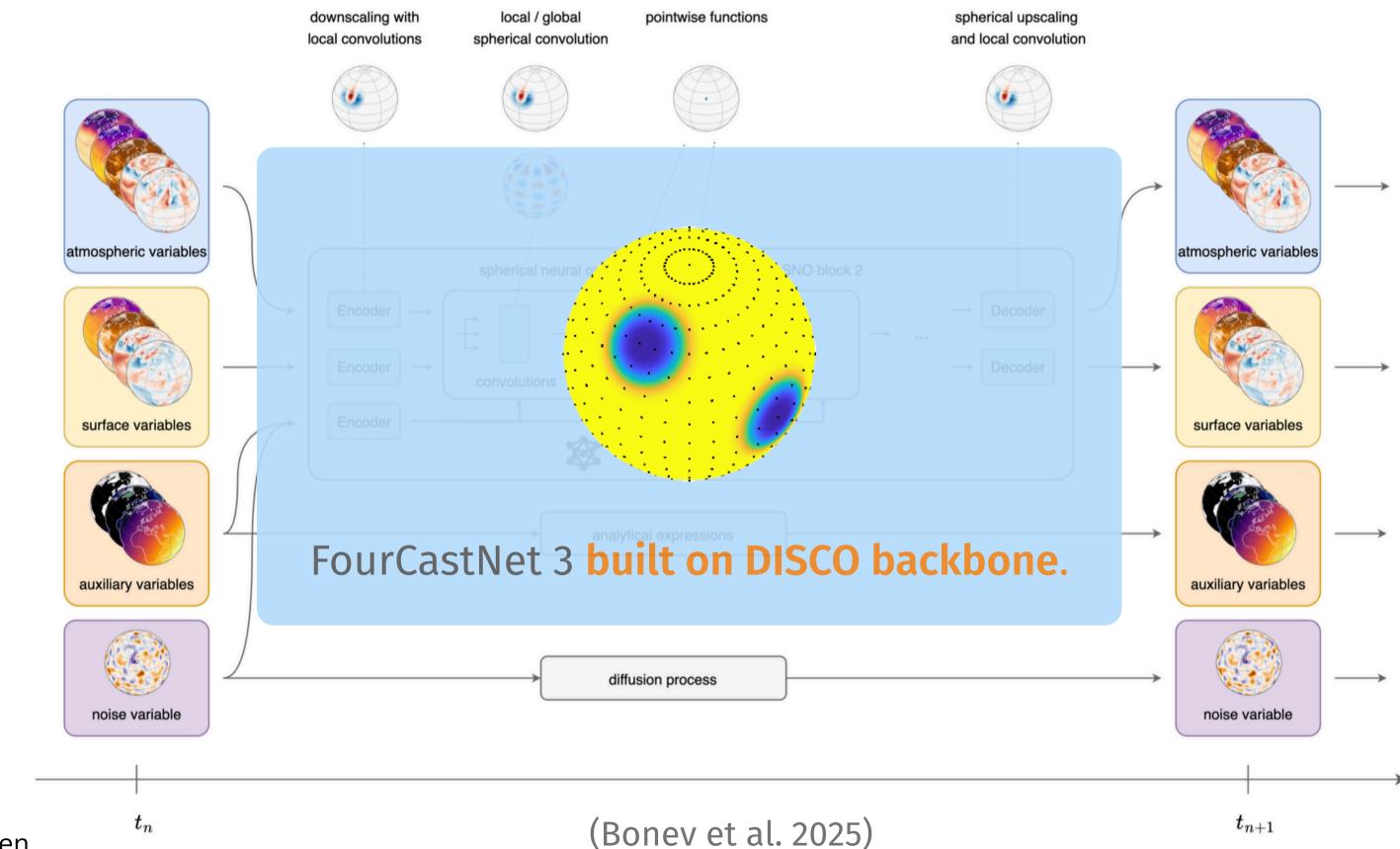
Jason McEwen



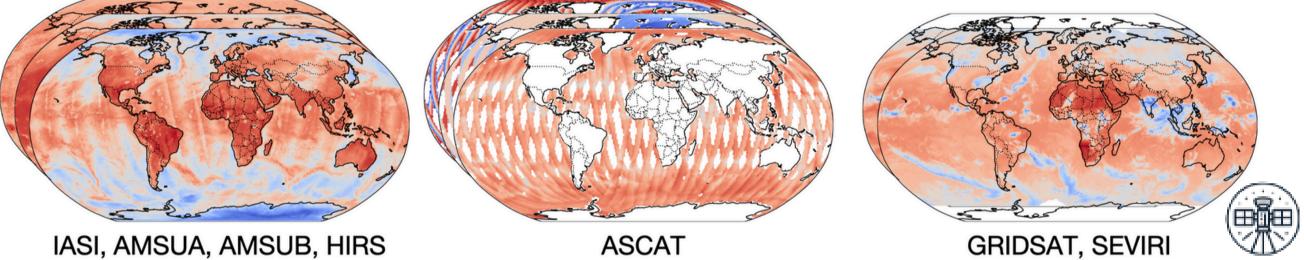
Global weather forecasting



FourCastNet 3 from NVIDIA

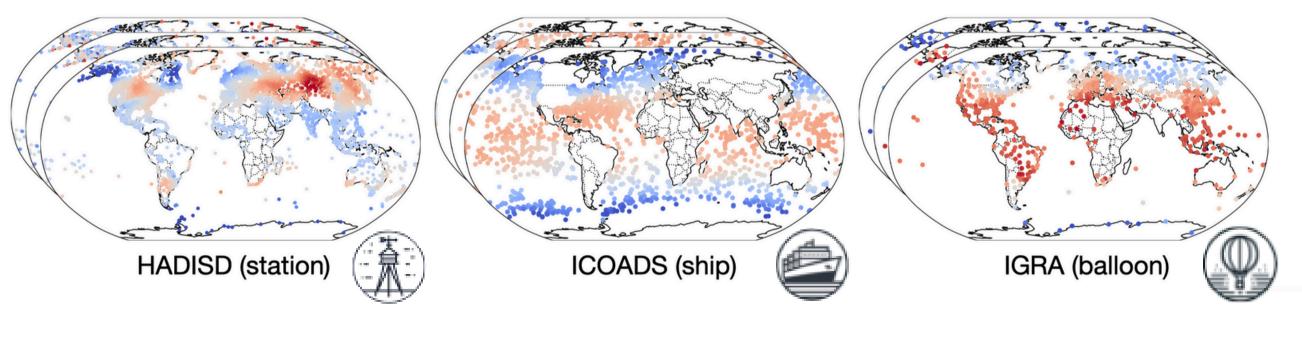


Need for end-to-end and multi-modal learning



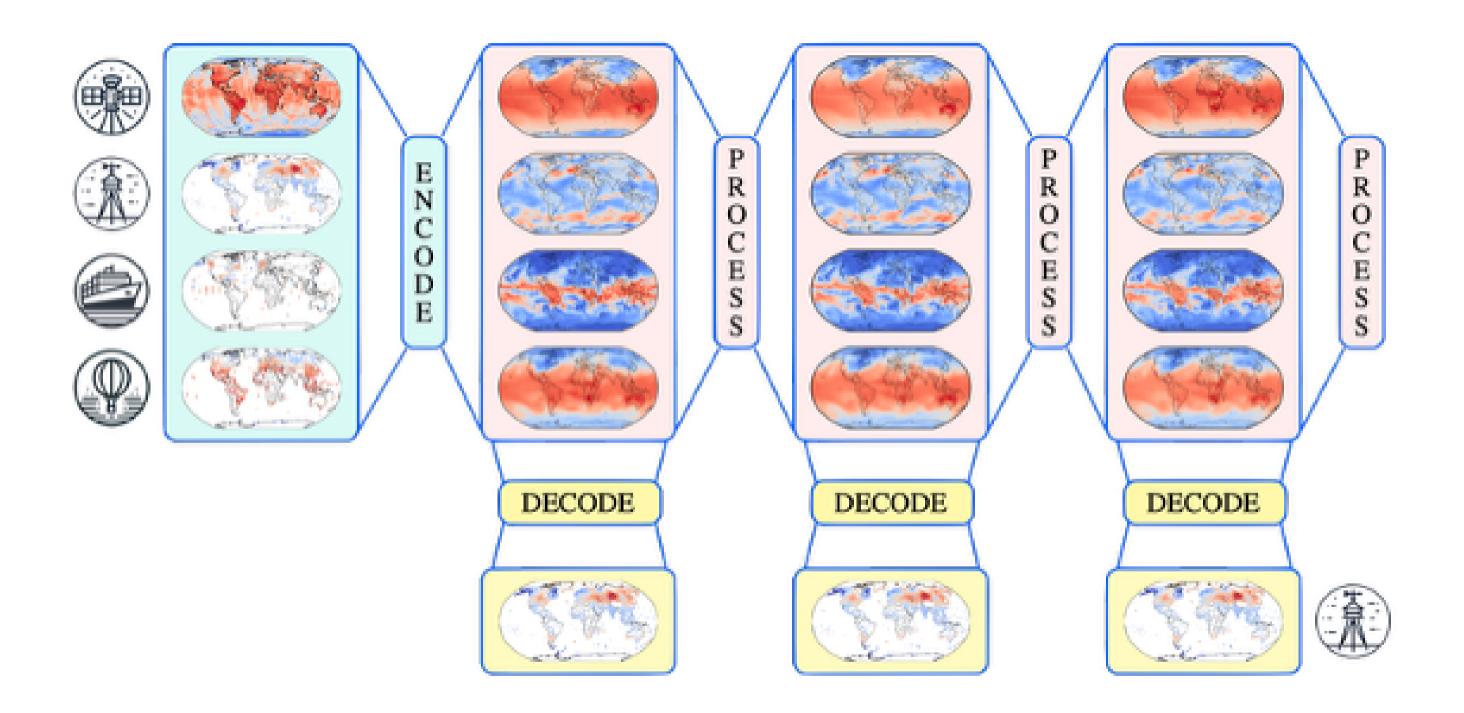
Remote sensing observations (on the grid)

In situ observations (off the grid)



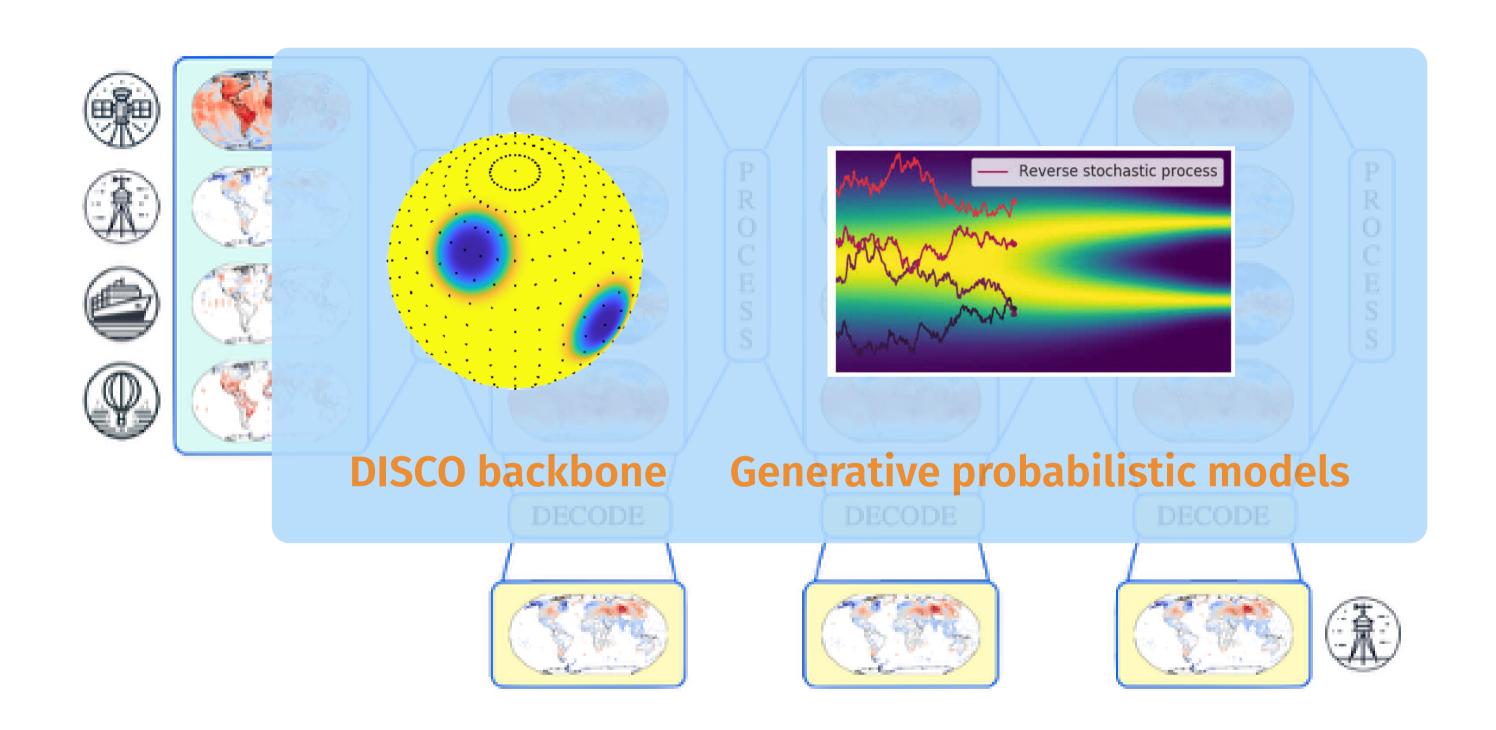
(Allen et al. 2025)

Aardvark: end-to-end, multi-modal



(Allen et al. 2025)

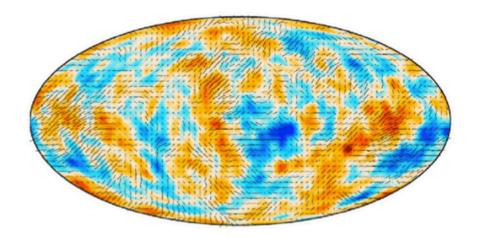
Future: end-to-end, multi-modal, geometric, probabilistic



(Allen et al. 2025)

Geometric deep learning for vector and spin fields

Wind → vector (spin-1) field



CMB polarization ~> spin-2 field

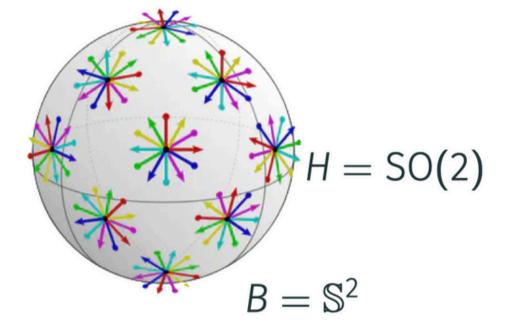
Equivariant learning for spherical fields of different spin

Fibre bundle representation:

- ▷ Base space $B = S^2 \simeq SO(3)/SO(2)$
- \triangleright Fibre H = SO(2)
- \triangleright Fibre bundle G = SO(3)

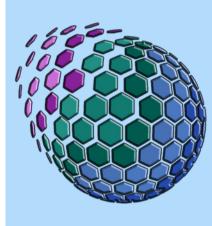
Spin equivariant approach:

- 1. Equivariant lifting:
- 2. Group convolution on SO(3).
- 3. Equivariant projection: $f \downarrow_{\mathbb{S}^2} (\omega) = f \uparrow^{SO(3)} (S(\omega)), \text{ for section } S : \mathbb{S}^2 \to SO(3).$



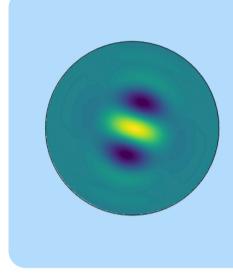
 $f \uparrow^{SO(3)}(\rho) = \varrho(h^{-1}(\rho)) f(P(\rho))$, for projection $P : SO(3) \to \mathbb{S}^2$, twist h : SO(3) \rightarrow SO(2) and representation ϱ : SO(2) $\rightarrow \mathbb{R}$.

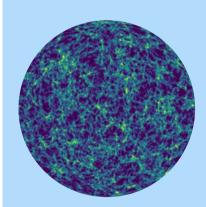
s2x suite of codes



s2fft: Spherical harmonic transforms

https://github.com/astro-informatics/s2fft





s2scat: Spherical wavelet
scattering transforms

https://github.com/astro-informatics/s2scat

Jason McEwen

s2wav: Spherical wavelet transforms

https://github.com/astro-informatics/s2wav

s2ai: Scalable and equivariant spherical AI

https://github.com/astro-informatics/s2ai

Emulation

AutoEmulate is a Python library for automatically creating accurate and efficient emulators of complex simulations.

Run a complete machine learning pipeline to compare and optimise a wide range of models, with functions for downstream tasks like prediction, sensitivity analysis and calibration.

Open source & free to use

https://www.autoemulate.com

Classical Radial Basis Functions Second Order Polynomials

The Alan Turing Institute

Low code

Data-processing, model comparison, cross-validation, hyperparameter search and more in few lines of code.

Domain agnostic

Can be applied to simulation models from any domain.

Easy Integration

All emulators are compatible with commonly used Python ML frameworks, making them easy to integrate into downstream applications.

State of the art emulators

Machine Learning

Random Forests Gradient Boosting Support Vector Machines

Deep Learning

Gaussian Processes Conditional Neural Processes

Questions?

Jason McEwen

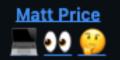
19

Extra slides

Jason McEwen

20

All contributors

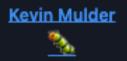


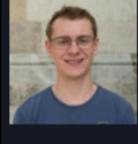
Matt Graham

sfmig

<u>Devaraj</u> Gopinathan

Francois Lanusse





Philipp Misof 🌯 🛄

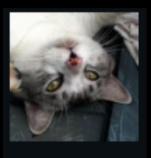
Elis Roberts 🌯 🛄

<u>Wassim</u> KABALAN 💻 <u>00 </u>

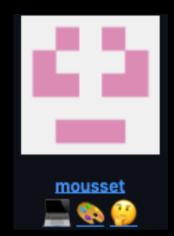
Mayeul

d'Avezac

Alicja Polanska



Ikko Eltociear Ashimine



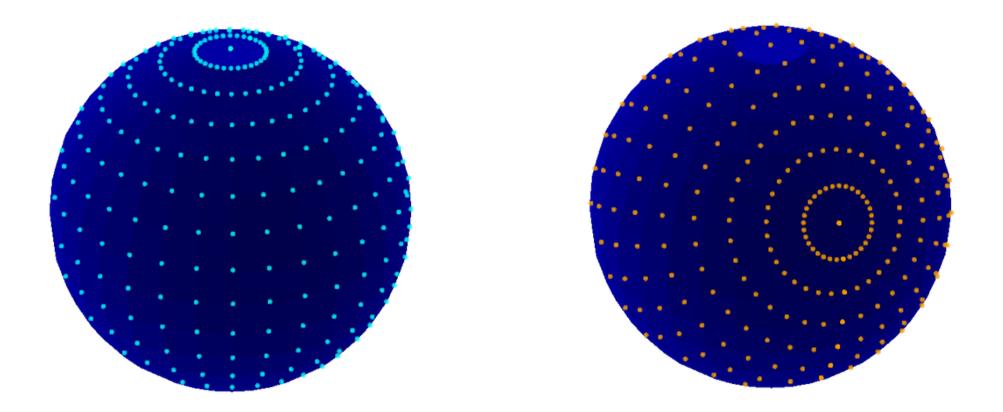
Jessica Whitney



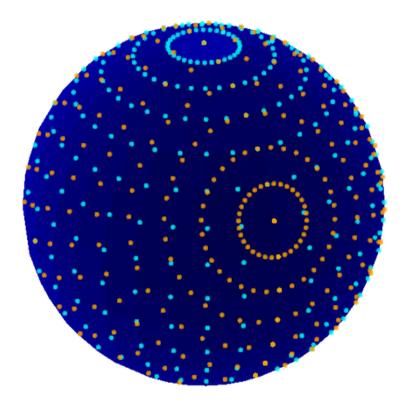
You?

Discretisation of the sphere and rotational equivariant

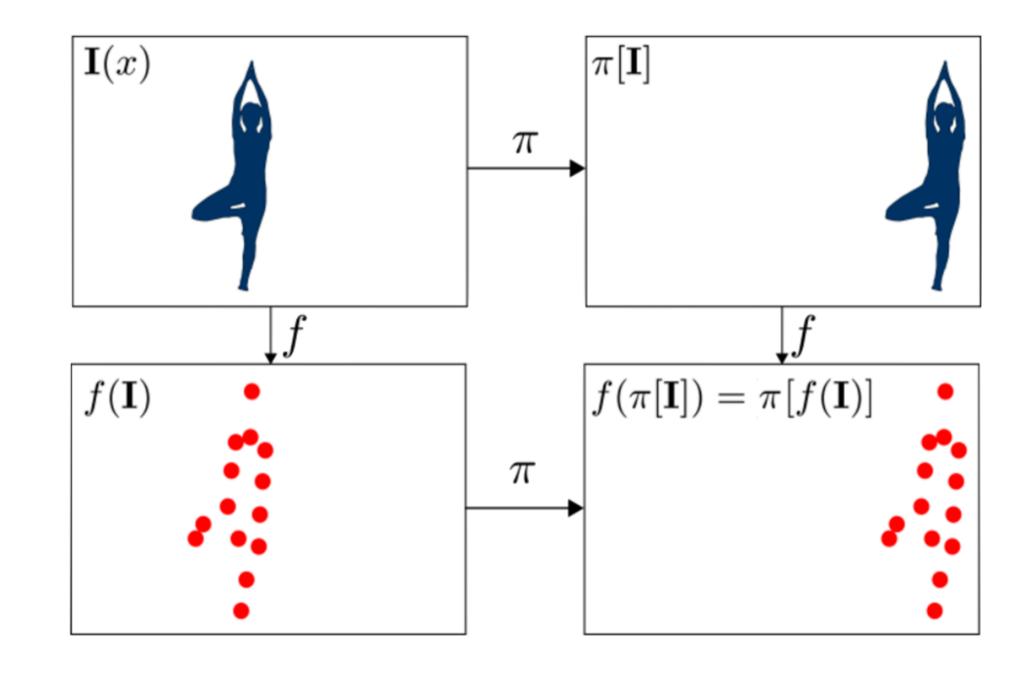
Well-know that regular discretisation of the sphere does not exist (e.g. Tegmark 1996). \Rightarrow Not possible to discretise sphere in a manner invariant to rotations.



Capturing strict equivariance with operations defined directly in discretised (pixel) space **not possible** due to structure of the sphere.

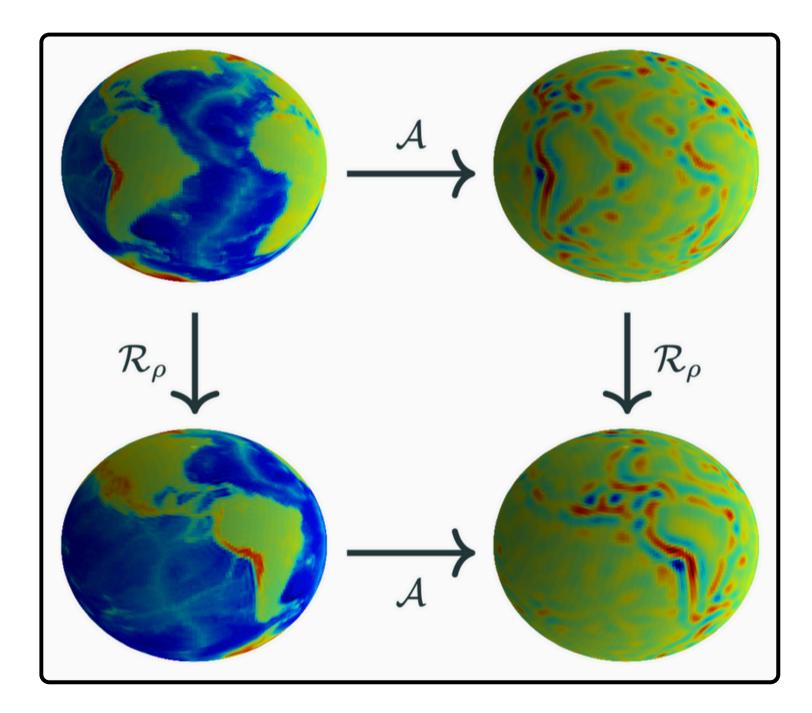


Translational equivariance



Rotational equivariance

$$(\mathsf{R} f) \star \psi = \mathsf{R} (f \star \psi)$$



Jason McEwen

25

s2fft: spherical harmonic and Wigner transforms

Spherical harmonic transform (Fourier transform on the sphere)

A field $f \in L^2(\mathbb{S}^2)$ can be decomposed into its harmonic representation by

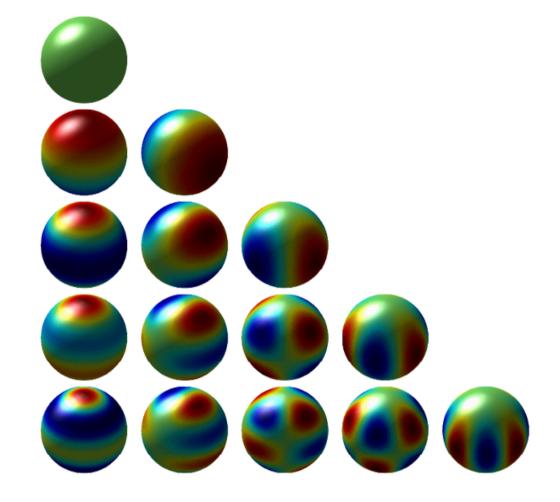
$$f(heta,\phi) = \sum_{\ell,m} f_{\ell m} Y_{\ell m}(heta,\phi),$$

where the spherical harmonic coefficients are given by the usual projection onto the basis functions:

$$f_{\ell m} = \int_{\mathbb{S}^2} f(heta, \phi) Y^*_{\ell m}(heta, \phi) \sin heta \mathrm{d} heta \mathrm{d} \phi.$$

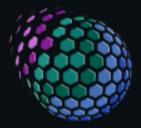
Driscoll & Healy (1995), ..., McEwen & Wiaux (2011), Price & McEwen (2024)

Jason McEwen

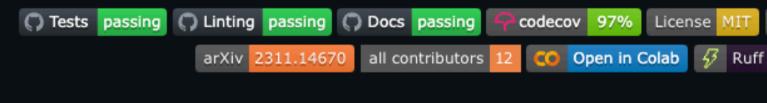


Spherical harmonics

s2fft: spherical harmonic and Wigner transforms

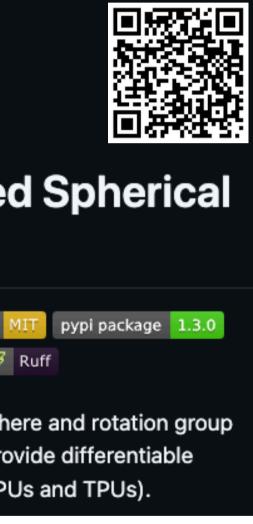


s2fft: Differentiable and Accelerated Spherical Harmonic Transforms



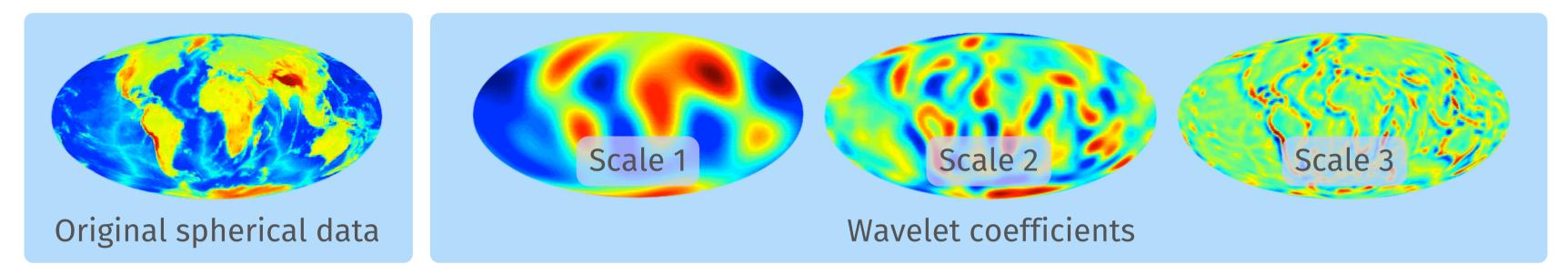
s2fft is a Python package for computing Fourier transforms on the sphere and rotation group (Price & McEwen 2024) using JAX or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g. GPUs and TPUs).

https://github.com/astro-informatics/s2fft



s2wav: wavelet transforms on the sphere

Wavelets capture signal content localised in both scale and space.



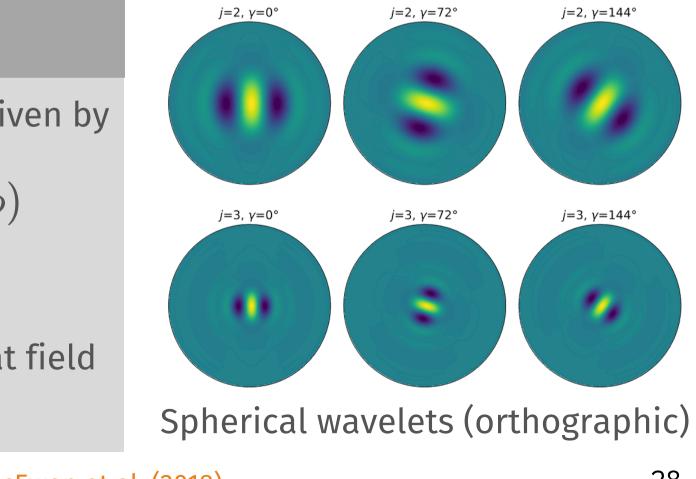
Spherical wavelet transform

Spherical wavelet transform, with wavelet ψ_j and scaling function φ , given by

$$W_{j}(\rho) = (f \star \psi_{j})(\rho) = \int_{\mathbb{S}^{2}} f(\theta, \phi) (R_{\rho}\psi_{j})^{*}(\theta, \phi) d\mu(\theta, \phi) d\mu(\theta, \phi)$$
Spherical convolution

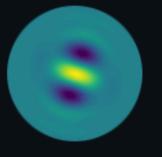
Wavelets carefully constructed to satisfy admissibility condition so that field can be reconstructed exactly from its wavelet coefficients.

McEwen et al. (2007), Wiaux, McEwen et al. (2008), McEwen et al. (2013), McEwen et al. (2015), McEwen et al. (2018)



28

s2wav: wavelet transforms on the sphere

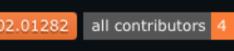


s2wav: Differentiable and Accelerated Wavelet Transforms on the Sphere

Tests	passing	Codecov	92%	License	MIT	pypi package	1.0.4	arXiv	240
		CO Open in Colab							

s2wav is a python package for computing wavelet transforms on the sphere and rotation group, both in JAX and PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on modern hardware accelerators (e.g. GPUs and TPUs), and can be mapped across multiple accelerators.

https://github.com/astro-informatics/s2wav



s2scat:wavelet scattering transforms on the sphere

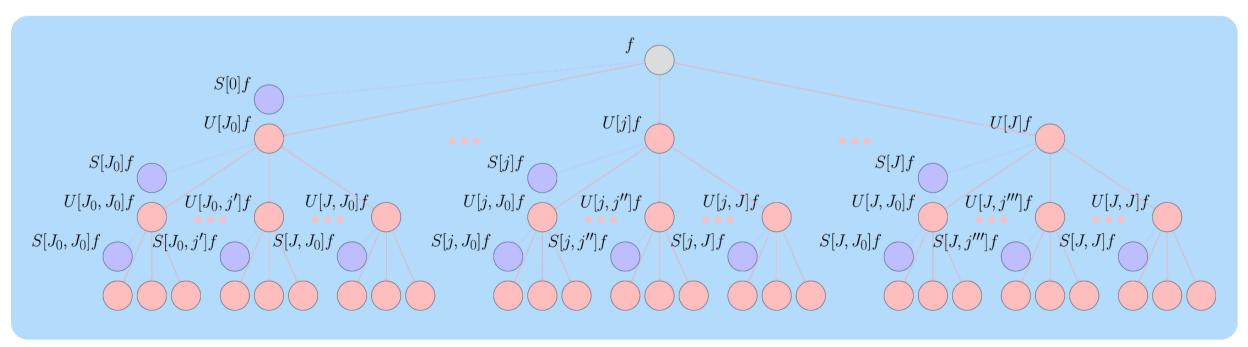
Spherical scattering network

Scattering coefficients for path *p* given by cascade of wavelet transform with modulus activation function:

 $S[p]f = |||f \star \psi_{j_1}| \star \psi_{j_2}| \ldots \star \psi_{j_d}| \star arphi.$

Spherical scatting networks is a collection of scattering transforms for number of paths.

Mallat (2011), McEwen et al. (2022), Mousset et al. McEwen (2024)



Spherical scattering network

	Properties:
	1.Rotational equivariance
orms	2.Isometric invariance
	3. Stability to diffeomorphisms
	G Well-behaved representation space.
or a	

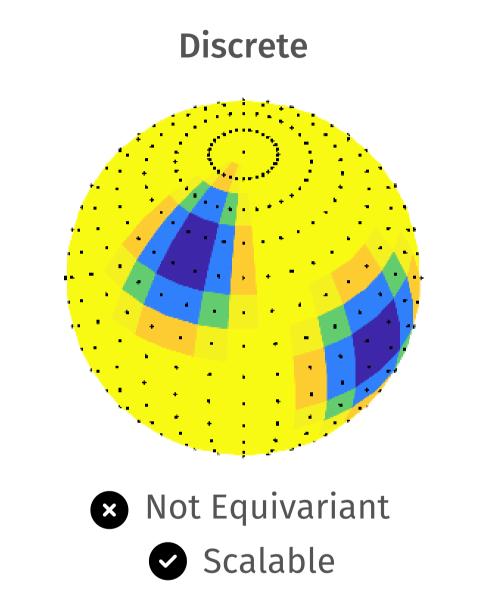
s2scat:wavelet scattering transforms on the sphere

s2scat is a Python package for computing scattering covariances on the sphere (Mousset et al. 2024) using JAX. It exploits autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (e.g. GPUs and TPUs), leveraging the differentiable and accelerated spherical harmonic and wavelet transforms implemented in s2fft and s2wav, respectively. Scattering covariances are useful both for field-level generative modelling of complex non-Gaussian textures and for statistical compression of high dimensional field-level data, a key step of e.g. simulation based inference.

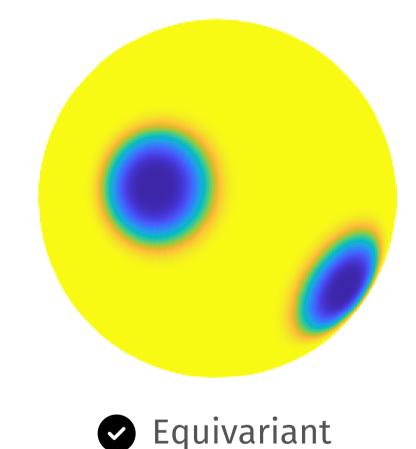
https://github.com/astro-informatics/s2scat

all contributors

Equivariant and scalable deep learning on the sphere



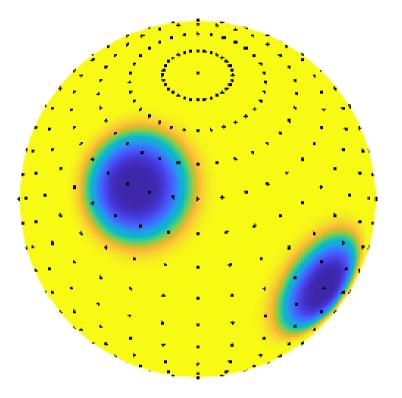
Continuous



(Jiang et al. 2019, Zhange et al. 2019, Perraudin et al. 2019, Cohen et al. 2019, ...) Not Scalable(Cohen et al. 2018, Esteves et al. 2018,

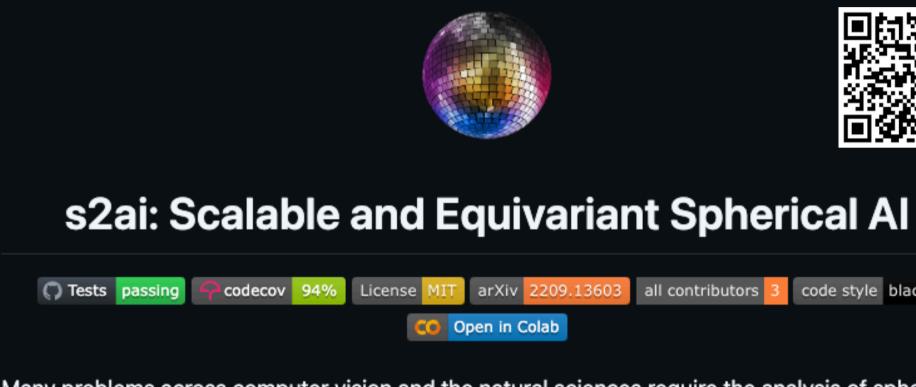
Kondor et al. 2018, Cobb et al. McEwen 2021, McEwen et al. 2022, ...)

Discrete-Continuous (DISCO)



(Ocampo, Price & McEwen 2021)

s2ai: spherical AI



Many problems across computer vision and the natural sciences require the analysis of spherical data, for which representations may be learned efficiently by encoding equivariance to rotational symmetries as an inductive bias. s2ai provides foundational convolutional layers which encode said equivariance, with the aim to support the development of state-of-the-art machine learning techniques on both the sphere and rotation group.

https://github.com/astro-informatics/s2ai

code style black

Generative modelling of cosmological fields

Scattering covariance statistics:

$$1. \quad S_1[\lambda] \ f = \mathbb{E}ig[\left| f \star \psi_\lambda
ight| ig]$$

$$2. \quad S_2[\lambda] \ f = \mathbb{E}ig[\ |f \star \psi_\lambda|^2 \ ig]$$

$$3. \quad S_3[\lambda_1,\lambda_2] \ f = \operatorname{Cov} \big[\ f \star \psi_{\lambda_2}, |f \star \psi_{\lambda_1}| \star \psi_{\lambda_2} \, \big]$$

$$4. \quad S_4[\lambda_1,\lambda_2,\lambda_3] \ f = \operatorname{Cov} \big[\ |f \star \psi_{\lambda_1}| \star \psi_{\lambda_3}, |f \star \psi_{\lambda_2}| \star \psi_{\lambda_3} \, \big]$$

Generative modelling by matching set of scattering covariance statistics with a (single) target simulation:

$$\min_{f} \left\| \mathcal{S}(f) - \mathcal{S}(f_{ ext{target}})
ight\|$$

Solve by gradient-based optimisation, leverging autodiff (requires s2fft, s2wav, s2scat)

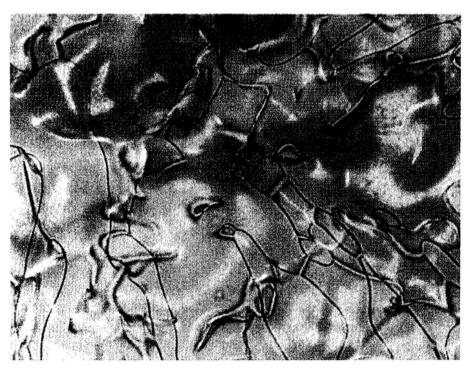
 $\mathbf{2}$

Symmetry breaking phase transitions in the early Universe \rightarrow topological defects.

Cosmic strings well-motivated phenomenon that arise when axial/cylindrical symmetry broken \rightarrow line-like discontinuities in the fabric of the Universe.

Observed transitions string-like topological defects in other media.

Detection of cosmic strings would open a **new window** into the physics of the Universe.



Optical microscope photograph of liquid crystal following temperature quench (Chuang et al. 1991)

Contact between theory and observation via high-resolution simulations (Ringeval et al. 2012).

Need to **simulate full physics**, evolving a network of string through cosmic time and then raytracing CMB photons through the string network.

A single simulation requires 800,000 CPU hours on a supercomputer.

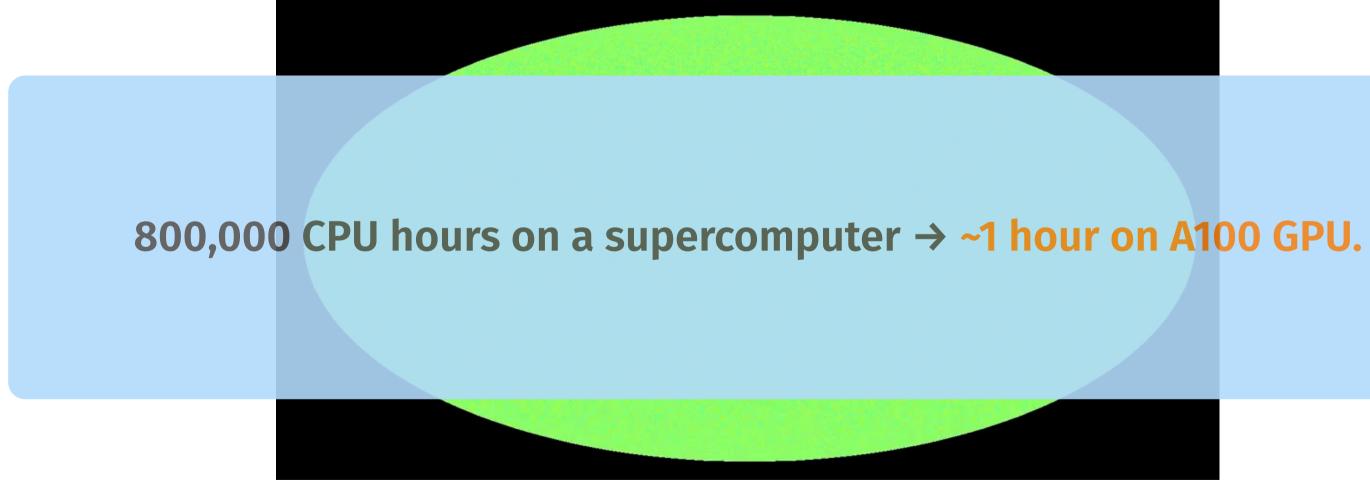
In total there are three full-sky string maps in existence.

Instead of simulating full physics, emulate with a scattering covariance generative model.

Requires only single target simulation.

Instead of simulating full physics, emulate with a scattering covariance generative model.

Requires only single target simulation.



Jason McEwen

39

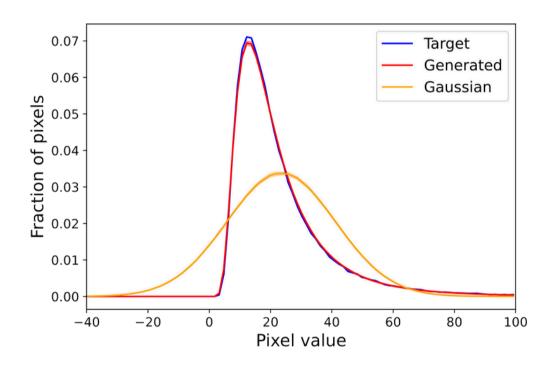
Generative modelling of large-scale structure (LSS)

Which field is simulated and which emulated?

Logarithm (for visualisation) of weak lensing field.

Generative modelling of large-scale structure (LSS)

Validation of higher-order statistics.

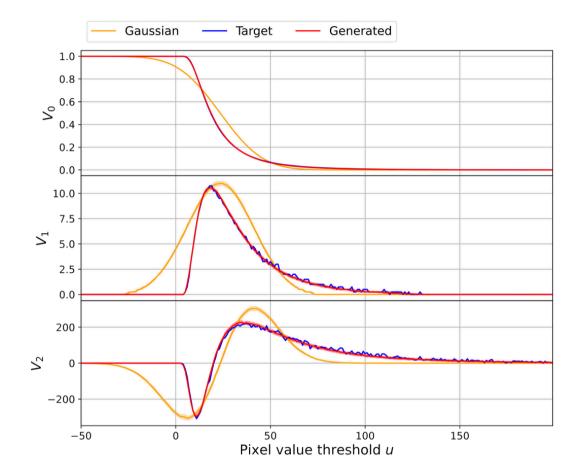


 Target 10^{0} Generated Ĉ 10^{-1} March Changes 10-2 50 100 150 200 250 Multipole *l*

Pixel distribution

Power spectrum

Jason McEwen



Minkowski functionals