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Cosmological and planetary data live on the sphere

Cosmic microwave Earth observation
background
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Data observed on the sphere are prevalent

Planetary Science Cosmology Bioinformatics Others

Cosmii:hM'icwa;é D.ffus-jon Tenso
Background Imaglng
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Gravitational Waves

Gravitational Lensing p . : 3 \ -
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Projection symmetries and geometric properties

Projection
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Geometric deep learing

Grids Groups Graphs Geodesics & Gauges

Euclidean samples, Homogenous spaces Nodes and Manifolds,
e.g. Image with global symmetries, connections, e.g. 3D mesh
e.g. sphere e.qg. social networR

(Bronstein et al. 2022)

Jason McEwen 5



Scalable and equivariant deep learning on the sphere

Discrete Continuous Discrete-Continuous (DISCO)

"Em
-----------

4

© Not Equivariant ® Equivariant ® Etquivariant
® Scalable © Not Scalable ® Scalable
(Jiang et al. 2019, Zhange et al. 2019, (Cohen et al. 2018, Esteves et al. 2018, ( )
Perraudin et al. 2019, Cohen et al. 2019, Kondor et al. 2018,

..) , ) )
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https://arxiv.org/abs/arXiv:2010.11661
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https://arxiv.org/abs/arXiv:2102.02828
https://arxiv.org/abs/arXiv:2209.13603

Spherical convolution

Convolutions are the only linear equivariant layers (Kondor & Trivedi 2018).

Spherical convolution:

(FxP)(R) = | [f(6,9)(R¥)"(6,¢)du(0, ¢)

D S O
Convolution Projection —J Rotation of kernel
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Scalable and equivariant spherical CNNs by DISCO convolutions

Scalable and Equivariant Spherical CNNs by DIScrete-COntinuous (DISCO) Convolutions
( )

Follows by a of the spherical convolution:
e some components left continuous to facilitate accurate rotational equivariance;
e while other components are discretized to yield scalable computation.

DISCO spherical convolution
Spherical convolution can be carefully approximated by DISCO representation:

(Fx)R) = | £(0:9) (RY)"(6, ) du(6,¢) ~ Zq 00 $0) 105, Si1V(R(6:,6))

Exact quadrature J Dlscrete L Continuous

for spherical signal and filter kernel £, :S? — R, spherical coordinates (0, ¢) € S,
and 3D rotations R € SO(3). Leverage sampling theory of
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https://arxiv.org/abs/arXiv:2209.13603

Scalable and equivariant spherical CNNs by DISCO convolutions

Dramatic computational savings in FLOPs and memory.

Reduction
e i
o O o o
= [¥1] L e |

For 4k spherical image,
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DISCO achieves SOTA performance

Depth estimation for Pano3D
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Example predictions for depth estimation of Pano3D data (depth plotted in meters).
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Semantic segmentation for 2D3Ds dataset

RGH i @ Unknown
Beam

Board
Bookcase

® Ceiling

Chair

& Clutter

Column

® Door
Floor

M e =
Truth HEE] 0 ) IG ws
- > \'-'!} 0 ( € ”
@ Sofa
. S® N L S -

-
Example predictions for semantic segmentation of 20305 data.
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Semantic segmentation for 2D3Ds dataset

Semantic segmentation for Omni-SYNTHIA dataset
RGEB 0

Truth

@ Void
Sky
Building
Road

® Sidewalk
Fence

@ \egetation
Pole

® Car
Traffic

@ Pedestrian
Bicycle
Lanemarking

DISCO

Example predictions for semantic segmentation of Omni-SYNTHIA data.
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Semantic segmentation for Omni-SYNTHIA dataset

Depth estimation for Pano3D

Maodel Parameters Depth Error Metrics Depth Accuracy Metrics
WRMSE ~ wRMSLE  waAbsRel  wSqRel ) &5 833 [ e
Planar UNet 27TM 0.4520 0.1300 0.1147 0.0811 36.68%  6059%  BB31% 06.96%
DISCO-Directional 658k 0.5063 0.1695 0.1109 0.0852 38.32% 62.12%  BB.GS% 97.29%
(Ours)
Jlason McEwen L8

Model mioU mALC
Planar UNet 359 508
UGSCNMN 383 547
GaugeMet 39.4 559
HexRUNet 433 58.6
SWSCNNs 34 58.7
Cubehet 45.0 62.5
MobiusConv 433 609
DHSCO-Axisymmetric (Ours) 39.7 54,1
DSCO-Directional-Separable (Ours) 439 609
DISCO-Directional (Ours) 452 615
DISCO-Directional-Aug (Ours) 45.7 62.7
Jason McEwen 50
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Model milal ML
Planar UNet 4.6 52.6
UGSCNN 376 48.9
HexUNet 48.3 57.1
DISCO-Directional-Separable (Ours) 48.3 9.3

DISCO-Directional-Separable-Aug (Ours) 492 63.7
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FourCastNet 3 from NVIDIA

downscaling with local / global pointwise functions spherical upscaling n" I D I A®

local convolutions spherical convolution and local canvolution
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Need for end-to-end and multi-modal learning

Remote sensing observations (on the grid)

el

HADISD (station) |-

(Allen et al. 2025)
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Future: end-to-end, multi-modal, geometric, probabilistic

(Allen et al. 2025)

Jason McEwen 15



Geometric deep learning for vector and spin fields

Equivariant learning for spherical fields of different spin

Fibre bundle representation:
> Base space B =S’ ~ SO(3)/S0(2) 6\6
> Fibre H = S0(2)
> Fibre bundle G = SO(3)

%H S0(2)

:82

Spin equivariant approach: B

1. Equivariant lifting:

f13°9) (p) = o(h™(p)) f(P(p)), for projection P: SO(3) — §,
twist h : SO(3) — SO(2) and representation g : SO(2) — R.

2. Group convolution on SO(3).

CMB polarization ~ spin-2 field o o
3. Equlvariant projection:

fle (w) =10 (S(w)), for section S : §> — SO(3).
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S2X sulte of codes

Jason McEwen

transforms

https://github.com/astro-informatics/s2fft

s2scat: Spherical wavelet ﬁ

scattering transforms £

https://github.com/astro-informatics/s2scat

s2wav: Spherical wavelet
transforms

https://github.com/astro-informatics/s2wav

s2ai: Scalable and
equivariant spherical AI

https://github.com/astro-informatics/s2ai
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https://github.com/astro-informatics/s2fft
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https://github.com/astro-informatics/s2ai

Emulation

Auto Emulate

AutoEmulate is a Python library for automatically
creating accurate and efficient emulators of
complex simulations.

Run a complete machine learning pipeline to
compare and optimise a wide range of models, with
functions for downstream tasks like prediction,
sensitivity analysis and calibration.

https://www.autoemulate.com

Jason McEwen

The
Alan Turing
Institute

Open source & free to use

oz %4 52,

Low code Domain agnostic Easy Integration
Data-processing, model Can be applied to simulation All emulators are compatible with
comparison, cross-validation, models from any domain. commeonly used Python ML
hyperparameter search and more

frameworks, making them easy
to integrate into downstream
applications.

in few lines of code.

State of the art emulators

p—

= %

=

Classical Machine Learning Deep Learning
Radial Basis Functions Random Forests Gaussian Processes
Second Order Polynomials Gradient Boosting Conditional Neural Processes

Support Vector Machines

18


https://www.autoemulate.com/
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Extra slides
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All contributors
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Discretisation of the sphere and rotational equivariant

Well-know that regular discretisation of the sphere does not exist (e.g. Tegmark 1996).

— Not possible to discretise sphere in a manner invariant to rotations.

Capturing strict equivariance with operations defined directly in
discretised (pixel) space not possible due to structure of the sphere.

Jason McEwen 22



Translational equivariance
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Rotational equivariance

(Rf)x¥ =R(f*)
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s2fft:spherical harmonic and Wigner transforms

Spherical harmonic transform (Fourier transform on the sphere)

A field f € L?(S?) can be decomposed into its harmonic representation by

— Z fﬁmyﬁm(ea ¢)7
Lm

where the spherical harmonic coefficients are given by the usual projection
onto the basis functions:

o
fom = | f(0,0)Yen (0, ¢) sin0dode. ‘ ‘

S* Spherical harmonics

Driscoll & Healy (1995), ...,
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https://arxiv.org/abs/2311.14670

s2fft:spherical harmonic and Wigner transforms

s2fft: Differentiable and Accelerated Spherical
Harmonic Transforms

() Tests p-ﬁsing () Linting m () Docs W codecov License m pypi package W

N all cnntr'lbutnr's. CC OpeninColab 47 Ruff

s2fft is a Python package for computing Fourier transforms on the sphere and rotation group
using JAX or PyTorch. It leverages autodiff to provide differentiable
transforms, which are also deployable on hardware accelerators (e.g. GPUs and TPUs).

https://github.com/astro-informatics/s2fft
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https://github.com/astro-informatics/s2fft

s2waV : wavelet transforms on the sphere

Wavelets capture signal content

D > ek, AT I e
T8 N | ‘, 2 B Nt
2 Scale 1 Scale 2 _’/z = Scale3 ¢

*————_.- —_—— ==
-~

Original spherical data Wavelet coefficients

J=2,y=0° j=2,y=72° j=2, y=144°

Spherical wavelet transform

Spherical wavelet transform, with wavelet 1; and scaling function ¢, given by

Wi(e) = (£ 0)(0) = | £(6.6) (Bysty)*(6,6) du(6, )

L Spherical convolution L Rotated wavelet

Wavelets carefully constructed to satisfy admissibility condition so that field

can be reconstructed exactly from its wavelet coefficients. Spherical wavelets (orthographic)

28


https://arxiv.org/abs/astro-ph/0506308
https://arxiv.org/abs/arXiv:0712.3519
https://arxiv.org/abs/arXiv:1308.5706
https://arxiv.org/abs/arXiv:1509.06749
https://arxiv.org/abs/arXiv:1509.06767

s2waV : wavelet transforms on the sphere

s2wav: Differentiable and Accelerated Wavelet
Transforms on the Sphere

(") Tests pasng codecov - Licensem pypi package 104 arxiv 3 01282  all t:ﬂntr'ibutﬂrs.

ZC Open in Colab

s2wav is a python package for computing wavelet transforms on the sphere and rotation group,
both in JAX and PyTorch. It leverages autodiff to provide differentiable transforms, which are also
deployable on modern hardware accelerators (e.g. GPUs and TPUs), and can be mapped across
multiple accelerators.

https://github.com/astro-informatics/s2wav
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https://github.com/astro-informatics/s2wav

s2scat: wavelet scattering transforms on the sphere

Spherical scattering network Properties:

1.Rotational equivariance
Scattering coefficients for path p given by cascade of wavelet transforms

2.1sometric invariance
with modulus activation function: 3.Stability to diffeomorphisms

Splf = [I|f * Y| * Y| ... x s, x .

Spherical scatting networks is a collection of scattering transforms for a
number of paths.

Well-behaved representation space.

Mallat (2011), ,
i
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Jason McEwen Spherical scattering network
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https://arxiv.org/abs/arXiv:2102.02828
https://arxiv.org/abs/arXiv:2407.07007

s2scat:

Jason McEwen

wavelet scattering transforms on the sphere

s2scat: Differentiable Scattering Covariances on
the Sphere

E'J Tests paﬂsng codecov | 91% | License m pypi downloads m all contributors .

ZC Open in Colab

s2scat is a Python package for computing scattering covariances on the sphere (

) using JAX. It exploits autodiff to provide differentiable transforms, which are also
deployable on hardware accelerators (e.g. GPUs and TPUs), leveraging the differentiable and
accelerated spherical harmonic and wavelet transforms implemented in and ,
respectively. Scattering covariances are useful both for field-level generative modelling of
complex non-Gaussian textures and for statistical compression of high dimensional field-level
data, a key step of e.g. simulation based inference.

https://github.com/astro-informatics/s2scat
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Equivariant and scalable deep learning on the sphere

Discrete Continuous Discrete-Continuous (DISCO)

"Em
...........

4

© Not Equivariant ® Equivariant ® Etquivariant
® Scalable © Not Scalable ® Scalable
(Jiang et al. 2019, Zhange et al. 2019, (Cohen et al. 2018, Esteves et al. 2018, ( )
Perraudin et al. 2019, Cohen et al. 2019, Kondor et al. 2018,

..) , ) )
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https://arxiv.org/abs/arXiv:2010.11661
https://arxiv.org/abs/arXiv:2010.11661
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https://arxiv.org/abs/arXiv:2209.13603

s2al:spherical Al

s2ai: Scalable and Equivariant Spherical Al

() Tests pasng codecov | 94% Licensem arXiv [220 ' allcﬂntrihutﬂrs. code style black

- Open in Colab

Many problems across computer vision and the natural sciences require the analysis of spherical
data, for which representations may be learned efficiently by encoding equivariance to rotational
symmetries as an inductive bias. s2ai provides foundational convolutional layers which encode
said equivariance, with the aim to support the development of state-of-the-art machine learning
technigues on both the sphere and rotation group.

https://github.com/astro-informatics/s2ai
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https://github.com/astro-informatics/s2ai

Generative modelling of cosmological fields

34



Spherical scattering covariances for generative modelling

Scattering covariance statistics:

= L b -
@
3

simulation:

Jason McEwen

S1lA
Sol\
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4

A

ARFETUNE

Al EE
A1, A] f = Cov| fxaby,, [f*xr| x|
Sa[A1, A2, As] = Cov| |f x| x x| F* n,] * 9, |

by matching set of scattering covariance statistics with a (single) target

min [ S(f) — S(fiarget) |°

Solve by gradient-based optimisation, leverging autodiff
(requires s2fft, s2wav, s2scat)
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Generative modelling of cosmic strings

Symmetry breaking phase transitions in the early Universe - topological defects.

Cosmic strings well-motivated phenomenon that arise when axial/cylindrical symmetry
broken = line-like discontinuities in the fabric of the Universe.

Observed transitions string-like topological defects in
other media.

Detection of cosmic strings would open a new window

into the physics of the Universe. j['w% W

Optical microscope photograph of liquid
crystal following temperature quench
(Chuang et al. 1991)
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Generative modelling of cosmic strings

Contact between theory and observation via high-resolution simulations (Ringeval et al. 2012).

Need to simulate full physics, evolving a network of string through cosmic time and then ray-
tracing CMB photons through the string network.

A single simulation requires

In total there are t!

Jason McEwen 37



Generative modelling of cosmic strings

Instead of simulating full physics,

Requires only

Jason McEwen 38



Generative modelling of cosmic strings

Instead of simulating full physics,

Requires only

B ik

800,000 CPU hours on a supercomputer -

.
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Generative modelling of large-scale structure (LSS)

Which field is simulated and which emulated?

Simulations (n-body) can require days of compute on cluster, whereas
emulation requires <1 hour on a single A100 GPU.

B <=

Logarithm (for visualisation) of weak lensing field.
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Generative modelling of large-scale structure (LSS)

Validation of higher-order statistics.

Gaussian —— Target —— Generated
1.0
0.8 1
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- 0.4
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O 200
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