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Inverse imaging problems

Inverse problem model
Consider observations

y ∼ P(Φ(x))

linear case
======⇒ y = Φx+ n ,

for image x, deterministic measurement model Φ, and stochastic aspects of data acquisition
encoded by statistical process P.

y forward model←−−−−−−−−−−−−−−−−−−−− x

=


 + n

−−−−−−−−−−−−−−−−−−−−→
inverse problem
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Ill-conditioned and ill-posed problems

Inverse problems often ill-conditioned and ill-posed (in the sense of Hadamard):

1. Solution may not exist.
2. Solution may not be unique.
3. Solution may not be stable.

▷ Inject regularising prior information
▷ Quantify uncertainty } ⇒ Bayesian inference
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Bayesian inference

Bayes’ theorem

p(x | y,M)

posterior

=
p(y | x,M)

likelihood

p(x |M)

prior

p(y |M)

marginal likelihood

=
L(x)

likelihood

π(x)
prior

z
marginal likelihood

,

for parameters x, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Computational challenge of MCMC sampling can be prohibitive

▷ Parameter space high dimensional, i.e. x ∈ RN with large N.

▷ Large data volume, i.e. y ∈ RM with large M.

▷ Computationally costly measurement operator Φ : RN → RM.

In many settings we have one of these challenges… in some we have all!

Jason McEwen 4

http://www.jasonmcewen.org


Computational challenge of MCMC sampling can be prohibitive

▷ Parameter space high dimensional, i.e. x ∈ RN with large N.

▷ Large data volume, i.e. y ∈ RM with large M.

▷ Computationally costly measurement operator Φ : RN → RM.

In many settings we have one of these challenges… in some we have all!

Jason McEwen 4

http://www.jasonmcewen.org


Square Kilometre Array (SKA)

Artist impression of the Square Kilometer Array (SKA)
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SKA sites
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SKA data rates

8.5 Exabytes over the 15-year lifetime of
initial high-priority science programmes
(Scaife 2020).

All 3 computational challenges (high-dimensional, big-data, expensive operator).

⇒ MCMC sampling infeasible.Jason McEwen 7
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Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

x̂MAP = arg max
x

[
log p(x | y)

]
= arg min

x

[
log p(y | x)

data fidelity

+ λ R(x)

regulariser

]

▷ Log-likelihood (data fidelity) encodes physics through measurement operator Φ and
statistical acquisition model P.

▷ Regulariser encodes prior.

But fails to capture uncertainty.
Hand-crafted priors (not expressive) considered traditionally.
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Goals

Computationally efficient (optimisation).

Physics-informed (robust and interpretable).

Expressive data-driven AI priors (enhance reconstruction fidelity).

Quantify uncertainties (for scientific inference).

Jason McEwen 9

http://www.jasonmcewen.org


Interdisciplinary solution

AI

Physics

Mathematics

Statistics
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Outline

1. Physics + AI

2. Physics + AI + UQ

3. Physics + AI + UQ + Calibration

Jason McEwen 11
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Physics + AI



Learned inverse imaging

Learned post-processing

nPnP iterations

Plug-and-Play (PnP)

Unrolled (nunrolled ≪ nPnP)
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Learned post-processing: pre-UNet

▷ Allam Jn & McEwen (2016): RI imaging using super-resolution CNN with fixed
measurement operator (uv coverage)

Super-resolution CNN

Backprojected dirty image (SNR=7.8dB) Reconstructed image (SNR=12.3dB)Jason McEwen 13
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Learned post-processing: post-UNet

▷ Terris et al. (2019): RI imaging using UNet
▷ Mars, Betcke & McEwen (2024): RI imaging using UNet with varying measurement

operator (varying coverage)

True
coverage

Single
coverage

Single
coverage
Transfer

Distribution
of coverages

Distribution
of coverages

Transfer

20

30

40

50

60

PS
NR

 (d
B)

U-Net

train
test

PSNR for different strategies to adapt to varying operator (uv coverage).
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Learned post-processing: post-UNet

Gallery of UNet reconstructions for different strategies to adapt to varying operator (uv coverage).

Jason McEwen 15
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PnP

▷ Venkatakrishnan et al. (2013), Ryu et al. (2019)
▷ Terris et al. (2022, 2024): introduced AIRI
▷ Aghabiglou et al. (2022, 2024): R2D2 series of networks trained sequentially
▷ McEwen et al. papers in prep.: Optimus Primal, QuantifAI (Python), PURIFY

(distributed, C++)

GitHub: https://github.com/
astro-informatics/purify

GitHub: https://github.com/
astro-informatics/sopt

Jason McEwen 16
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Unrolled

Unrolled approaches (Gregor & LeCun 2010):

Trained end-to-end→ excellent performance.
Typically many expensive measurement operator applications during training.
Require differentiable measurement operator.

Introduce Gradient UNet (GUNet) to solve scalability of unrolled approaches, with a
multi-resolution measurement operator (Mars et al. 2024, 2025).

Jason McEwen 17
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Unrolled

Post-processing (UNet)→ Unrolled (GUNet): significantly improves reconstruction
fidelity and robustness to varying measurement operator (visibility coverage).
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Unrolled

Gallery of GUNet reconstructions for different strategies to adapt to varying operator (uv coverage).
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Physics + AI + UQ



UQ outline

1. Direct UQ estimation
2. PnP UQ estimation
3. Unrolled generative UQ estimation

Jason McEwen 20
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Direct UQ estimation



Estimating UQ summary statistics

Train a network to estimate a summary statistic:

▷ Magnitude of residual: train a network to estimate residuals.
▷ Gaussian per pixel: train a network to estimate the standard deviation.
▷ Classification for regression ranges: train a classifier with softmax output to estimate

distribution of pixel values.
▷ Pixelwise quantile regression: train network to estimate lower/upper quantiles for

1− α uncertainty level, using quantile (pinball) loss.

Heuristic→ no statistical guarantees.

Jason McEwen 22
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PnP UQ estimation



Convex probability concentration for uncertainty quantification

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Bound of HPD region for log-concave distributions (Pereyra 2017)
Suppose the posterior log p(x|y) ∝ logL(x) + log π(x) is log-concave on RN. Then, for any
α ∈ (4e[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : logL(x) + log π(x) ≤ γ̂α = logL(x̂MAP) + log π(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

Need only evaluate logL+ log π for the MAP estimate x̂MAP!

Jason McEwen 24
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Leverging the approximate HPD region for UQ
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Hypothesis testing

Hypothesis testing of physical structure
(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

1. Remove structure of interest from recovered image x⋆.
2. Inpaint background (noise) into region, yielding surrogate image x′.
3. Test whether x′ ∈ Cα:

■ If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence (1− α)%, i.e.
structure most likely physical.

■ If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical nature of
the structure.

Jason McEwen 26
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Local Bayesian credible intervals

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an
index vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x′ = x⋆(I − ζ) + ξζ .

Given γ̃α and x⋆, compute the credible interval by

ξ̃− = min
ξ

{
ξ | logL(x′) + log π(x′) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | logL(x′) + log π(x′) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.

Jason McEwen 27
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Convex data-driven AI prior

Adopt neural-network-based convex regulariser R
(Goujon et al. 2022; Liaudat et al. McEwen 2024):

R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

▷ ψn are learned convex profile functions with Lipschitz continuous derivative;
▷ NC learned convolutional filters hn.

Properties:
1. Convex + explicit potential⇒ leverage convex UQ theory.
2. Smooth regulariser with known Lipschitz constant⇒ theoretical convergence

guarantees.

Jason McEwen 28
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Reconstructed images
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(Liaudat et al. McEwen 2024)
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Hypothesis testing of structure

1
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Reconstructed image
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Surrogate test image (region removed)

Reject null hypothesis

⇒ structure physical

(Liaudat et al. McEwen 2024)
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Approximate local Bayesian credible intervals

mean = 0.3844

-4.00
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-1.00

LCI
(super-pixel size 4× 4)

-2.90

-2.80

-2.70

-2.60

-2.50

-2.40

MCMC standard deviation
(super-pixel size 4× 4)

103× faster than MCMC sampling

(Liaudat et al. McEwen 2024)

Jason McEwen 31

https://arxiv.org/abs/2312.00125
http://www.jasonmcewen.org


QuantifAI code

Github: https://github.com/astro-informatics/QuantifAI

PyTorch: Automatic differentiation (including instrument model) + GPU acceleration

Jason McEwen 32
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Exascale imaging codes

GitHub:
https://github.com/astro-informatics/purify

GitHub:
https://github.com/astro-informatics/sopt

Jason McEwen 33
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Unrolled generative UQ estimation



Leveraging generative AI

Bring generative AI to bear to generate approximate posterior samples but in a
physics-informed manner.

Consider two approaches:

▷ Denoising diffusion models
▷ Generative adversarial networks (GANs)

Jason McEwen 35
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Denoising diffusion models

Denoising diffusion models (Ho et al. 2020, Song & Ermon 2020).

Learn data distribution.

Consider as a deep generative prior for solving inverse problems.
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Approximate posterior sampling with diffusion models / score matching

Combine generative prior with likelihood to solve inverse problems.

Probabilistic mass mapping with neural score estimation (Remy et al. 2023).
▷ Learn score ∇ log pσ2(x) = (Dσ2(x)− x)/σ2.
▷ Combine with convolved likelihood log pσ2

L
(y | x) and sample with annealed HMC

approach.

Reconstructed mass maps of dark matter (Remy et al. 2023)
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Diffusion posterior sampling

Diffusion posterior sampling is a highly active area of research
(see Daras et al. 2024 for a recent survey).

Likelihood is analytically intractable due to dependence of diffusion process on time
(Chung et al. 2022). Hence, various approximations considered.

Diffusion models are highly expressive
Slow
Approximate posterior samples
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GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Challenges:

Difficult to train
Suffer from mode collapse

Solutions:

Wasserstein loss (Arjovsky et al. 2017)
Regularisation (Bendel et al. 2023)
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Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by rewarding sampling diversity (Bendel
et al. 2023).

Add regularisation to loss:
Lreg(θ) = L1,P(θ)− βLSD,P(θ) ,

where
L1,P(θ) = Ex,z1,...,zP,y∥x− x̂(P)∥1 and LSD,P(x) =

√
π

2P(P− 1)

P∑
i=1

Ez1,...,zP,y∥x̂i − x̂(P)∥1 ,

and with x̂(P) denoting P-averaged samples.

Recover first two moments of true posterior (Bendel et al. 2023)
First two moments of the approximated posterior (mean and variance) match the true
posterior (under Gaussian assumptions).
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MM-GAN for mapping dark matter

Adapted conditional regularised GANs to mass mapping dark matter
(Whitney et al. McEwen 2025).

MM-GAN for mass mapping dark matter
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MM-GAN for mapping dark matter

Classical case Generative posterior samplesJason McEwen 42
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MM-GAN for mapping dark matter

Pearson ↑ RMSE ↓ PSNR ↑

MMGAN (Ours) 0.727 0.0197 34.106
Kaiser-Squires 0.619 0.0229 32.803

Kaiser-Squires * 0.57 0.0240 -
Wiener filter * 0.61 0.0231 -
GLIMPSE * 0.42 0.0284 -
MCAlens * 0.67 0.0219 -
DeepMass * 0.68 0.0218 -
DLPosterior * 0.68 0.0216 -
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RI-GAN for radio interferometric imaging

Introduce physical model of measurement operator in architecture
(Mars et al. McEwen 2025).

RI-GAN for radio interferometric imagingJason McEwen 44
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RI-GAN for radio interferometric imaging

Physics-informed architecture improves reconstruction fidelity.

RI-GAN for radio interferometric imaging (left: UNet without physics; right: GUNet with physics)
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RI-GAN for radio interferometric imaging

Physics-informed architecture improves reconstruction fidelity substantially for
out-of-distribution settings.
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Conditional regularised GANs for inverse imaging

GANs are highly expressive
Fast
Guarantees for Gaussian case but otherwise approximate posterior samples
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UQ overview

1. Direct UQ estimation
Fast
Heuristic with no statistical guarantees

2. PnP UQ estimation
Fast
Statistical guarantees by leveraging convexity
Restricted to HPD-related UQ

3. Unrolled generative UQ estimation
Fast (GANs); Slow (diffusion models)
Target posterior samples but no statistical guarantees (guarantees in Gaussian setting for
GANs)
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Physics + AI + UQ + Calibration



Coverage testing

Compute coverage plots to validate.

▷ Compute a credible interval.
▷ Check empirically the frequency that ground truth within interval.
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Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

No!
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Coverage analysis for radio interferometry

Bayesian imaging for radio interferometry with score-based priors (Dia et al. 2023).
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Coverage analysis for mass mapping of dark matter

Mass mapping with diffusion posterior sampling (Anonymous submission to ML4PS,
NeurIPs 2025).

▷ Introduce an ad hoc likelihood scaling approach to down weight the likelihood at
early stages of diffusion.

▷ Works reasonably well but is ad hoc, with no statistical guarantees.

Jason McEwen 52

http://www.jasonmcewen.org


Calibrate uncertainties with conformal prediction

Conformal prediction with Risk-Controlling Prediction Sets (RCPS)
(Bates et al. 2021, Angelopoulos et al. 2022).

Given: estimator f̂(x); lower interval length l̂(x); upper interval length û(x).

Construct uncertainty intervals around each pixel (m,n):

Tλ(x)(m,n) = [ f̂(x)(m,n) − λ̂l(x)(m,n), f̂(x)(m,n) + λû(x)(m,n) ] .

Find λ to ensure interval contains the right number of pixels (exploiting Hoeffding’s
bound).
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Calibrate uncertainties with conformal prediction

▷ Distribution-free uncertainty quantification with statistical guarantees.
▷ Guaranteed to be valid but not necessarily useful⇒ still need good initial
uncertainty estimates.

(Develop conformalised quantile regression for inverse problems and apply RCPS for
mass-mapping in Leterme, Fadili & Starck 2025.)
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Coverage tests with MM-GAN

Coverage testing and conformal prediction of MM-GAN for mass mapping of dark energy
(Whitney, Liaudat & McEwen, in prep.).

▷ Extremely good coverage (without RCPS)
→ regularization and theoretical guarantee in
idealised setting highly effective in practical setting.

▷ Optimal coverage after calibration with RCPS.
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Summary



Summary

Inverse imaging problems typically ill-conditioned and ill-posted
⇒ inject regularising prior, quantify uncertainty⇒ Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:
Computationally efficient (optimisation).
Physics-informed (robust and interpretable).
Expressive data-driven AI priors (enhance reconstruction fidelity).
Quantify uncertainties (for scientific inference).

PnP with convexity (Liaudat et al. McEwen 2024) goes some way towards these aims.

Regularised conditional GAN with physics and UQ calibration (Whitney et al. McEwen
2025, Mars et al. McEwen 2025) achieves goals:

Fast (many posterior samples in seconds).
Physics can be integrated in generator architecture.
High fidelity imaging since GANs are highly expressive.
Excellent coverage (without calibration; RCPS for statistical guarantees).
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