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Physics Enhanced Learning



Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.

> Common to augment image data-set
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Image augmentation
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~» ML model learns physics through training.

> Redshift augmentation of supernovae
observations (Boone 2019, Alves et al. 2022, @ -| E N
e
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Redshift augmentation
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data ~ ML model learns physics through training.

& > Data efficiency suffers: data “used” to learn physics, rather than problem.

Jason McEwen 6


http://www.jasonmcewen.org

Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~» Physics embedded in architecture of ML model.
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.

> Key factor CNNs so successful is due to 130

encoding translational equivariance. E E

fn T, (D) = f(T,(D)

Jason McEwen Translational equivariance 7
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~» Physics embedded in architecture of ML model.

> Geometric deep learning on the sphere
(Cobb et al. 2021; McEwen et al. 2022;
Ocampo, Price & McEwen 2023)

CMB observed on the
celestial sphere
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.

> Equivariant machine learning,
structured like classical physics
(Villar et al. 2021)
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~» Physics embedded in architecture of ML model.

2 > Highly computationally demanding.
> Always required?
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Physical properties: geometries, symmetries, conservation laws

@ Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws) ~ Physics embedded in architecture of ML model.

2 > Highly computationally demanding.
> Always required?

> Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
Q . .
7V Inductive biases not enforced.
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
@ 2. Embed full (differentiable) physical models inside ML model.
~+ Physics learned in training and embedded in model.
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
@ 2. Embed full (differentiable) physical models inside ML model.
~+ Physics learned in training and embedded in model.

> Physics informed neural networks (PINNs)
encode differentiable equations (e.g.
boundary conditions) in loss.

Training a physics-informed
neural network
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
@ 1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

~+ Physics learned in training and embedded in model.

> Differentiable physical models
» Radio interferometric telescope
(Mars et al. 2023, in prep.)
» Optical PSF
(Liaudat et al. 2023)
» JAX-Cosmo
(Campagne et al. 2023)

SKA (artist impression)
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
@ 2. Embed full (differentiable) physical models inside ML model.
~+ Physics learned in training and embedded in model.

> Differentiable mathematical methods

» Fourier transforms

» Spherical harmonic transforms
(s2fft; Price & McEwen, in prep.)

» Spherical wavelet transforms
(s2wav; Price et al. in prep.)

» Spherical scattering transforms
(Mousset, Price, Allys, McEwen, in prep.)

@
@

Spherical harmonics
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
@ 2. Embed full (differentiable) physical models inside ML model.
~+ Physics learned in training and embedded in model.

2 > PINNs only capture limited dynamics via loss.
> Full physical models requires differentiable programming frameworks.
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
@ 1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

~+ Physics learned in training and embedded in model.

2 > PINNs only capture limited dynamics via loss.
> Full physical models requires differentiable programming frameworks.

> Capture full physics with differentiable models!
'\G > Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).

> Write new differentiable codes (e.g. s2f£t; Price & McEwen, in prep.).

Jason McEwen 8


https://github.com/alessiospuriomancini/cosmopower
https://arxiv.org/abs/2106.03846
https://github.com/astro-informatics/s2fft
http://www.jasonmcewen.org

Probabilistic Learning




Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)

Physical Machine Learning

‘ @ Physics Enhanced Learning ‘ ‘ m Probabilistic Learning ‘ ‘ Q Intelligible Al ‘

Bayesian Neural Networks Explainability
Physical properties Generative Models Interpretability

Physical models Bayesian Inference Truthfulness

Jason McEwen


https://probml.github.io/pml-book/book2.html
http://www.jasonmcewen.org

Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

Data ; . Output
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

> MC Dropout (Gal & Ghahramani 2016): drop
nodes probabilistically to sample an
ensemble of networks.
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

> Bayes by Backprop (Blundel et al. 2015): model

distribution of weights (by variational
inference).
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by Mackay 1992).

> Probabilistic ML frameworks

(e.g. TensorFlow Probability). . \
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

> Encode epistemic uncertainty of model.
& > But what does the output distribution represent?
> Requires careful consideration of training data.
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Bayesian neural networks for uncertainty quantification

@ Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

> Encode epistemic uncertainty of model.
& > But what does the output distribution represent?
> Requires careful consideration of training data.

> Statistical validation (hold that thought... see upcoming Truthfulness section).
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

> Emulation: sample from learned prior

(Perraudin et al. 2020, Allys et al. 2020, Price et al. ’ ey O
2023, Price et al. in prep.) ;

Emulated cosmic string maps
(stringgen, Price et al. 2023, Price et al. in prep.)
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

> Integrate learned priors into analysis
(Remy et al. 2022, McEwen et al. 2023)

Learn convergence field prior
(Remy et al. 2022)
Jason McEwen i
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

2 > Availability and representativeness of training data.
> Truthfulness, e.g. diversity of ML model often lacking.
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Generative models

@ Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

Availability and representativeness of training data.

B

Truthfulness, e.g. diversity of ML model often lacking.

v

Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).

4
v

Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).

v

Truthfulness (hold that thought... see upcoming Truthfulness section).

Jason McEwen i


https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
http://www.cosmogrid.ai/
https://arxiv.org/abs/2307.04798
http://www.jasonmcewen.org

Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Enhanced MCMC for parameter estimation

(Grabrie et al. 2022, Karamanis et al. 2022). ﬂ%w\

Learned proposal distributions

Jason McEwen 12


https://arxiv.org/abs/2105.12603
https://arxiv.org/abs/2207.05652
https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
http://www.cosmogrid.ai/
http://www.jasonmcewen.org

Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al.
2023).

X1

Xo

Learned harmonic mean estimator

(harmoni c)
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Simulation-based inference
(Alsing et al. 2018, Cranmer et al. 2021).

> Model selection for simulation-based
inference (harmonic; Spurio Mancini et al. 2022)

sbi
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

> Variational inference Truth Truth 32-Avg.  Std. Dev.
(Whitney et al. in prep.)

Mass mapping with uncertainties
by variational inference
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy

@ and computational efficiency, making some approaches accessible that were
previously intractable.

> Availability and representativeness of training data.

& > Cost of training.

> Truthfulness?

Jason McEwen


https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
http://www.cosmogrid.ai/
http://www.jasonmcewen.org

Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
@ and computational efficiency, making some approaches accessible that were
previously intractable.

> Availability and representativeness of training data.

& > Cost of training.

> Truthfulness?

v

Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).

v

Amortized inference (training not repeated for new observations).

Y
\
v

Integrate in Bayesian framework to provide statistical guarantees.

> Statistical validation (hold that thought... see upcoming Truthfulness section).
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Intelligible Al




Intelligible Al

Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

> Feature importances R
B Without redshift
(Lochner et al. 2016) : Ewith redshit

T 23233 2822883z 2es8zg3 "
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Feature

Supernova feature importances
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

male

alaxy saliency mapping

> Saliency maps
(Bhambra et al. 2022)

Spiral Arms
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Explainability

@ Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
& not able to comprehend underlying process.
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Designed models such as scattering and "o ‘0
wavelet phase harmonic networks g "o we /o) e - |
rm/,orm'corrrro r,mo r,,”eo r,/ro rr/,o rwr,’”yo rr/ro
(Allys et al. 2020, Cheng et al. 2020, McEwen st gy gy gy T v gy gy T g, gy gy Ty
et al. 2022) 000 000 OO0 OO0 OOO OO0 OO0 KOO OOO

Scattering network (McEwen et al. 2022)
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Designed models such as scattering and
wavelet phase harmonic networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022)

200 300 400 500 100 200 300
Mpc/h Mpc/h

LSS features captured by wavelets
(Allys et al. 2020)
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Designed models such as scattering and
wavelet phase harmonic networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022)

©

First evidence that CMB cold spot due to
supervoid (McEwen et al. 2007)
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Interpretable constraints on ML models,
e.g. convexity
(Liaudat, McEwen et al. in prep.)

000
—_— o I(o

o
O

Uncertainty
Quantification

Convexity

Impose convexity on learned model
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

> Deep priors learned from training data
(hybrid model-based and data-driven)
(Remy et al. 2022, McEwen et al. 2023)

Compute Bayesian evidence for
model selection
Jason McEwen (proxnest, McEwen et al. 2023) 15
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

2 > Designed models limit flexibility.
> Availability and representativeness of training data.
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Interpretability

@ Interpretable ML models are white boxes that can be understood by humans.

2 > Designed models limit flexibility.
> Availability and representativeness of training data.

> Benefits of designed models often outweigh (minimal) reduced flexibility.
’\G > Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
> Transfer learning, self-supervised learning.
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Truthfulness

@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.
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@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Validity of statistical distributions 08 mnannnnnnn
(Hermans et al. 2022, Lemos et al. 2023) Ammm\'
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@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Validity of statistical distributions
(Hermans et al. 2022, Lemos et al. 2023)
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Truthfulness

@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

> Diversity (avoiding mode-collapse)
(Price et al. 2023, Whitney et al. in prep.)

Recover probability
distribution over full
underlying manifold
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Truthfulness

@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

2 > Uncertainties not aways meaningful.
> Diversity of ML model often lacking.
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Truthfulness

@ Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

2 > Uncertainties not aways meaningful.
> Diversity of ML model often lacking.

> Integrate in statistical framework to inherit theoretical guarantees.

e > Extensive validation tests (e.g. Hermans et al. 2022, Lemos et al. 2023).

N & Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).

AVIN

> Well-posed frameworks (e.g. physics enhanced, probabilistic).
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Summary




Physical Machine Learning

‘ @ Physics Enhanced Learning ‘ ‘ Probabilistic Learning ‘ ‘ Q Intelligible Al ‘

Augmentation } Bayesian Neural Networks } Explainability }
Physical properties } Generative Models } Interpretability }
Physical models } Bayesian Inference } Truthfulness }

ﬁﬁ With great power comes great responsibility!
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