The Alan Turing Institute

High-dimensional uncertainty quantification with deep data-driven priors

Jason McEwen Fundamental Research, Alan Turing Institute SciAI, Mullard Space Science Laboratory (MSSL), UCL

MINOAS workshop, FORTH, Heraklion, September 2025

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x))$$

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x)) \xrightarrow{\text{linear case}} y = \mathbf{\Phi}x + n$$

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\Phi(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \Phi x + n$,

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x)) \xrightarrow{\text{linear case}} y = \mathbf{\Phi}x + n$$

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x)) \xrightarrow{\text{linear case}} y = \mathbf{\Phi}x + n$$

for image x, deterministic measurement model Φ , and stochastic aspects of data acquisition encoded by statistical process \mathbb{P} .

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x)) \xrightarrow{\text{linear case}} y = \mathbf{\Phi}x + n$$

for image x, deterministic measurement model Φ , and stochastic aspects of data acquisition encoded by statistical process \mathbb{P} .

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\Phi(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \Phi x + n$,

for image x, deterministic measurement model Φ , and stochastic aspects of data acquisition encoded by statistical process \mathbb{P} .

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \mathbf{\Phi}x + n$,

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\Phi(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \Phi x + n$,

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\mathbf{\Phi}(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \mathbf{\Phi}x + n$,

for image x, deterministic measurement model Φ , and stochastic aspects of data acquisition encoded by statistical process \mathbb{P} .

Inverse problem model

Consider observations

$$y \sim \mathbb{P}(\Phi(x))$$
 $\xrightarrow{\text{linear case}}$ $y = \Phi x + n$,

for image x, deterministic measurement model Φ , and stochastic aspects of data acquisition encoded by statistical process \mathbb{P} .

Ill-conditioned and ill-posed problems

Inverse problems often ill-conditioned and ill-posed (in the sense of Hadamard):

- 1. Solution may not exist.
- 2. Solution may not be unique.
- 3. Solution may not be stable.

Ill-conditioned and ill-posed problems

Inverse problems often ill-conditioned and ill-posed (in the sense of Hadamard):

- 1. Solution may not exist.
- 2. Solution may not be unique.
- 3. Solution may not be stable.
- ▷ Inject regularising prior information

⇒ Bayesian inference

Bayesian inference

Bayes' theorem

for parameters x, model M and observed data y.

For **parameter estimation**, typically draw samples from the posterior by *Markov chain Monte Carlo (MCMC)* sampling.

Computational challenge of MCMC sampling can be prohibitive

- ▷ Parameter space high dimensional, i.e. $x \in \mathbb{R}^N$ with large N.
- ▷ Large data volume, *i.e.* $y \in \mathbb{R}^M$ with large M.
- ightarrow Computationally costly measurement operator $\mathbf{\Phi}: \mathbb{R}^N
 ightarrow \mathbb{R}^M$.

Computational challenge of MCMC sampling can be prohibitive

- ▷ Parameter space high dimensional, i.e. $x \in \mathbb{R}^N$ with large N.
- ▶ Large data volume, *i.e.* $y \in \mathbb{R}^M$ with large M.
- ho Computationally costly measurement operator $oldsymbol{\Phi}: \mathbb{R}^N o \mathbb{R}^M$.

In many settings we have one of these challenges... in some we have all!

Square Kilometre Array (SKA)

Artist impression of the Square Kilometer Array (SKA)

SKA sites

SKA data rates

8.5 Exabytes over the 15-year lifetime of initial high-priority science programmes (Scaife 2020).

All 3 computational challenges (high-dimensional, big-data, expensive operator).

Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

$$\hat{x}_{\text{MAP}} = \arg \max_{x} \left[\log p(x | y) \right] = \arg \min_{x} \left[\log p(y | x) + \lambda R(x) \right]$$
data fidelity regulariser

Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

$$\hat{x}_{\text{MAP}} = \arg\max_{\mathbf{x}} \left[\log p(\mathbf{x} | \mathbf{y}) \right] = \arg\min_{\mathbf{x}} \left[\log p(\mathbf{y} | \mathbf{x}) + \lambda R(\mathbf{x}) \right]$$
data fidelity regulariser

- ightharpoonup Log-likelihood (data fidelity) encodes physics through measurement operator Φ and statistical acquisition model \mathbb{P} .
- Regulariser encodes prior.

Recover point estimator by optimisation

Consider MAP point estimator by solving variation regularisation problem:

$$\hat{x}_{MAP} = \arg\max_{x} \left[\log p(x|y) \right] = \arg\min_{x} \left[\log p(y|x) + \lambda R(x) \right]$$
data fidelity regulariser

- ightharpoonup Log-likelihood (data fidelity) encodes physics through measurement operator Φ and statistical acquisition model \mathbb{P} .
- ▷ Regulariser encodes prior.
- But fails to capture uncertainty.
- Hand-crafted priors (not expressive) considered traditionally.

Goals

- **⊘** Computationally efficient (optimisation).
- Physics-informed (robust and interpretable).
- Expressive data-driven Al priors (enhance reconstruction fidelity).
- Quantify uncertainties (for scientific inference).

Interdisciplinary solution

Outline

1. Physics
$$+ AI$$

2. Physics
$$+ AI + UQ$$

3. Physics
$$+ AI + UQ + Calibration$$

${\sf Physics} + {\sf AI}$

Learned inverse imaging

Learned post-processing

Learned inverse imaging

Learned post-processing

 n_{PnP} iterations

Plug-and-Play (PnP)

Learned inverse imaging

Unrolled $(n_{\text{unrolled}} \ll n_{\text{PnP}})$

Learned post-processing: pre-UNet

▷ Allam Jn & McEwen (2016): RI imaging using super-resolution CNN with fixed measurement operator (uv coverage)

Learned post-processing: post-UNet

- ▶ Terris et al. (2019): RI imaging using UNet
- ► Mars, Betcke & McEwen (2024): RI imaging using UNet with varying measurement operator (varying coverage)

PSNR for different strategies to adapt to varying operator (uv coverage).

Learned post-processing: post-UNet

Gallery of UNet reconstructions for different strategies to adapt to varying operator (uv coverage).

PnP

- ▶ Venkatakrishnan et al. (2013), Ryu et al. (2019)
- ▶ Terris et al. (2022, 2024): introduced AIRI
- ▶ Aghabiglou et al. (2022, 2024): R2D2 series of networks trained sequentially
- ▶ McEwen et al. papers in prep.: Optimus Primal, QuantifAl (Python), PURIFY (distributed, C++)

GitHub: https://github.com/
astro-informatics/purify

GitHub: https://github.com/
 astro-informatics/sopt

Unrolled

Unrolled approaches (Gregor & LeCun 2010):

- \bigcirc Trained end-to-end \rightarrow excellent performance.
- Typically many expensive measurement operator applications during training.
- Require differentiable measurement operator.

Unrolled

Unrolled approaches (Gregor & LeCun 2010):

- \bigcirc Trained end-to-end \rightarrow excellent performance.
- Typically many expensive measurement operator applications during training.
- Require differentiable measurement operator.

Introduce Gradient UNet (GUNet) to solve scalability of unrolled approaches, with a multi-resolution measurement operator (Mars et al. 2024, 2025).

Unrolled

Post-processing (UNet) \rightarrow Unrolled (GUNet): significantly improves reconstruction fidelity and robustness to varying measurement operator (visibility coverage).

PSNR for different strategies to adapt to varying operator (uv coverage).

Unrolled

Gallery of GUNet reconstructions for different strategies to adapt to varying operator (uv coverage).

${\sf Physics} + {\sf AI} + {\sf UQ}$

UQ outline

- 1. Direct UQ estimation
- 2. PnP UQ estimation
- 3. Unrolled generative UQ estimation

Estimating UQ summary statistics

Train a network to estimate a summary statistic:

- ▶ Magnitude of residual: train a network to estimate residuals.
- ▶ Gaussian per pixel: train a network to estimate the standard deviation.
- ▷ Classification for regression ranges: train a classifier with softmax output to estimate distribution of pixel values.
- Pixelwise quantile regression: train network to estimate lower/upper quantiles for $1-\alpha$ uncertainty level, using quantile (pinball) loss.

Heuristic \rightarrow no statistical guarantees.

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} d\mathbf{x} = 1 - \alpha.$$

Consider the highest posterior density (HPD) region

$$C_{\alpha}^* = \{x : -\log p(x) \le \gamma_{\alpha}\}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(x \in C_{\alpha}^* | y) = 1 - \alpha \text{ holds.}$$

Convex probability concentration for uncertainty quantification

Posterior credible region:

$$p(\mathbf{x} \in C_{\alpha}|\mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^N} p(\mathbf{x}|\mathbf{y}) \mathbb{1}_{C_{\alpha}} d\mathbf{x} = 1 - \alpha.$$

Consider the highest posterior density (HPD) region

$$C_{\alpha}^* = \{x : -\log p(x) \le \gamma_{\alpha}\}, \text{ with } \gamma_{\alpha} \in \mathbb{R}, \text{ and } p(x \in C_{\alpha}^* | y) = 1 - \alpha \text{ holds.}$$

Bound of HPD region for log-concave distributions (Pereyra 2017)

Suppose the posterior $\log p(\mathbf{x}|\mathbf{y}) \propto \log \mathcal{L}(\mathbf{x}) + \log \pi(\mathbf{x})$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4\mathrm{e}^{\mathbb{I}}(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{C}_{\alpha} = \left\{ \mathbf{X} : \log \mathcal{L}(\mathbf{X}) + \log \pi(\mathbf{X}) \leq \hat{\gamma}_{\alpha} = \log \mathcal{L}(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \log \pi(\hat{\mathbf{X}}_{\mathsf{MAP}}) + \sqrt{N}\tau_{\alpha} + N \right\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

Need only evaluate $\log \mathcal{L} + \log \pi$ for the MAP estimate \hat{x}_{MAP} !

Leverging the approximate HPD region for UQ

Leverging the approximate HPD region for UQ

Hypothesis testing

Hypothesis testing of physical structure

(Pereyra 2017; Cai, Pereyra & McEwen 2018a)

- 1. Remove structure of interest from recovered image x^* .
- 2. Inpaint background (noise) into region, yielding surrogate image x'.
- 3. Test whether $x' \in C_{\alpha}$:
 - If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1 \alpha)\%$, *i.e.* structure most likely physical.
 - If $x' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical nature of the structure.

Local Bayesian credible intervals

Local Bayesian credible intervals for sparse reconstruction

(Cai, Pereyra & McEwen 2018b)

Let Ω define the area (or pixel) over which to compute the credible interval $(\tilde{\xi}_-, \tilde{\xi}_+)$ and ζ be an index vector describing Ω (i.e. $\zeta_i = 1$ if $i \in \Omega$ and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ :

$$x' = x^*(\mathcal{I} - \zeta) + \xi \zeta.$$

Given $\tilde{\gamma}_{\alpha}$ and x^{\star} , compute the credible interval by

$$\begin{split} \tilde{\xi}_{-} &= \min_{\xi} \left\{ \xi \mid \log \mathcal{L}(\mathbf{X}') + \log \pi(\mathbf{X}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}, \\ \tilde{\xi}_{+} &= \max_{\xi} \left\{ \xi \mid \log \mathcal{L}(\mathbf{X}') + \log \pi(\mathbf{X}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}. \end{split}$$

Convex data-driven AI prior

Adopt neural-network-based convex regulariser *R* (Goujon *et al.* 2022; Liaudat *et al.* McEwen 2024):

$$R(\mathbf{x}) = \sum_{n=1}^{N_c} \sum_{k} \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- $\triangleright \psi_n$ are learned convex profile functions with Lipschitz continuous derivative;
- $\triangleright N_C$ learned convolutional filters h_n .

Convex data-driven Al prior

Adopt neural-network-based convex regulariser *R* (Goujon *et al.* 2022; Liaudat *et al.* McEwen 2024):

$$R(\mathbf{x}) = \sum_{n=1}^{N_c} \sum_{k} \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- $\triangleright \psi_n$ are learned convex profile functions with Lipschitz continuous derivative;
- $\triangleright N_C$ learned convolutional filters h_n .

Properties:

- 1. Convex + explicit potential \Rightarrow leverage convex UQ theory.
- Smooth regulariser with known Lipschitz constant ⇒ theoretical convergence guarantees.

Reconstructed images

Hypothesis testing of structure

Reconstructed image

(Liaudat et al. McEwen 2024)

Hypothesis testing of structure

Hypothesis testing of structure

Reject null hypothesis \Rightarrow structure physical

0.0

-0.5

-1.0

-1.5

(Liaudat et al. McEwen 2024)

Approximate local Bayesian credible intervals

. 6.

LCI (super-pixel size 4 × 4)

MCMC standard deviation (super-pixel size 4 × 4)

 $10^3 \times$ faster than MCMC sampling

(Liaudat et al. McEwen 2024)

QuantifAl code

Github: https://github.com/astro-informatics/QuantifAI

PyTorch: Automatic differentiation (including instrument model) + GPU acceleration

Exascale imaging codes

Sparse OPTimisation Library

GitHub:

https://github.com/astro-informatics/purify

GitHub.

https://github.com/astro-informatics/sopt

Leveraging generative AI

Bring generative AI to bear to generate approximate posterior samples but in a physics-informed manner.

Consider two approaches:

- ▶ Denoising diffusion models
- ▷ Generative adversarial networks (GANs)

Denoising diffusion models

Denoising diffusion models (Ho et al. 2020, Song & Ermon 2020).

Learn data distribution.

Consider as a **deep generative prior** for solving inverse problems.

Approximate posterior sampling with diffusion models / score matching

Combine generative prior with likelihood to solve inverse problems.

Probabilistic mass mapping with neural score estimation (Remy et al. 2023).

- \triangleright Learn score $\nabla \log p_{\sigma_2}(\mathbf{x}) = (D_{\sigma^2}(\mathbf{x}) \mathbf{x})/\sigma^2$.
- ightharpoonup Combine with convolved likelihood $\log p_{\sigma_l^2}(\boldsymbol{y}\,|\,\boldsymbol{x})$ and sample with annealed HMC approach.

Reconstructed mass maps of dark matter (Remy et al. 2023)

Diffusion posterior sampling

Diffusion posterior sampling is a highly active area of research (see Daras *et al.* 2024 for a recent survey).

Likelihood is analytically intractable due to dependence of diffusion process on time (Chung *et al.* 2022). Hence, various **approximations** considered.

- Diffusion models are highly expressive
- Slow
- Approximate posterior samples

GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Challenges:

- Difficult to train
- Suffer from mode collapse

GANs for approximate posterior sample generation

GANs very good for high-fidelity generation.

Challenges:

- Difficult to train
- Suffer from mode collapse

Solutions:

- ✓ Wasserstein loss (Arjovsky et al. 2017)

Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by **rewarding sampling diversity** (Bendel *et al.* 2023).

Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by **rewarding sampling diversity** (Bendel *et al.* 2023).

Add regularisation to loss:

$$\mathcal{L}_{reg}(\boldsymbol{\theta}) = \mathcal{L}_{1,P}(\boldsymbol{\theta}) - \beta \mathcal{L}_{SD,P}(\boldsymbol{\theta})$$
,

where

$$\mathcal{L}_{1,P}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x},\mathbf{z}_1,...,\mathbf{z}_P,\mathbf{y}} \|\mathbf{x} - \hat{\mathbf{x}}_{(P)}\|_1 \quad \text{and} \quad \mathcal{L}_{\text{SD},P}(\mathbf{x}) = \sqrt{\frac{\pi}{2P(P-1)}} \sum_{i=1}^P \mathbb{E}_{\mathbf{z}_1,...,\mathbf{z}_P,\mathbf{y}} \|\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_{(P)}\|_1 \;,$$

and with $\hat{x}_{(P)}$ denoting P-averaged samples.

Conditional regularised GANs

For inverse imaging problems, condition on observed data y.

Introduce regularisation to avoid mode collapse by **rewarding sampling diversity** (Bendel *et al.* 2023).

Add regularisation to loss:

$$\mathcal{L}_{reg}(\boldsymbol{\theta}) = \mathcal{L}_{1,P}(\boldsymbol{\theta}) - \beta \mathcal{L}_{SD,P}(\boldsymbol{\theta})$$
,

where

There
$$\mathcal{L}_{1,P}(m{ heta}) = \mathbb{E}_{\mathbf{x},\mathbf{z}_1,...,\mathbf{z}_P,\mathbf{y}} \|\mathbf{x} - \hat{\mathbf{x}}_{(P)}\|_1 \quad \text{and} \quad \mathcal{L}_{\text{SD},P}(\mathbf{x}) = \sqrt{\frac{\pi}{2P(P-1)}} \sum_{i=1}^P \mathbb{E}_{\mathbf{z}_1,...,\mathbf{z}_P,\mathbf{y}} \|\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_{(P)}\|_1 \,,$$

and with $\hat{x}_{(P)}$ denoting P-averaged samples.

Recover first two moments of true posterior (Bendel et al. 2023)

First two moments of the approximated posterior (mean and variance) match the true posterior (under Gaussian assumptions).

MM-GAN for mapping dark matter

Adapted conditional regularised GANs to mass mapping dark matter (Whitney *et al.* McEwen 2025).

MM-GAN for mass mapping dark matter

MM-GAN for mapping dark matter

Jason McEwen

Classical case

Generative posterior samples

MM-GAN for mapping dark matter

	Pearson ↑	$RMSE\downarrow$	PSNR↑
MMGAN (Ours)	0.727	0.0197	34.106
Kaiser-Squires	0.619	0.0229	32.803
Kaiser-Squires *	0.57	0.0240	-
Wiener filter *	0.61	0.0231	-
GLIMPSE *	0.42	0.0284	-
MCAlens *	0.67	0.0219	-
DeepMass *	0.68	0.0218	-
DLPosterior *	0.68	0.0216	-

RI-GAN for radio interferometric imaging

Introduce **physical model of measurement operator** in architecture (Mars *et al.* McEwen 2025).

RI-GAN for radio interferometric imaging

Physics-informed architecture improves reconstruction fidelity.

RI-GAN for radio interferometric imaging (left: UNet without physics; right: GUNet with physics)

RI-GAN for radio interferometric imaging

Physics-informed architecture improves reconstruction fidelity substantially for out-of-distribution settings.

Conditional regularised GANs for inverse imaging

- GANs are highly expressive
- **⊘** Fast
- **❸** Guarantees for Gaussian case but otherwise approximate posterior samples

UQ overview

- 1. Direct UQ estimation
 - **⊘** Fast
 - Heuristic with no statistical guarantees
- 2. PnP UQ estimation
 - **⊘** Fast
 - Statistical guarantees by leveraging convexity
 - Restricted to HPD-related UQ
- 3. Unrolled generative UQ estimation
 - ✓ Fast (GANs); Slow (diffusion models)
 - Target posterior samples but no statistical guarantees (guarantees in Gaussian setting for GANs)

Physics + AI + UQ + Calibration

Coverage testing

Compute coverage plots to validate.

- ▷ Compute a credible interval.
- ▶ Check empirically the frequency that ground truth within interval.

Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

No!

Coverage analyses starting to be performed

Do Bayesian imaging methods report trustworthy probabilities? (Thong et al. 2024)

No!

Coverage analysis for radio interferometry

Bayesian imaging for radio interferometry with score-based priors (Dia et al. 2023).

Coverage analysis for mass mapping of dark matter

Mass mapping with diffusion posterior sampling (Anonymous submission to ML4PS, NeurlPs 2025).

- ▶ Introduce an ad hoc likelihood scaling approach to down weight the likelihood at early stages of diffusion.
- ▶ Works reasonably well but is ad hoc, with no statistical guarantees.

Calibrate uncertainties with conformal prediction

Conformal prediction with Risk-Controlling Prediction Sets (RCPS) (Bates *et al.* 2021, Angelopoulos *et al.* 2022).

Calibrate uncertainties with conformal prediction

Conformal prediction with Risk-Controlling Prediction Sets (RCPS) (Bates *et al.* 2021, Angelopoulos *et al.* 2022).

Given: estimator $\hat{f}(x)$; lower interval length $\hat{l}(x)$; upper interval length $\hat{u}(x)$.

Construct uncertainty intervals around each pixel (m, n):

$$\mathcal{T}_{\lambda}(\mathbf{x})_{(m,n)} = [\hat{f}(\mathbf{x})_{(m,n)} - \lambda \hat{l}(\mathbf{x})_{(m,n)}, \hat{f}(\mathbf{x})_{(m,n)} + \lambda \hat{u}(\mathbf{x})_{(m,n)}].$$

Find λ to ensure interval contains the right number of pixels (exploiting Hoeffding's bound).

Calibrate uncertainties with conformal prediction

- Distribution-free uncertainty quantification with statistical guarantees.
- ▶ Guaranteed to be valid but not necessarily useful ⇒ still need good initial uncertainty estimates.

(Develop conformalised quantile regression for inverse problems and apply RCPS for mass-mapping in Leterme, Fadili & Starck 2025.)

Coverage tests with MM-GAN

Coverage testing and conformal prediction of MM-GAN for mass mapping of dark energy (Whitney, Liaudat & McEwen, in prep.).

Coverage tests with MM-GAN

Coverage testing and conformal prediction of MM-GAN for mass mapping of dark energy (Whitney, Liaudat & McEwen, in prep.).

▷ Extremely good coverage (without RCPS)

- → regularization and theoretical guarantee in idealised setting highly effective in practical setting.
- ▷ Optimal coverage after calibration with RCPS.

Inverse imaging problems typically ill-conditioned and ill-posted ⇒ inject regularising prior, quantify uncertainty ⇒ Bayesian inference

Inverse imaging problems typically ill-conditioned and ill-posted

 \Rightarrow inject regularising prior, quantify uncertainty \Rightarrow Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:

- Computationally efficient (optimisation).
- Physics-informed (robust and interpretable).
- Expressive data-driven Al priors (enhance reconstruction fidelity).
- Quantify uncertainties (for scientific inference).

Inverse imaging problems typically ill-conditioned and ill-posted

 \Rightarrow inject regularising prior, quantify uncertainty \Rightarrow Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating goals:

- Computationally efficient (optimisation).
- Physics-informed (robust and interpretable).
- Expressive data-driven AI priors (enhance reconstruction fidelity).
- Quantify uncertainties (for scientific inference).

PnP with convexity (Liaudat et al. McEwen 2024) goes some way towards these aims.

Inverse imaging problems typically ill-conditioned and ill-posted

 \Rightarrow inject regularising prior, quantify uncertainty \Rightarrow Bayesian inference

MCMC sampling computationally infeasible for many problems, motivating **goals**:

- Computationally efficient (optimisation).
- Physics-informed (robust and interpretable).
- Expressive data-driven AI priors (enhance reconstruction fidelity).
- Quantify uncertainties (for scientific inference).

PnP with convexity (Liaudat et al. McEwen 2024) goes some way towards these aims.

Regularised conditional GAN with physics and UQ calibration (Whitney *et al.* McEwen 2025, Mars *et al.* McEwen 2025) achieves goals:

- Fast (many posterior samples in seconds).
- **Physics** can be integrated in generator architecture.
- **❷** High fidelity imaging since GANs are highly expressive.
- Excellent coverage (without calibration; RCPS for statistical guarantees).