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Physics Enhanced Learning



Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Common to augment image data-set
with rotations, flips, shifts, scales,
contrast, …

Image augmentation

Jason McEwen 6

http://www.jasonmcewen.org


Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Redshift augmentation of supernovae
observations (Boone 2019, Alves et al. 2022,
2023)

Redshift augmentation
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Augmentation

Apply physical transformations that data known to satisfy to augment training
data⇝ ML model learns physics through training.

▷ Data efficiency suffers: data “used” to learn physics, rather than problem.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
▷ Inductive biases not enforced.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Key factor CNNs so successful is due to
encoding translational equivariance.

Translational equivariance

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
▷ Inductive biases not enforced.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Geometric deep learning on the sphere
(Cobb et al. 2021; McEwen et al. 2022;
Ocampo, Price & McEwen 2023)

CMB observed on the
celestial sphere

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
▷ Inductive biases not enforced.
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Physical properties: geometries, symmetries, conservation laws

Encode physical properties of the world into ML models (e.g. geometry, symmetries,
conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Equivariant machine learning,
structured like classical physics
(Villar et al. 2021)

Groups considered

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
▷ Inductive biases not enforced.

Jason McEwen 7

https://arxiv.org/abs/2106.06610
https://arxiv.org/abs/2209.13603
http://www.jasonmcewen.org
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conservation laws)⇝ Physics embedded in architecture of ML model.

▷ Highly computationally demanding.
▷ Always required?

▷ Develop efficient algorithms (e.g. Ocampo, Price & McEwen 2023).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen, in prep.).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Physics informed neural networks (PINNs)
encode differentiable equations (e.g.
boundary conditions) in loss.

PINNs

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen, in prep.).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable physical models
▶ Radio interferometric telescope

(Mars et al. 2023, in prep.)
▶ Optical PSF

(Liaudat et al. 2023)
▶ JAX-Cosmo

(Campagne et al. 2023)
SKA (artist impression)

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen, in prep.).
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Physical models: PINNS and differentiable physics

Encode physical models of world into ML models:
1. Encode dynamics (differential equations) via loss functions (PINNs).
2. Embed full (differentiable) physical models inside ML model.

⇝ Physics learned in training and embedded in model.

▷ Differentiable mathematical methods
▶ Fourier transforms
▶ Spherical harmonic transforms

(s2fft; Price & McEwen, in prep.)
▶ Spherical wavelet transforms

(s2wav; Price et al. in prep.)
▶ Spherical scattering transforms

(Mousset, Price, Allys, McEwen, in prep.)

Spherical harmonics

▷ PINNs only capture limited dynamics via loss.
▷ Full physical models requires differentiable programming frameworks.

▷ Capture full physics with differentiable models!
▷ Emulators also provide differentiability (e.g. CosmoPower; Spurio Mancini et al. 2021).
▷ Write new differentiable codes (e.g. s2fft; Price & McEwen, in prep.).
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Case Study

Learned interferometric imaging
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Square Kilometre Array (SKA) Case Study
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SKA sites Case Study

SKA-mid – the SKA’s mid-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as they 
each comprise a large number of individual elements working together to form a single large 
telescope.

Compared to the JVLA, the current best 
similar instrument in the world:

5x 
more 

sensitive 

60x 
the survey 

speed

4x 
the 

resolution

Frequency range: 

350 MHz to 
15.4 GHz

with a goal of 24 GHz
Location:  
South Africa

Total 
collecting 

area: 
33,000m2

or 
126 

tennis 
courts

Maximum distance
between dishes:  

150km

197 dishes
(including 64 MeerKAT dishes)  

Data transfer rate: 

8.8 Terabits 
per second

SKA-mid

Image quality of  
SKA-mid (left) versus 
the best current facility 
operating in the same 
frequency range, the 
Jansky Very Large Array 
(JVLA) in the United 
States (right). SKA-mid’s 
resolution will be 4x 
better than JVLA.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory

Maximum distance
between stations:  

>65km

Compared to LOFAR Netherlands, the current 
best similar instrument in the world

8x 
more 

sensitive

135x 
 the survey 

speed

Frequency range: 

50 MHz to 
350 MHz

131,072
antennas spread between 

512 stations

Total 
collecting 

area: 

0.4km2

Location: Australia

25% 
better 

resolution

SKA-low – the SKA’s low-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as 
they each comprise a large number of individual elements working together to form a single 
large telescope.

Data transfer rate: 

7.2 Terabits 
per second

SKA-low

Image quality of  
SKA-low (left) versus 
the best current facility 
operating in the same 
frequency range, the LOw 
Frequency ARray (LOFAR), 
in the Netherlands (right).  
SKA-low‘s resolution will 
be similar to LOFAR.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory
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SPIDER instrument Case Study

▷ SPIDER is new interferometric optical imaging device developed by UC Davis and
Lockheed Martin.

▷ Lenslet array to measure multiple interferometric baselines and photonic integrated
circuits (PICs) for miniaturization.

▷ Reduces weight, cost and power consumption of optical telescopes.
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Interferometric imaging Case Study

“Fourier”
Measurements

⇒

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Recover an image from noisy and incomplete “Fourier” measurements.
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Learned interferometric imaging Case Study

▷ Learned interferometric imaging for the SPIDER instrument
(Mars et al. 2023)

▷ Learned radio interferometric imaging with varying visibility coverage
(Mars et al. in prep.)

Code: coming soon!

Matthijs Mars Marta Betcke
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GU-Net architecture for learned interferometric imaging Case Study

Integrate (differentiable) physical model of instrument into architecture; plus
multi-resolution instrument model. (Mars et al. 2023, Mars et al. in prep.)

Transfer learning to handle measurement operator variability (telescope configuration).
1

(2
56
,
2
56
)

16 16 16 16

16

(1
28
,
1
28
)

16 32 32

32

(6
4,

64
)

32 64 64

64

(3
2,

3
2)

64 128 128

64 64 64 64

32 32 32 32

16 16 16 16 116

32

64

Conv2D (3x3)

+ ReLU + BatchNorm

Concatenate

MaxPool2D (2x2)

Conv2DTranspose (3x3)

+ ReLU + BatchNorm

Conv2D (1x1)

Conv2D (3x3) [xi, ∇xi
L(Φixi, yi),

∇f
xi
L(Φixi, yi),Φ

∗
i yi)]

For instrument model Φi at resolution i,
consider learned post-processing
operator

Λi,θ
(
xi, ∇xiL(Φixi, yi),∇f

xiL(Φixi, yi),Φ∗
i yi

)
,

where

∇f
xiL(Φixi, yi) ∝ Φ∗

i (Wi(Φixi − yi)).

Jason McEwen 14

https://arxiv.org/abs/2301.10260
http://www.jasonmcewen.org


Distribution of radio interferometric reconstruction quality Case Study

True
coverage

Single
coverage

Single
coverage
Transfer

Distribution
of coverages

Distribution
of coverages

Transfer

20

30

40

50

60
PS

NR
 (d

B)

U-Net

train
test

True
coverage

Single
coverage

Single
coverage
transfer

Distribution
of coverages

Distribution
of coverages

transfer

20

30

40

50

60

PS
NR

 (d
B)

GU-Net

train
test

Reconstruction quality (PSNR ↑) for different training strategies.

▷ Superior reconstruction quality by integrating physical model of instrument and
more robust to measurement operator variability.

▷ Imaging time speed-up of 50-600× relative to classical approaches.
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Reconstructed radio interferometric images Case Study
U-

Ne
t

Reference Dirty image
(PSNR: 16.44dB)

True coverage
(PSNR: 40.29dB)

Single coverage
(PSNR: 25.67dB)

Single coverage Transfer
(PSNR: 38.77dB)

Random coverage
(PSNR: 33.82dB)

Random coverage Transfer
(PSNR: 35.07dB)

0.0

0.2

0.4

0.6

0.8

1.0

GU
-N

et

Reference Dirty image
(PSNR: 16.44dB)

True coverage
(PSNR: 57.29dB)

Single coverage
(PSNR: 55.28dB)

Single coverage transfer
(PSNR: 55.38dB)

Distribution of coverages
(PSNR: 50.26dB)

Distribution of coverages transfer
(PSNR: 55.32dB)

0.0

0.2

0.4

0.6

0.8

1.0

▷ Full end-to-end learning for radio interferometric imaging with support for varying
measurement operators for the first time.
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Reconstructed SPIDER images Case Study

True PseudoInverse
(PSNR: 10.09dB)

Primal-Dual
(PSNR: 29.87dB)

U-Net
(PSNR: 30.40dB)

GU-Net
(PSNR: 29.39dB)

0.0

0.2

0.4

0.6

0.8

1.0(PSNR: 10.50dB) (PSNR: 24.83dB) (PSNR: 25.77dB) (PSNR: 26.60dB)

0.0

0.2

0.4

0.6

0.8

1.0

(PSNR: 15.47dB) (PSNR: 22.20dB) (PSNR: 23.48dB) (PSNR: 25.04dB)

0.0

0.2

0.4

0.6

0.8

1.0

▷ Dramatic reduction in computational time opens up real time imaging with SPIDER
for the first time.
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Probabilistic Learning



Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)

Physical Machine Learning
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Interpretability
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ MC Dropout (Gal & Ghahramani 2016): drop
nodes probabilistically to sample an
ensemble of networks.

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Bayes by Backprop (Blundel et al. 2015): model
distribution of weights (by variational
inference).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Bayesian neural networks for uncertainty quantification

Bayesian neural networks incorporate probabilistic representation to quantify
uncertainty of outputs (idea pioneered by MacKay 1992).

▷ Probabilistic ML frameworks
(e.g. TensorFlow Probability).

▷ Encode epistemic uncertainty of model.
▷ But what does the output distribution represent?
▷ Requires careful consideration of training data.

▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Emulation: sample from learned prior
(Perraudin et al. 2020, Allys et al. 2020, Price et al.
2023, Price et al. in prep.)

Emulated cosmic string maps
(stringgen, Price et al. 2023, Price et al. in prep.)

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Generative models

Generative models learn a prior distribution from data for sampling and/or
evaluating probabilities.

▷ Integrate learned priors into analysis
(Remy et al. 2022, McEwen et al. 2023)

Learn convergence field prior
(Remy et al. 2022)

▷ Availability and representativeness of training data.
▷ Truthfulness, e.g. diversity of ML model often lacking.

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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▷ Truthfulness (hold that thought… see upcoming Truthfulness section).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
▷ Statistical validation (hold that thought… see upcoming Truthfulness section).
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▷ Enhanced Bayesian model selection
(harmonic; McEwen et al. 2021, Polanska et al.
2023).

Learned harmonic mean estimator
(harmonic)

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Simulation-based inference
(Alsing et al. 2018, Cranmer et al. 2021).

▷ Model selection for simulation-based
inference (harmonic; Spurio Mancini et al. 2022)

sbi

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
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Bayesian inference

ML techniques can be integrated into Bayesian frameworks to enhance accuracy
and computational efficiency, making some approaches accessible that were
previously intractable.

▷ Variational inference
(Whitney et al. in prep.)

Mass mapping with uncertainties
by variational inference

▷ Availability and representativeness of training data.
▷ Cost of training.
▷ Truthfulness?

▷ Public datasets/benchmarks (e.g. BASE, IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Amortized inference (training not repeated for new observations).
▷ Integrate in Bayesian framework to provide statistical guarantees.
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Case Study

Learned harmonic mean estimator
for Bayesian model selection
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What is the nature of dark energy?

Is the equation of state of dark energy:
(i) constant (i.e. Einstein’s cosmological constant) or

(ii) evolving with cosmic time?

Jason McEwen 21
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Cosmic microwave background (CMB) radiation Case Study

Constrain nature of dark energy with observations of the cosmic microwave background
(CMB) (relic radiation from the Big Bang).

Atacama Cosmology Telescope (ACT) CMB
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Bayesian inference: parameter estimation Case Study

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model selection Case Study

By Bayes’ theorem for model Mj:

p(Mj | y) =
p(y |Mj)p(Mj)∑
j p(y |Mj)p(Mj)

.

For model selection, consider posterior model odds:

p(M1 | y)
p(M2 | y)

posterior odds

=
p(y |M1)

p(y |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z = p(y |M) =

∫
dθ L(θ) π(θ) .

⇝ Challenging computational problem.
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Original harmonic mean estimator Case Study

Harmonic mean relationship (Newton & Raftery 1994)

ρ = Ep(θ |y)

[
1

L(θ)

]
=

1
z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1
N

N∑
i=1

1
L(θi)

, θi ∼ p(θ | y)

Very simple approach but can fail catastrophically (Neal 1994).
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Learned harmonic mean estimator Case Study

▷ Learned harmonic mean estimator
(McEwen et al. 2021)

▷ Bayesian model comparison for simulation-based inference
(Spurio Mancini et al. 2022)

▷ Learned harmonic mean estimation with normalizing flows
(Polanska et al. 2023)

Code: https://github.com/astro-informatics/harmonic

Alessio Spurio ManciniMatt Price Alicja Polanska
Jason McEwen 26
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Re-targeted harmonic mean estimator Case Study

Introduce an arbitrary importance sampling target φ(θ) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ = Ep(θ |y)

[
φ(θ)

L(θ)π(θ)

]
=

1
z

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1
N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ | y)

⇝ How set importance sampling target distribution φ(θ)?
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How set importance sampling target distribution φ(θ)? Case Study

Optimal target:

φoptimal(θ) =
L(θ)π(θ)

z

(resulting estimator has zero variance).

But clearly not feasible since requires knowledge of the evidence z (recall the target must
be normalised)⇝ requires problem to have been solved already!
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Learned harmonic mean estimator

Learn an approximation of the optimal target distribution:

φ(θ)
ML≃ φoptimal(θ) =

L(θ)π(θ)
z .

▷ Approximation not required to be highly accurate.
▷ Must not have fatter tails than posterior (e.g. by concentrating probability mass of
normalising flow).

⇝ Solve long-standing problem by integrating ML into Bayesian framework.
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What is the nature of dark energy?

Cosmological constant (LCDM):
log z = −168.87± 0.29

Evolving dark energy (w0waCDM):
log z = −169.32± 0.25

Bayes factor of ∆ log z = 0.45± 0.54: weak preference for cosmological constant (LCDM).

3× faster than alternative with potential to scale to considerably higher dimensions (WIP).
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Intelligible AI



Intelligible AI
Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)

Physical Machine Learning

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Truthfulness
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

▷ Feature importances
(Lochner et al. 2016)

Supernova feature importances

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Explainability

Explainable ML techniques may or may not be interpretable themselves but their
outputs can be explained to humans.

▷ Saliency maps
(Bhambra et al. 2022)

Galaxy saliency mapping

Poking the black box: may provide some explanation of outputs but humans still
not able to comprehend underlying process.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models such as scattering and
wavelet phase harmonic networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022)

f

U [J0]f
• • •

U [j]f
• • •

U [J ]f

S[0]f

U [J0, J0]f
• • •

U [J0, j
′]f

• • •
U [J, J0]f

S[J0]f

S[J0, J0]f S[J0, j
′]f S[J, J0]f

U [j, J0]f
• • •
U [j, j′′]f

• • •
U [j, J ]f

S[j]f

S[j, J0]f S[j, j′′]f S[j, J ]f

• • •
U [J, J0]f U [J, j′′′]f

• • •
U [J, J ]f

S[J ]f

S[J, J0]f S[J, j′′′]f S[J, J ]f

Scattering network (McEwen et al. 2022)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models such as scattering and
wavelet phase harmonic networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022)

LSS features captured by wavelets
(Allys et al. 2020)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.

Jason McEwen 33

https://arxiv.org/abs/2006.06298
https://arxiv.org/abs/2006.08561
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/2102.02828
https://arxiv.org/abs/2006.06298
https://www.tng-project.org/
https://www.camel-simulations.org/
https://quijote-simulations.readthedocs.io/en/latest/
http://www.cosmogrid.ai/
http://www.jasonmcewen.org


Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Designed models such as scattering and
wavelet phase harmonic networks
(Allys et al. 2020, Cheng et al. 2020, McEwen
et al. 2022)

First evidence that CMB cold spot due to
supervoid (McEwen et al. 2007)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Interpretable constraints on ML models,
e.g. convexity
(Liaudat, McEwen et al. in prep.)

Impose convexity on learned model

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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Interpretability

Interpretable ML models are white boxes that can be understood by humans.

▷ Deep priors learned from training data
(hybrid model-based and data-driven)
(Remy et al. 2022, McEwen et al. 2023)

Compute Bayesian evidence for
model selection

(proxnest, McEwen et al. 2023)

▷ Designed models limit flexibility.
▷ Availability and representativeness of training data.

▷ Benefits of designed models often outweigh (minimal) reduced flexibility.
▷ Public datasets/benchmarks (e.g. IllustrisTNG, CAMELS, Quijote, CosmoGrid).
▷ Transfer learning, self-supervised learning.
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▷ Transfer learning, self-supervised learning.
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Truthfulness

Truthfulness critical for science in order for humans to have confidence in results
of ML models. Closely coupled with a meaningful statistical distribution of outputs.

▷ Uncertainties not aways meaningful.
▷ Diversity of ML model often lacking.

▷ Integrate in statistical framework to inherit theoretical guarantees.
▷ Extensive validation tests (e.g. Hermans et al. 2022, Lemos et al. 2023).
▷ Meta sampling to recover distribution over manifold (e.g. Price et al. 2023).
▷ Well-posed frameworks (e.g. physics enhanced, probabilistic).
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Case Study

Uncertainty quantification for exascale imaging
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Towards exascale computing with the SKA Case Study
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MAP estimation vs MCMC sampling Case Study

MAP estimation

+ Based on optimization so computationally
efficient.

− Does not traditionally provide uncertainties.

MCMC sampling

− Based on sampling so computationally
demanding.

+ Recover full posterior distribution.

However, based on hand-crafted priors, which are not highly expressive.
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Scalable Bayesian UQ with learned data-driven priors Case Study

1. Statistical framework: Bayesian inference and MAP estimation.
2. Mathematical theory: probability concentration theorem for log-convex distributions.
3. Designed/constrained ML model: convex ML model with explicit potential.

⇝ Scalable Bayesian UQ with learned data-driven priors, which are highly expressive.

▷ Interpretable method.
▷ Interpretable results.
▷ Validate by MCMC sampling (for low-dimensional setting).
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Scalable Bayesian UQ with learned data-driven priors Case Study

▷ Scalable Bayesian UQ with learned data-driven priors
(Liaudat et al. in prep.)

Code: coming soon!

Marcelo PereyraTobias Liaudat Marta Betcke
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Statistical framework: MAP estimation Case Study

Bayes Theorem (ignore normalising evidence):

p(x | y) ∝ p(y | x)p(x) , i.e. posterior ∝ likelihood× prior

Define likelihood (assuming Gaussian noise) and prior:

p(y | x) ∝ exp
(
−
∥∥y−Φx

∥∥2
2/(2σ

2)
)

likelihood

p(x) ∝ exp
(
−R(x)

)
prior

Consider log-posterior:

log p(x | y) = −
∥∥y−Φx

∥∥2
2/(2σ

2)− R(x) + const.

MAP estimator:

xmap = argmax
x

[
log p(y | x)

]
= argmin

x

[ ∥∥y−Φx
∥∥2
2

data fidelity

+ λ R(x)

regulariser

]
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Mathematical theory: convex probability concentration Case Study

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Theorem 3.1 (Pereyra 2017)
Suppose the posterior p(x|y) = exp[−f(x)− g(x)]/Z is log-concave on RN. Then, for any
α ∈ (4e[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : f(x) + g(x) ≤ γ̂α = f(x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

We need only evaluate f+ g for the MAP estimation xMAP!
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Constrained ML model: convex regulariser Case Study

Adopt neural-network-based convex regulariser R (Goujon et al. 2022):

R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

• ψn are learned convex profile functions with Lipschitz continuous derivative;

• NC learned convolutional filters hn.

Properties:
1. Convex + explicit ⇒ leverage convex UQ theory.

2. Smooth regulariser with known Lipschitz constant ⇒ theoretical convergence guarantees.
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Reconstructed images Case Study
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Approximate pixel-level uncertainty quantification Case Study
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Hypothesis testing of structure Case Study

1
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Reconstructed image
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-1.0
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Surrogate test image (region removed)

Reject null hypothesis

⇒ structure physical
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Hypothesis testing of substructure Case Study
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Scalable Bayesian UQ with learned data-driven priors Case Study

▷ Superior reconstruction quality by using learned data-driven prior.
▷ Uncertainty quantification for exascale imaging with learned priors for the first time.
▷ Validated by MCMC sampling (for low-dimensional setting)
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Summary

Physical Machine Learning

Physics Enhanced Learning Probabilistic Learning Intelligible AI

Bayesian Neural Networks

Generative Models

Bayesian Inference

Augmentation

Physical properties

Physical models

Explainability

Interpretability

Truthfulness

With great power comes great responsibility!

Jason McEwen 47

http://www.jasonmcewen.org

	Physics Enhanced Learning
	Probabilistic Learning
	Intelligible AI
	Summary

