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Inverse imaging problems

Inverse problem model
Consider observations

y ~ P(®(x))

for image x, deterministic measurement model @, and stochastic aspects of data acquisition
encoded by statistical process P.
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Consider observations
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for image x, deterministic measurement model @, and stochastic aspects of data acquisition
encoded by statistical process P.

forward model
X

Jason McEwen inverse problem


http://www.jasonmcewen.org

Inverse imaging problems

Inverse problem model
Consider observations

7 ]P)(QJ(X)) linear case y= ®x -+ n ,

for image x, deterministic measurement model @, and stochastic aspects of data acquisition
encoded by statistical process P.

forward model

inverse problem

Jason McEwen 1


http://www.jasonmcewen.org

Inverse imaging problems

Inverse problem model
Consider observations

7 ]P)(QJ(X)) linear case y= X+ n ,

for image x, deterministic measurement model @, and stochastic aspects of data acquisition
encoded by statistical process P.
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Ill-conditioned and ill-posed problems

Inverse problems often ill-conditioned and ill-posed (in the sense of Hadamard):

1. Solution may not exist.
2. Solution may not be unique.
3. Solution may not be stable.
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Ill-conditioned and ill-posed problems

Inverse problems often ill-conditioned and ill-posed (in the sense of Hadamard):

1. Solution may not exist.
2. Solution may not be unique.
3. Solution may not be stable.

> Inject regularising prior information } N

> Quantify uncertainty
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Bayesian inference

Bayes’ theorem

likelihood prior likelihood prior
p(y[x,M) p(x|M) L(x) m(x)
p(X|yaM) - — f’
posterior py|M) ' -
marginal likelihood marginal likelihood

for parameters x, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Computational challenge of MCMC sampling can be prohibitive

> Parameter space high dimensional, i.e. x € RV with large N.
> Large data volume, i.e. y € R” with large M.

> Computationally costly measurement operator @ : RV — RM.
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Computational challenge of MCMC sampling can be prohibitive

> Parameter space high dimensional, i.e. x € RV with large N.
> Large data volume, i.e. y € R” with large M.

> Computationally costly measurement operator @ : RV — RM.

In many settings we have one of these challenges... in some we have all!
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Square Kilometre Array (SKA)

Artist impression of the Square Kilometer Array (SKA)
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SKA sites
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SKA data rates

SKA1-low
%— 7.2 Th/s ————s
8.5 Exabytes over the 15-year lifetime of
initial high-priority science programmes
(Scaife 2020).
— 8.8Tb/s
SKA1-mid SKA Regional Centres

All 3 computational challenges (high-dimensional, big-data, expensive operator).

= MCMC sampling infeasible.
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Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

Xwap = argxmax[logp(x|y)} = argxmin{ logp(y|x) + AR(X) }

data fidelity regulariser
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Xwap = argxmax[logp(x|y)} = argxmin{ logp(y|x) + AR(X) }

data fidelity regulariser

> Log-likelihood (data fidelity) encodes through measurement operator  and
statistical acquisition model P.

> Regulariser encodes
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Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

Xwap = argxmax[logp(x|y)} = argxmin{ logp(y|x) + AR(X) }

data fidelity regulariser

> Log-likelihood (data fidelity) encodes through measurement operator  and
statistical acquisition model P.

> Regulariser encodes

© But
(%} considered traditionally.

Jason McEwen 8


http://www.jasonmcewen.org

(optimisation).
(robust and interpretable).

(enhance reconstruction fidelity).

000

(for scientific inference).
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Interdisciplinary solution
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1. Physics + Al
2. Physics + Al + UQ

3. Physics + Al + UQ + Calibration
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Physics + Al



Learned inverse imaging

= - ® -2 B

Observation Pseudo Inverse Denoiser (Prior) Reconstruction

Learned post-processing
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Learned inverse imaging

Observation Pseudo Inverse Denoiser (Prior) Reconstruction Observation Data Fidelity Denoiser (Prior) Reconstruction

= - ® -2 B av[g—»@]

Npnp iterations

Learned post-processing Plug-and-Play (PnP)
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Observation Pseudo Inverse Denoiser (Prior) Reconstruction Observation Data Fidelity Denoiser (Prior) Reconstruction

Npnp iterations

Learned post-processing Plug-and-Play (PnP)

- & - % — 1 - % === Iy - % o
Observation Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Data Fidelity Denoiser (Prior) Reconstruction

Trained End-to-End

Unrolled (nynrolied < Nenp)

Jason McEwen 12


http://www.jasonmcewen.org

Learned post-processing: pre-UNet

> Allam Jn & McEwen (2016): Rl imaging using super-resolution CNN with fixed
measurement operator (uv coverage)

224x224
g5l2  convolution network Deconvolution network
56%56
2828
/J 14x14 7x7 %7 14x14
1x1 1x1
]
Max
™ U li
poolin podling =ty . R Unpooling
lax 19 g eI I — Unpooling

ox  POONNG - oeoee” T Unpooling

pooling ...~ —

s . ~npooling
Super-resolution CNN ~

Jason McEwen Backprojected dirty image (SNR=7.8dB) Reconstructed image (SNR=12.3dB) 13
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Learned post-processing: post-UNet

> Terris et al. (2019): Rl imaging using UNet
> Mars, Betcke & McEwen (2024): Rl imaging using UNet with varying measurement
operator (varying coverage)

U-Net
60
50
o
2 \
o 40 AN
2 | I &= \
0 7 ~ ,
LS 7 2 v
30 :
50 train
20 1 test
True Single Single Distribution  Distribution
coverage coverage coverage  of coverages of coverages
Transfer Transfer

PSNR for different strategies to adapt to varying operator (uv coverage).
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Learned post-processing: post-UNet

> falala

(s 25 550e) eSS SR 21200 Sz 20 030 (5 21 23001

[T (16 4300) v saan, (s 17 5000) (s 15 (515 3500)

sni 12208 (s 26 704e) (5232051 sun 211008

Gallery of UNet reconstructions for different strategies to adapt to varying operator (uv coverage).
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> Venkatakrishnan et al. (2013), Ryu et al. (2019)

> Terris et al. (2022, 2024): introduced AIRI

> Aghabiglou et al. (2022, 2024): R2D2 series of networks trained sequentially

> McEwen et al. papers in prep.: Optimus Primal, QuantifAl (Python), PURIFY
(distributed, C++)

Jason McEwen

PURIFY Sparse OPTimisation Library

€t ORI codecos [BB] 001 10,538 sendo 2555252 © Crake BRI codecov [BBRY 001 10,528 2enodo 2554356

Description Description

PURIFY is an open-source collection of routines written in C++ available under the SOPT is an open-source C++ package available under the below. It performs
icense below. It implements different tools and high-level to perform radio Sparse OPTimisation using state-of-the-art convex optimisation algorithms. It solves
interferometric imaging, ie. to recover images from the Fourier measurements taken avariety of sparse regularisation problems, including the Sparsity Averaging

by radio interferometric telescopes. Reweighted Analysis (SARA) algorithm.

GitHub: https://github.com/ GitHub: https://github.com/
astro-informatics/purify astro-informatics/sopt

& Tensorflow QO PyTorch @ ONNX @Spack


https://github.com/astro-informatics/Optimus-Primal
https://github.com/astro-informatics/QuantifAI
https://github.com/astro-informatics/purify
https://github.com/astro-informatics/purify
https://github.com/astro-informatics/purify
https://github.com/astro-informatics/sopt
https://github.com/astro-informatics/sopt
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Unrolled approaches (Gregor & LeCun 2010):

® Trained end-to-end — excellent performance.
© Typically many expensive measurement operator applications during training.
© Require differentiable measurement operator.
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Unrolled approaches (Gregor & LeCun 2010):

® Trained end-to-end — excellent performance.
© Typically many expensive measurement operator applications during training.
© Require differentiable measurement operator.

Introduce to S with a
multi-resolution measurement operator (Mars et al. 2024, 2025).

U-Net GU-Net

16,16 16 16 1 1[1616 16 16 166,16 1616 1 | 1

16 16 32 32 323232 32 |32

H

32 32 64 64 646464 64|64

—> Conv2D (3x3) +ReLU +BN
—> Gom2D (1x1)
MaxPool (22)

pose2D (3x3) + ReLU + BN 64 64 128/128

116 16 16

HH

16 32 32

Hi

32 64 64 6464 64 |64

64 128 |128

H
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Unrolled

Post-processing (UNet) — Unrolled (GUNet):
to varying measurement operator (visibility coverage).

U-Net GU-Net
60
N
\
50
a 4
o <
o 40 SN
z
0
a / AN\
30 > N
I @ >
/
\\ s/ =3 train
20 ( ) test
True Single Single Distribution  Distribution True Single Single Distribution  Distribution
coverage coverage coverage of coverages of coverages coverage coverage coverage of coverages of coverages
Transfer Transfer transfer transfer

PSNR for different strategies to adapt to varying operator (uv coverage).
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Unrolled

m

s e 22080 (s i saa SR 21608 i 43 6108) SR 4351081 o

Gallery of GUNet reconstructions for different strategies to adapt to varying operator (uv coverage).
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Physics + Al + UQ




UQ outline

1. Direct UQ estimation
2. PnP UQ estimation
3. Unrolled generative UQ estimation

Jason McEwen 20
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Direct UQ estimation



Estimating UQ summary statistics

Train a network to estimate a summary statistic:

> Magnitude of residual: train a network to estimate residuals.
> Gaussian per pixel: train a network to estimate the standard deviation.

> Classification for regression ranges: train a classifier with softmax output to estimate
distribution of pixel values.

> Pixelwise quantile regression: train network to estimate lower/upper quantiles for
1— a uncertainty level, using quantile (pinball) loss.

Heuristic —

Jason McEwen 22
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PnP UQ estimation



Convex probability concentration for uncertainty quantification

Posterior credible region:

p(x € Caly) = / p(Xly)Lc,dx =1—a.
XERN

Consider the highest posterior density (HPD) region
= {x:—logp(X) <7va}, Withya € R, andp(x e Cily) =1— o holds.

Jason McEwen 24
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Convex probability concentration for uncertainty quantification

Posterior credible region:

p(x € Caly) = / p(Xly)Lc,dx =1—a.

XxeRN

Consider the highest posterior density (HPD) region
Ch={x:—logp(X) <7a}, Withya € R, andp(x e Cily) =1— o holds.

Bound of HPD region for log-concave distributions (Pereyra 2017)

Suppose the posterior log p(x]y) o log £(x) + log 7(x) is on R". Then, for any
€ (4el(=N/3)],1), the HPD region C, is contained by

A~

(— {X s log L(X) + log m(X) < Ao = log L(Xuap) + log m(Xuap) + VN7 + N} ,
with a positive constant 7o = /16 log(3/«) independent of p(x|y).

Need only evaluate log £ + log  for the MAP estimate Xuap!

Jason McEwen 24
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Leverging the approximate HPD region for UQ

Observation y

S —

\

E 3 Approx HPD
" — Credible Regions
Reconstruction (=%
Xmap

Jason McEwen 25
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Observation y

J\
(" v ¥
S Approx HPD
" — Credible Regions
Reconstruction (o
Xmap
‘f: W
Local Credible Knockout
Intervals Hypothesis
(€,8) Tests

Jason McEwen 25
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Hypothesis testing

Hypothesis testing of physical structure
(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

1. Remove structure of interest from recovered image x*.
2. Inpaint background (noise) into region, yielding surrogate image x’.
3. Test whether x’ € C,:

m If X' ¢ C, then reject hypothesis that structure is an artifact with confidence (1 — a)%, i.e.
structure most likely physical.

m If X' € C, uncertainly too high to draw strong conclusions about the physical nature of
the structure.

Jason McEwen 26
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Local Bayesian credible intervals

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2018b)

Let Q define the area (or pixel) over which to compute the credible interval (é_,£,) and ¢ be an
index vector describing Q (i.e. ¢ = 1if i € Q and 0 otherwise).

Consider the test image with the Q region replaced by constant value &:

X' =x(Z-¢+¢&.

Given 7, and x*, compute the credible interval by
£ =min {¢] log £L(X') + log 7(X') < a, ¥& € [~00, +00)},

& = max {¢ ] log L(x) + log m(x') < Fa, V€ €[00, +00)} .

Jason McEwen 27
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Convex data-driven Al prior

Adopt neural-network-based convex regulariser R
(Goujon et al. 2022; Liaudat et al. McEwen 2024):

RO = 33 tn ((ho + ) [K])
n=1 Rk

> 1, are learned convex profile functions with Lipschitz continuous derivative;
> Nc learned convolutional filters h,.

Jason McEwen 28
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Convex data-driven Al prior

Adopt neural-network-based convex regulariser R
(Goujon et al. 2022; Liaudat et al. McEwen 2024):

RO = 33 tn ((ho + ) [K])
n=1 Rk

> 1, are learned convex profile functions with Lipschitz continuous derivative;
> Nc learned convolutional filters h,.

Properties:
1. + = leverage convex UQ theory.
2. = theoretical convergence
guarantees.

Jason McEwen 28
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Reconstructed images

0.0 0.0

1.0 1.0
1.5 1.5
2.0 -2.0
Ground truth Dirty image Reconstruction (classical)  Reconstruction (learned)

SNR=3.39 dB SNR=23.05 dB SNR= 26.85 dB

(Liaudat et al. McEwen 2024)

Jason McEwen Error (classical) Error (learned) 29
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Hypothesis testing of structure

0.0

-2.0

Reconstructed image

(Liaudat et al. McEwen 2024)
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Hypothesis testing of structure

0.0 0.0

-0.5 -0.5
-1.0 -1.0
-1.5 -1.5
-2.0 -2.0
Reconstructed image Surrogate test image (region removed)

(Liaudat et al. McEwen 2024)

Jason McEwen 30


https://arxiv.org/abs/2312.00125
http://www.jasonmcewen.org

Hypothesis testing of structure

0.0 0.0

-0.5 -0.5
-1.0 -1.0 Reject null hypothesis
= structure physical

-1.5 -1.5

2.0 -2.0

Reconstructed image Surrogate test image (region removed)

(Liaudat et al. McEwen 2024)
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Approximate local Bayesian credible intervals

mean = 0.3844

- _.‘
: g’
-
LCI MCMC standard deviation
(super-pixel size 4 x &) (super-pixel size 4 x 4)

10°x faster than MCMC sampling

(Liaudat et al. McEwen 2024)
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QuantifAl code

GitHubm License GPL arXiv 2312.00125

QuantifAl

quantifai is a PyTorch-based open-source radio interferometric imaging
reconstruction package with scalable Bayesian uncertainty quantification relying on
data-driven (learned) priors. This package was used to produce the results of

. The guantifai model relies on the data-driven convex regulariser from

Github: https://github.com/astro-informatics/QuantifAl

PyTorch: Automatic differentiation (including instrument model) + GPU acceleration

Jason McEwen 32
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Exascale imaging codes

PURIFY Sparse OPTimisation Library

©)c [pasing  codecov JBEH) DOI 10.5281/zenodo 2555252 ) CMake [passing]  codecov []B%) DOI 10.5281/zenodo.2584256
Description Description
PURIFY is an open-source collection of routines written in C++ available under the SOPT is an open-source C++ package available under the lice below. It performs

se below. It implements different tools and high-level to perform radio Sparse OPTimisation using state-of-the-art convex optimisation algorithms. It solves
interferometric imaging, to recover images from the Fourier measurements taken a variety of sparse regularisation problems, including the Sparsity Averaging
by radio interferometric telescopes. Reweighted Analysis (SARA) algorithm.

GitHub: GitHub:

https://github.com/astro-informatics/purify https://github.com/astro-informatics/sopt

& TensorFlow O P)/TOFCh @ ONNX @SpaCk

Jason McEwen
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Unrolled generative UQ estimation



Leveraging generative Al

Bring generative Al to bear to butina
manner.

Consider two approaches:

> Denoising diffusion models

> Generative adversarial networks (GANS)

Jason McEwen 35
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Denoising diffusion models

Denoising diffusion models (Ho et al. 2020, Song & Ermon 2020).

® Forward / noising process

Sample data p(x,) =+ turn to noise

13 E E L8
Po(Xo) i g i §
X1

Clean Xg

pr(x)~N (0,1

Pure

Xr-1 X "
sample hoise

® Reverse [ denoising process

Learn data distribution.

Consider as a deep generative prior for solving inverse problems.

Jason McEwen 36
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Approximate posterior sampling with diffusion models / score matching

Combine generative prior with likelihood to solve inverse problems.

Probabilistic mass mapping with neural score estimation (Remy et al. 2023).
> Learn score Vlog p,,(X) = (Dy2(X) — X)/0?.
> Combine with convolved likelihood log p,2(y|x) and sample with annealed HMC
approach.

Kaiser-Squires Posterior Sample. Posterior Mean (400)

0.150 0.150
0125 0125
0.100 0.100
0,075 0,075
§22 0050 B, 0,050 EZZ

2 0025 y 0.025
0.000 0.000
0025 —0.025
~0.050 ~0.050 o

4 : R s
150.8150.6150.4150.2150.0149 8149.6149 4.

4 e 4
150.8150.6150.4150.2150.0149.8149.6149.4 150.8150.6150.4150.2150.0149.8149.6149.4
RA A

4
150.8150.6150.4150.2150.0149.8149.6149.4
RA

Reconstructed mass maps of dark matter (Remy et al. 2023)

Jason McEwen
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Diffusion posterior sampling

Diffusion posterior sampling is a highly active area of research
(see Daras et al. 2024 for a recent survey).

Likelihood is analytically intractable due to dependence of diffusion process on time
(Chung et al. 2022). Hence, various approximations considered.

& Diffusion models are highly expressive

© Slow
© Approximate posterior samples

Jason McEwen 38
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GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Jason McEwen 39
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GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Challenges:
© Difficult to train
© suffer from mode collapse
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GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Challenges:
© Difficult to train
© suffer from mode collapse

Solutions:

® Wasserstein loss (Arjovsky et al. 2017)
& Regularisation (Bendel et al. 2023)

Jason McEwen 39
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Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by rewarding sampling diversity (Bendel
et al. 2023).

Jason McEwen 40
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Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by rewarding sampling diversity (Bendel
et al. 2023).

Add regularisation to loss:
Lieg(0) = L1,p(0) — BLsp,p(O) ,

where

L1p(0) =Exz,.. zylX —Xpyllh and  Lspp(x) =, [ 5p(p — 1) Z}EZW zyllXi =Xyl

and with Xy denoting P-averaged samples

Jason McEwen 40
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Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by rewarding sampling diversity (Bendel
et al. 2023).

Add regularisation to loss:
Lieg(0) = L1,p(0) — BLsp,p(O) ,

where

p
N ™ S
L1p(0) =Exz,..2oylIX = Xpylli and  Lspp(x) = 1/m ZEZMH-vaayHXi — Xyl
i—1

and with Xy denoting P-averaged samples.

Recover first two moments of true posterior (Bendel et al. 2023)

First two moments of the approximated posterior (mean and variance)
(under Gaussian assumptions).

Jason McEwen 40
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MM-GAN for mapping dark matter

Adapted conditional regularised GANs to mass mapping dark matter
(Whitney et al. McEwen 2025).

]

Shear Latent Code Approximate

B Convergence
g ? Tanpose |
| Residual S || 3oy Conv B i conv
Block PECLU o | Stride 2 Batch Norm |
’ ¢ | PReLU |

Pseudo- Posterior

Sample

MM-GAN for mass mapping dark matter
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MM-GAN for mapping dark matter

MMGAN (Ours) MMGAN Uncertainty (Ours)
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MM-GAN for mapping dark matter

Pearsont RMSE | PSNR 1

MMGAN (Ours) 0.727 0.0197 34.106
Kaiser-Squires 0.619 0.0229 32.803
Kaiser-Squires * 0.57 0.0240 =
Wiener filter * 0.61 0.0231 =
GLIMPSE * 0.42 0.0284 =
MCAlens * 0.67 0.0219 =
DeepMass * 0.68 0.0218 =
DLPosterior * 0.68 0.0216 =
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RI-GAN for radio interferometric imaging

Introduce physical model of measurement operator in architecture
(Mars et al. McEwen 2025).

Generator
Telescope
Telescope  Measurements  Model

Generated Image

Latent Code

Discriminator

RI-GAN for radio interferometric imaging
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RI-GAN for radio interferometric imaging

Physics-informed architecture improves reconstruction fidelity.

60 \\
. \ ( ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b )
//\

EE Train
0 [ Test

U-Net GU-Net
RI-GAN RI-GAN

RI-GAN for radio interferometric imaging (left: UNet without physics; right: GUNet with physics)
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RI-GAN for radio interferometric imagin

Physics-informed architecture improves reconstruction fidelity substantially for
out-of-distribution settings.

Ground truth Dirty image CLEAN image
N

SNR: 25.24dB
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Conditional regularised GANs for inverse imaging

& GANSs are highly expressive
® Fast

© Guarantees for Gaussian case but otherwise approximate posterior samples
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UQ overview

1. Direct UQ estimation

@ Fast

© Heuristic with no statistical guarantees

2. PnP UQ estimation
® rast

@ Statistical guarantees by leveraging convexity
© Restricted to HPD-related UQ

3. Unrolled generative UQ estimation

@ Frast (GANs): Slow (diffusion models)
© Target posterior samples but no statistical guarantees (guarantees in Gaussian setting for
GANS)
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Coverage testing

Compute coverage plots to validate.

> Compute a credible interval.
> Check empirically the frequency that ground truth within interval.

[EN
o

Coverage
o
€2}

S
o

1 1 1 1 1 L PR R
Credibility
Jason McEwen 49


http://www.jasonmcewen.org

Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)
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Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

No!
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Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

No!
Observed vs. Target Coverage Probability
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Coverage analysis for radio interferometry

Bayesian imaging for radio interferometry with score-based priors (Dia et al. 2023).
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Coverage analysis for mass mapping of dark matter

Mass mapping with diffusion posterior sampling (Anonymous submission to ML4PS,
NeurlPs 2025).
> Introduce an ad hoc likelihood scaling approach to down weight the likelihood at

early stages of diffusion.
> Works reasonably well but is ad hoc, with no statistical guarantees.

TARP test
1.0 1 e — 1 & 3 o + J—
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8029 | ~* —:- Standard DPS
004 ,'/‘/ —+= DPS w/ rescaling

0.0 0.2 0.4 0.6 0.8 1.0
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Calibrate uncertainties with conformal prediction

Conformal prediction with Risk-Controlling Prediction Sets (RCPS)
(Bates et al. 2021, Angelopoulos et al. 2022).
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Calibrate uncertainties with conformal prediction

Conformal prediction with Risk-Controlling Prediction Sets (RCPS)
(Bates et al. 2021, Angelopoulos et al. 2022).

Given: estimatorf(x); lower interval length T(X); upper interval length O(x).
Construct uncertainty intervals around each pixel (m, n):
ITA(X)(m,n) = [f(X)(m,n) - /\?(X)(m,n)a}(x)(m,n) + )‘C’(X)(m,n) ] .

Find A to ensure interval contains the right number of pixels (exploiting Hoeffding's
bound).

Jason McEwen 53


http://www.jasonmcewen.org

Calibrate uncertainties with conformal prediction

> Distribution-free uncertainty quantification with statistical guarantees.

> = still need good initial
uncertainty estimates.

(Develop conformalised quantile regression for inverse problems and apply RCPS for
mass-mapping in Leterme, Fadili & Starck 2025.)
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Coverage tests with MM-GAN

Coverage testing and conformal prediction of MM-GAN for mass mapping of dark energy
(Whitney, Liaudat & McEwen, in prep.).
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Coverage tests with MM-GAN

Coverage testing and conformal prediction of MM-GAN for mass mapping of dark energy
(Whitney, Liaudat & McEwen, in prep.).

109 ---- Ideal
—e— Uncalibrated
—e=— Calibrated

> Extremely good coverage (without RCPS)
— regularization and theoretical guarantee in
idealised setting highly effective in practical setting.

> Optimal coverage after calibration with RCPS.

Pixel-wise Empirical Coverage Probability

0a o6
Credible Interval
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Summary




Inverse imaging problems typically ill-conditioned and ill-posted
= inject regularising prior, quantify uncertainty = Bayesian inference
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Inverse imaging problems typically ill-conditioned and ill-posted
= inject regularising prior, quantify uncertainty = Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:
(optimisation).
(robust and interpretable).
(enhance reconstruction fidelity).
(for scientific inference).
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Inverse imaging problems typically ill-conditioned and ill-posted
= inject regularising prior, quantify uncertainty = Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:

V] (optimisation).

(V) (robust and interpretable).

(V] (enhance reconstruction fidelity).
(V] (for scientific inference).

PnP with convexity (Liaudat et al. McEwen 2024) goes some way towards these aims.
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Inverse imaging problems typically ill-conditioned and ill-posted
= inject regularising prior, quantify uncertainty = Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:

V] (optimisation).

(V) (robust and interpretable).

(V] (enhance reconstruction fidelity).
(V] (for scientific inference).

PnP with convexity (Liaudat et al. McEwen 2024) goes some way towards these aims.

Regularised conditional GAN with physics and UQ calibration (Whitney et al. McEwen
2025, Mars et al. McEwen 2025) achieves goals:

(V] (many posterior samples in seconds).
(V] can be integrated in generator architecture.
(V] imaging since GANs are highly expressive.

(without calibration; RCPS for statistical guarantees).
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