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ABSTRACT

We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented struc-
ture in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of
a signal from its wavelet coefficients. We present exact and efficient algorithms to compute the scale-discretized
wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly avail-
able S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations.
Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline
future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem
on the sphere developed recently by some of the authors.

Keywords: Sphere, sampling theorem, wavelet transform.

1. INTRODUCTION

Wavelets on the sphere have found widespread application in fields such as cosmology (e.g. Ref. 1) and geophysics
(e.g. Ref. 2), where data are observed on a spherical domain. The ability of wavelets to probe spatially localized,
scale-dependent features in signals has become an instrumental tool to relate data to physical theories, as many
physical processes are spatially localised but manifest on particular physical scales. Since such data-sets are of
considerable size, often containing tens of millions of pixels, efficient algorithms are also of central importance.

Many wavelet transforms on the sphere have been developed.3–15 Of particular note are so-called needlets,
which have been applied extensively to the analysis of observations of the cosmic microwave background (CMB).
Needlets have found broad application since they exhibit many useful properties and the needlet transform can
be computed relatively straightforwardly. However, needlets are axisymmetric wavelets and thus cannot be used
to probe directional or oriented structure in data on the sphere.

In this article we review the scale-discretized wavelets on the sphere developed by Wiaux et al.,16 which
were developed independently of needlets, about the same time, and which share many of the useful properties of
needlets. However, scale-discretized wavelets are also directional, allowing one to probe oriented structure in data.
Directional wavelets are very useful for the analysis of signals on the sphere with oriented structure; for example,
the CMB fluctuations induced by cosmic strings,17,18 a well-motivated but as yet unobserved phenomenon.
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In addition to reviewing scale-discretized wavelets on the sphere, we present exact and efficient algorithms
to compute the corresponding wavelet analysis and synthesis, i.e. the forward and inverse wavelet transform re-
spectively. These algorithms are implemented in the publicly available S2DW∗ code. Although the S2DW package
has been available publicly for some time, these algorithms have not yet been described in the literature. Fur-
thermore, we release a new version (1.1) of S2DW that is parallelized and contains additional code optimizations.

The remainder of this article is organized as follows. In Sec. 2 we review the scale-discretized wavelet transform
on the sphere. In Sec. 3 we present our algorithms to compute the wavelet transform exactly and efficiently.
Numerical experiments are also performed to evaluate the speed and accuracy of the algorithms. Concluding
remarks are made in Sec. 4, where we also outline future optimizations of the algorithms by exploiting recent
developments19 made by some of the authors pertaining to sampling theorems on the sphere.

2. DIRECTIONAL SCALE-DISCRETIZED WAVELETS

The directional scale-discretized wavelet transform supports the analysis of oriented spatially localised, scale-
dependent features in signals on the sphere. In this section we review the scale-discretized wavelet framework on
the sphere developed by Wiaux et al..16 Firstly, we review the wavelet transform itself, before secondly reviewing
the construction of admissible scale-discretized wavelets.

2.1 Wavelet transform

The scale-discretized wavelet transform of a function f ∈ L2(S2) on the sphere S2 is defined by the directional

convolution of f with the wavelet Ψj ∈ L2(S2). The wavelet coefficients WΨj ∈ L2(SO(3)) thus read

WΨj

(ρ) ≡ (f ?Ψj)(ρ) = 〈f, RρΨj〉 =

∫
S2

dΩ(ω)f(ω)(RρΨj)∗(ω) , (1)

where ω = (θ, ϕ) ∈ S2 denotes spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π),
dΩ(ω) = sin θ dθ dϕ is the usual rotation invariant measure on the sphere, and ·∗ denotes complex conjugation.
The rotation operator is defined by

(RρΨj) ≡ Ψj(R−1
ρ · ω) , (2)

where Rρ is the three-dimensional rotation matrix corresponding to Rρ. Rotations are specified by elements of
the rotation group SO(3), parameterized by the Euler angles ρ = (α, β, γ) ∈ SO(3), with α ∈ [0, 2π), β ∈ [0, π]
and γ ∈ [0, 2π). We adopt the zyz Euler convention corresponding to the rotation of a physical body in a fixed
coordinate system about the z, y and z axes by γ, β and α, respectively. The wavelet transform Eqn. (1) thus
probes directional structure in the signal of interest f , where γ corresponds to the orientation about each point
on the sphere (θ, ϕ) = (β, α).

The wavelet scale j ∈ N0 encodes the localization extent of Ψj , which is closely related to the wavelet
construction and is discussed in Sec. 2.2. For now it is sufficient to note that the wavelet scales j are discrete
(hence the name scale-discretized wavelets), which affords the exact synthesis of a function from its wavelet (and
scaling) coefficients.

The wavelet coefficients encode only the high-frequency, detail information contained in the signal f ; scaling
coefficients must be introduced to represent the low-frequency, approximation information of the signal. The
scaling coefficients WΦ ∈ L2(S2) are given by the convolution of f with the axisymmetric scaling function
Φ ∈ L2(S2) and read

WΦ(ω) ≡ (f ? Φ)(ω) = 〈f, RωΦ〉 =

∫
S2

dΩ(ω′)f(ω′)(RωΦ)∗(ω′) , (3)

whereRω = R(ϕ,θ,0). Note that the scaling coefficients live on the sphere, and not the rotation group SO(3), since
we do not probe the directional structure of the low-frequency, approximation information of f . An extension to
a directional scaling function could be made trivially, however it is not of significant practical use. Typically, a

∗http://www.s2dw.org/

2

http://www.s2dw.org/


signal of interest is decomposed into its scaling and wavelet coefficients and the wavelet coefficients are analyzed
or manipulated, while the scaling coefficients remain untouched.

Provided an admissibility condition holds, the signal f can be synthesised perfectly from its wavelet and
scaling coefficients by

f(ω) = 2π

∫
S2

dΩ(ω′)WΦ(ω′)(Rω′LdΦ)(ω) +

J∑
j=0

∫
SO(3)

d%(ρ)WΨj

(ρ)(RρLdΨj)(ω) , (4)

where d%(ρ) = sinβ dα dβ dγ is the usual invariant measure on SO(3) and J is the maximum analysis depth
considered, i.e. 0 ≤ j ≤ J (discussed in more detail in Sec. 2.2). The operator Ld is defined by its action on the
harmonic coefficients of functions h ∈ L2(S2):

(Ldh)`m ≡
2`+ 1

8π2
h`m . (5)

where h`m = 〈h, Y`m〉 are the spherical harmonic coefficients of h and Y`m ∈ L2(S2) are the spherical harmonics20

with ` ∈ N0 and m ∈ Z, such that |m| ≤ `.
The admissibility condition under which a function f can be synthesised perfectly from its wavelet and scaling

coefficients is given by the following resolution of the identity:

|Φ`0|2 +

J∑
j=0

∑̀
m=−`

|Ψj
`m|

2 = 1 , ∀` , (6)

where Φ`0δm0 = 〈Φ, Y`m〉 and Ψj
`m = 〈Ψ, Y`m〉 are the spherical harmonic coefficients of Φ and Ψj , respectively.

Typically, we consider band-limited functions, i.e. functions such that f`m = 0, ∀` ≥ L, where f`m = 〈f, Y`m〉,
for which case wavelet analysis and synthesis can be computed exactly in practice (see Sec. 3).

2.2 Wavelet construction

The scale-discretized wavelets are constructed in such a way to ensure the admissibility criterion Eqn. (6) is
satisfied. Furthermore, the wavelets are defined in harmonic space in the factorized form:

Ψj
`m ≡ κ

j(`)s`m , (7)

in order to essentially control their angular and directional localization separately, through the kernel κj and
directionality component, with harmonic coefficients s`m, respectively; we discuss each in turn.

Without loss of generality, the directionality component s ∈ L2(S2), with harmonic coefficients s`m = 〈s, Y`m〉,
is defined to impose ∑

|m|≤`

|s`m|2 = 1 , (8)

for all values of ` for which s`m are non-zero for at least one value of m. The angular localisation properties
of the wavelet Ψj are then controlled largely by the kernel and to a lesser extent by the directional component,
while the directional component controls precisely the directional properties of the wavelet (i.e. the behaviour
of the wavelet with respect to the azimuthal variable ϕ, when centered on the North pole). Furthermore, we
impose the zero-mean condition s00 = 0 and an azimuthal band-limit N on the directional component such that
s`m = 0, ∀`,m with |m| ≥ N .

As soon as one imposes an azimuthal band-limit, one recovers steerable wavelets,13,16,21 where the wavelet
rotated about itself (i.e. rotated about the z axis when centered on the North pole) can be expressed as a finite
weighted linear combination of wavelets specified at base orientations. This property is expressed equivalently
on the directional component s by

sγ(ω) =

M−1∑
g=0

z(γ − γg)sγg (ω) , (9)
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where sγ ≡ R(0,0,γ)s. The rotation angles γg are equispaced and are defined explicitly in Sec. 3.1. We consider
wavelets with even or odd azimuthal symmetry (i.e. even or odd symmetry when rotated about itself by π, when
centered on the North pole), in which case M = N . The interpolating function z(γ) is independent of s and is
defined by its Fourier coefficients zn which take particularly simple forms for wavelets with even/odd azimuthal
symmetry (see Ref. 16 for further detail). Due to the linearity of the wavelet transform, the steerability property
is transferred to the wavelet coefficients themselves, yielding

WΨj

(α, β, γ) =

M−1∑
g=0

z(γ − γg)WΨj

(α, β, γg) . (10)

Steerability is thus a very useful property for practical applications; for examples of steerable wavelet analyses
on the sphere see Refs. 22,23.

Following Ref. 16 we define the directionality coefficients to satisfy the criteria just discussed but also to
ensure a convenient form for the directional auto-correlation function of the wavelet, yielding

s`m = ηNβ(N,m)

√√√√ 1

2γ(N,`)

(
γ(N,`)

γ(N,`)−m
2

)
, (11)

with ηN = 1 for even values of N − 1, ηN = i =
√
−1 for odd values of N − 1, β(N,m) =

(
1− (−1)N+m

)
/2, and

γ(N,`) = min
{
N − 1, ` −

(
1 + (−1)N+`

)
/2
}

. With this definition one also recovers a wavelet with odd (even)
azimuthal symmetry for N even (odd).

The kernel κj(t) is a positive real function, with argument t ∈ R, although κ(t) is only evaluated for natural
arguments t = ` in Eqn. (7). The kernel controls the angular localization of the wavelet and is constructed to
be a smooth function with compact support, as follows. Consider the infinitely differentiable Schwartz function
with compact support t ∈ [α−1, 1], for dilation parameter α ∈ R+

∗ , α > 1:

sα(t) ≡ s
(

2α

α− 1
(t− α−1)− 1

)
, with s(t) ≡

{
exp
(
−(1− t2)−1

)
, t ∈ [−1, 1]

0, t /∈ [−1, 1]
. (12)

We then define the smoothly decreasing function kα by

kα(t) ≡
∫ 1

t
dt′

t′ s
2
α(t′)∫ 1

α−1
dt′

t′ s
2
α(t′)

, (13)

which is unity for t < α−1, zero for t > 1, and is smoothly decreasing from unity to zero for t ∈ [α−1, 1]. We
define the wavelet kernel generating function by

κα(t) ≡
√
kα(α−1t)− kα(t) , (14)

which has compact support t ∈ [α−1, α] and reaches a peak of unity at t = 1. The scale-discretized wavelet
kernel for scale j is then defined by

κj(`) ≡ κα(αjL−1`) , (15)

which has compact support on ` ∈
[
bα−(1+j)Lc, dα1−jLe

]
, where b·c and d·e are the floor and ceiling functions

respectively, and reaches a peak of unity at α−jL.† With this construction the kernel functions tile the harmonic
line, as illustrated in Fig. 1.

The maximum possible wavelet scale JL(α) is given by the lowest integer j for which the kernel peak occurs
at or below ` = 1, i.e. by the lowest integer value such that α−JL(α)L ≤ 1, yielding JL(α) = dlogα(L)e. All

†We adopt the same definition as Ref. 16 for the wavelet scales j, with increasing j corresponding to larger angular
scales, i.e. lower frequency content. Note that this differs to the definition adopted in Ref. 7 where increasing j corresponds
to smaller angular scales but higher frequency content.
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Figure 1. Scale-discretized wavelet tiling in harmonic space (L = 128, N = 3, J = 5, α = 2).

wavelets for j > JL(α) would be identically null as their kernel would have compact support in ` ∈ (0, 1). The
maximum scale to be probed by the wavelets J can be chosen within the range 0 ≤ J ≤ JL(α). For J = JL(α)
the wavelets probe the entire frequency content of the signal of interest f except its mean, encoded in f00.

To represent the signal content not probed by the wavelets the scaling function Φ is required, as discussed
previously. Recall that the scaling function Φ is chosen to be axisymmetric; hence, we define the harmonic
coefficients of the scaling function by

Φ`0 ≡
√
kα(αJL−1`) , (16)

in order to ensure the scaling function probes the signal content not probed by the wavelets.

For the wavelets, scaling function and scale parameter ranges outlined above, the admissibility criterion
Eqn. (6) is satisfied. Example directional scale-discretized wavelets are plotted in Fig. 2.

3. EXACT AND EFFICIENT COMPUTATION

We describe in this section the algorithms implemented in the S2DW‡ package to support the exact and efficient
computation of the scale-discretized wavelet transform on the sphere. We focus on the case of band-limited
signals, which admit exact quadrature rules for certain discretizations of the sphere S2 and rotation group
SO(3), leading to the exact computation of wavelet analysis and synthesis, i.e. forward and inverse transforms,
respectively. Furthermore, we exploit the factoring of rotations approach to develop fast algorithms for both
analysis and synthesis. Finally, we perform numerical experiments to illustrate the speed and accuracy of the
algorithms developed.

‡http://www.s2dw.org/
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(a) j = 0 (b) j = 1 (c) j = 2

(d) j = 3 (e) j = 4 (f) j = 5

Figure 2. Parametric plots of scale-discretized wavelets on the sphere (L = 128, N = 3, J = 5, α = 2).

3.1 Discretization and quadrature

The Driscoll and Healy sampling theorem24,25 is adopted in S2DW, with the corresponding cubature points:
θt = π(2t+ 1)/(4L), for t = 0, . . . , 2L− 1, and ϕp = 2πp/(2L− 1), for p = 0, . . . , 2L− 2, giving 4L2 samples on
the sphere. The Driscoll and Healy sampling theorem can be distilled into the following quadrature rule for the
exact integration over colatitude θ of a function f band-limited at 2L or below:∫ π

0

dθ sin θ f(θ, ·) =
2L−1∑
t=0

q(θt)f(θt, ·) , (17)

where the quadrature weights are given by24–26

q(θt) =
2

L
sin θt

L−1∑
k=0

sin((2k + 1)θt)

2k + 1
. (18)

We will also make use of exact quadrature for the following integration over longitude ϕ, for a function f
band-limited at L: ∫ 2π

0

dϕ exp(−imϕ) f(·, ϕ) =
2π

2L− 1

2L−2∑
p=0

exp(−imϕp)f(·, ϕp) , (19)

which follows from the continuous and discrete orthogonality of the complex exponentials.

We have so far considered the discretization of functions defined on the sphere S2; however, the wavelet
coefficients themselves are defined on the rotation group SO(3) (due to the directional nature of the wavelet
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transform). The Euler angles ρ = (α, β, γ) that parameterize SO(3) can be discretized by making the association
to the sphere (βb, αa) = (θt, ϕp), where the indices a and b vary over the same range as p and t respectively, and
by discretizing γ by γg = πg/N , for g = 0, . . . , N−1. Note that the wavelets constructed in Sec. 2.2 are invariant
under an azimuthal rotation by π (when centered on the North pole), hence it is only necessary to discretize γ
in the range [0, π).

Finally, we note that in order to recover exactness for the wavelet analysis and synthesis algorithms that
follow, we assume that the spherical harmonic coefficients of the function of interest can be computed exactly by
appealing to a sampling theorem on the sphere (e.g. the Driscoll & Healy sampling theorem24,25). In this setting
all algorithms are theoretically exact. If a sampling theorem is not available for the particular pixelization of the
sphere on which samples are taken (e.g. if one adopts the HEALPix pixelization scheme27), harmonic coefficients
can nevertheless be computed approximately and the algorithms presented below applied.

3.2 Wavelet analysis

The wavelet analysis given by Eqn. (1) may be expressed in harmonic space by

WΨj

(ρ) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

f`mΨj∗
`nD

`∗
mn(ρ) (20)

where the Wigner D-functions D`
mn are the matrix elements of the irreducible unitary representation of the

rotation group SO(3). Consequently, the D`∗
mn also form an orthogonal basis in L2(SO(3)). Since we consider

functions band-limited at L and directional wavelets with azimuthal band-limit N in what follows, the upper
limits of the summation over ` in Eqn. (20) can be truncated to L − 1 and the upper (lower) limit in the
summation over n can be truncated to N − 1 (−N + 1). Subsequently, we use the shorthand notation

∑
`mn to

represent this case. In general, for the sake of brevity and readability we do not specify the limits of summation
in the following, since the limits can be inferred easily. Since the computation of wavelet coefficients is expressed
in Eqn. (20) as a finite sum rather than an integral (thanks for the orthogonality of the spherical harmonics),
the wavelet coefficients may be computed exactly.

Wavelet analysis can be seen as an inverse Wigner transform, where the Wigner coefficients corresponding to
the wavelet coefficients are given by (

WΨj)`
mn

=
8π2

2`+ 1
f`mΨj∗

`n . (21)

Note that we have adopted the following convention for the Wigner transform: a function g ∈ L2(SO(3)) may
be expanded in terms of the basis functions D`∗

mn by

g(ρ) =
∑
`

2`+ 1

8π2

∑
mn

g`mnD
`∗
mn(ρ) , (22)

where the Wigner coefficients are given by

g`mn = 〈g, D`∗
mn〉 =

∫
SO(3)

d%(ρ)g(ρ)D`
mn(ρ) . (23)

Wavelet analysis can be computed efficiently using the factoring of rotations approach9,28,29 as first suggest
and computed in Ref. 9. We note the D-function decomposition in terms of the real d-functions:20

D`
mn(α, β, γ) = exp(−imα) d`mn(β) exp(−inγ) , (24)

and the Fourier expansion of the d`mn:

d`mn(β) = exp(−i(n−m)π/2)
∑
m′

∆`
m′m∆`

m′nexp(−im′β) , (25)
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which follows by a factoring of rotations,9,28,29 where ∆`
mn = d`mn(π/2). Substituting these expressions into

Eqn. (20) and interchanging the order summation, one finds:

WΨj

(ρ) =
∑
mm′n

Umm′n exp(i(mα+m′β + nγ)) , (26)

where
Umm′n = exp(i(n−m)π/2)

∑
`

∆`
m′m∆`

m′nf`mΨj∗
`n . (27)

The first step of the fast wavelet analysis algorithm is to compute Umm′n via Eqn. (27), which can be
computed with asymptotic complexity O(NL3). The next step is to compute wavelet coefficients from Umm′n via
Eqn. (26). In Ref. 9 a three-dimensional fast Fourier transform (FFT) was applied to perform this computation
efficiently. However, in that setting the discretization of the Euler angles (α, β, γ) was largely arbitrary since
wavelet synthesis was not considered (indeed, not possible in practice due to the continuous nature of the wavelet
transform considered). Here we must evaluate the wavelet coefficients at the sample positions for which we have
exact quadrature rules, as outlined in Sec. 3.1. We thus consider each Euler angle in turn and perform a
separation of variables to compute Eqn. (26) efficiently.

Firstly, consider the Euler angle γ:

Umm′(γ) =
∑
n

Umm′n exp(inγ) . (28)

Since the domain of interest for γ is [0, π) and the azimuthal band-limit N is often very low, i.e. N � L, this
summation is computed explicitly, with complexity O(N2L2).

Next, consider the Euler angle β:

Um(β, γ) =
∑
m′

Umm′(γ) exp(im′β) . (29)

Since we discretize β at the sample positions supported by the Driscoll and Healy sampling theorem, as specified
in Sec. 3.1, this summation is also computed explicitly, with complexity O(NL3).

Finally, consider the Euler angle α:

WΨj

(ρ) =
∑
m

Um(β, γ) exp(imα) . (30)

Since we are free to choose the discretization of α we ensure our choice is compatible with an FFT, so that the
complexity of this computation is reduced from O(NL3) for a direct computation to O(NL2 logL) by application
of an FFT.

To summarise, wavelet analysis given by Eqn. (1) can be computed exactly by its representation as a discrete
sum in harmonic space. Furthermore, we have described a fast algorithm for the exact computation of wavelet
coefficients by performing a factoring of rotations and separation of variables. This fast algorithm reduces the
complexity of computing wavelet coefficients for a given scale j from O(L5) to O(NL3). Since J + 1 wavelet
scales are considered, the overall complexity of computing all wavelet coefficients is O(JNL3). However, since
the wavelets themselves have compact support it is not necessary to perform all wavelet transforms at the full
band-limit L. Furthermore, the lower support of the wavelets can also be exploited to increase computational
efficiency. Following these optimizations the computation is dominated by the largest two scales. Hence, the
overall complexity of computing all wavelet transforms for all scales is effectively O(NL3).

We close this discussion of the computation of the wavelet transform by noting that scaling coefficients can
also be computed exactly and efficiently. Since the scaling coefficients are given by an axisymmetric convolution
via Eqn. (3), their harmonic coefficients are given by

WΦ
`m =

√
4π

2`+ 1
f`mΦ∗`0 , (31)

which can be computed in O(L2). The scaling coefficients can then be computed exactly in real space by
appealing to a sampling theorem on the sphere.

8



3.3 Wavelet synthesis

We first consider the contribution to the wavelet synthesis expression of Eqn. (4) from the wavelet coefficients.
Expressing this contribution in harmonic space one finds:

J∑
j=0

∫
SO(3)

d%(ρ)WΨj

(ρ)(RρLdΨj)(ω) =

J∑
j=0

∑
`mn

2`+ 1

8π2

(
WΨj)`

mn
Ψj
`nY`m(ω) , (32)

where (
WΨj)`

mn
= 〈WΨj

, D`∗
mn〉 =

∫
SO(3)

d%(ρ)WΨj

(ρ)D`
mn(ρ) . (33)

Thus, the wavelet coefficient contribution to the function synthesis can be computed exactly by Eqn. (32), with
complexity O(NL2) for each j (we consider all j at the end of this subsection) to compute the contribution to

the harmonic coefficients f`m, provided the Wigner coefficients
(
WΨj)`

mn
can be computed exactly. We therefore

turn our attention to the exact and efficient computation of Eqn. (33).

Eqn. (33) can also be computed efficiently using the factoring of rotations approach and a separation of
variables. Substituting the D-function decomposition Eqn. (24) and the Fourier expansion of d`mn Eqn. (25),
Eqn. (33) reads (

WΨj)`
mn

= exp(−i(n−m)π/2)
∑
m′

∆`
m′m∆`

m′nVmm′n , (34)

where

Vmm′n =

∫
SO(3)

d%(ρ)WΨj

(α, β, γ) exp(−i(mα+m′β + nγ)) . (35)

Note that Eqn. (34) can be computed exactly with complexity O(NL3). We next appeal to the quadrature rules
described in Sec. 3.1 to evaluate Eqn. (35) exactly, considering each Euler angle in turn.

Firstly, consider the Euler angle α. Appealing to the quadrature rule Eqn. (19), Eqn. (35) may be written:

Vmm′n =

∫ π

0

dβ sinβ

∫ 2π

0

dγ Vm(β, γ) exp(−i(m′β + nγ)) , (36)

where

Vm(β, γ) =
2π

2L− 1

∑
a

WΨj

(αa, β, γ) exp(−imαa) . (37)

The Euler angle α is discretized according to the scheme specified in Sec. 3.1, where a denotes the index associated
with α. Naively Eqn. (37) may be computed with O(NL3); however, we exploit an FFT to reduce this to
O(NL2 logL).

Next, consider the Euler angle γ. We exploit the steerability of wavelet coefficients Eqn. (10), which transfers
to Vm(β, γ) directly, to compute integration over γ exactly and efficiently:

Vmm′n =

∫ π

0

dβ sinβ Vmn(β) exp(−im′β) , (38)

where
Vmn(β) = 2πzn

∑
g

Vm(β, γg) exp(−inγg) , (39)

which can be computed in O(N2L2). The Euler angle γ is discretized according to the scheme specified in
Sec. 3.1, where g denotes the index associated with γ.

Finally, consider the Euler angle β. Appealing to the quadrature rule Eqn. (17), which follows from the
Driscoll and Healy sampling theorem, Eqn. (38) may be written:

Vmm′n =
∑
b

q(βb)Vmn(βb) exp(−im′βb) , (40)

9



which can be computed in O(NL3). The Euler angle β is discretized according to the scheme specified in Sec. 3.1,
where b denotes the index associated with β.

To summarise, the wavelet coefficient contribution to the function synthesis can be computed exactly by
appealing to the quadrature rules outlined in Sec. 3.1. Furthermore, we have described a fast algorithm for this
exact computation based on a factoring of rotations and separation of variables. This fast algorithm reduces
the complexity of the computation from O(L5) for the naive case to O(NL3). Since J + 1 wavelet scales are
considered the overall complexity becomes O(JNL3). However, again the compact support of the wavelets may
be exploited so that the computation is dominated by the largest two scales, resulting in an overall complexity
of effectively O(NL3).

We finally consider the contribution to the function synthesis expression of Eqn. (4) from the scaling coeffi-
cients. Expressing this contribution in harmonic space one finds:

2π

∫
S2

dΩ(ω′)WΦ(ω′)(Rω′LdΦ)(ω) =
∑
`m

√
2`+ 1

4π
WΦ
`mΦ`0Y`m(ω) . (41)

The scaling coefficient contribution to the harmonic coefficients of the synthesized signal can thus be computed
in O(L2).

3.4 Numerical experiments

The exact and efficient algorithms described above to compute wavelet analysis and synthesis, i.e. forward
and inverse wavelet transforms respectively, are implemented in the S2DW§ package, which is publicly available.
The S2DW package is written in Fortran, uses the FFTW¶ to perform Fourier transforms, and (in version 1.1)
is parallelized to run on multi-core architectures.‖ Here we evaluate the accuracy and efficiency of S2DW up
to extremely high band-limits (L = 4096), corresponding to functions sampled at tens of millions of pixels
on the sphere. For reference, this band-limit exceeds the resolution of the recently released Planck30 full-sky
observations of the CMB.

We perform the following numerical experiments. For a given band-limit L, we generate random test signals f
with harmonic coefficients uniformly randomly distributed in [−1, 1]. We compute all wavelet coefficients (up to
the maximum possible wavelet scale J = JL(α)) by applying the wavelet analysis algorithm detailed in Sec. 3.2.
We then synthesis the function from its wavelet coefficients by applying the wavelet synthesis algorithm detailed
in Sec. 3.3. Numerical accuracy is evaluated by the maximum error between the original harmonic coefficients of
f , denoted forig

`m , and their synthesised values f recon
`m : ε = max`,m |f recon

`m −forig
`m |. Furthermore, we also record the

wall-time clock τ for the combined analysis-synthesis computation. These numerical experiments are performed
on a 2x Intel Xeon X5650 Processor (2.66Ghz, 12M Cache, 6.40 GT/s QPI, Turbo, HT) machine with 12 cores,
where we perform 10 simulations for each band-limit considered.

The results of these numerical experiments are shown in Fig. 3. Firstly, notice that very good numerical
accuracy is achieved (Fig. 3(a)), at the level of machine precision, up to very high band-limits. The numerical error
is found empirically to scale as approximately O(L). Secondly, the algorithms discussed above are demonstrated
to scale as O(L3) (Fig. 3(b)) as predicted. Furthermore, the algorithms are sufficiently fast to allow computation
up to very high band-limits in a reasonable time. These computation times are for version 1.1 of S2DW and are a
considerable improvement over the computation time specified in Ref. 16 for version 1.0, due to parallelization,
other code optimizations, and advances in computing hardware. For example, the round-trip computation time
for L = 1024 is reduced from 72 minutes to less than 2 minutes.

§http://www.s2dw.org/
¶http://www.fftw.org/
‖The alternative S2LET7 package (http://www.s2let.org/) provides a C implementation of scale-discretized wavelets,

with Matlab interfaces. However, at present S2LET supports axisymmetric wavelets only.
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Figure 3. Computational performance of the S2DW implementation of the scale-discretized wavelet transform on the sphere
(N = 3, J = JL(α), α = 2). In panel (a) the numerical error following a forward and inverse wavelet transform is shown.
The algorithms described herein are theoretically exact and achieve close to machine precision for extremely large band-
limits. Numerical error is found empirically to scale as approximately O(L), illustrated by the solid curve. In panel (b)
the computation time of a forward and inverse wavelet transform is shown. As predicted, computation time is shown to
scale as O(L3), illustrated by the solid curve. In both panels the mean of 10 simulations is shown, with one standard
deviation error bars. In most cases the errors bars are too small to be seen clearly.

4. SUMMARY AND FUTURE PERSPECTIVES

We have described exact and efficient algorithms to compute the wavelet analysis and synthesis of the scale-
discretized wavelet transform on the sphere developed by Wiaux et al..16 These algorithms rely on the factoring
of rotations approach9,28,29 and a separation of variables. The compact support of the wavelets and azimuthal
band-limit N may be exploited to further improve computational efficiency. Consequently, the cost of computing
wavelet transforms is reduced from O(JL5) for the naive setting to effectively O(NL3), for both analysis and
synthesis algorithms, i.e. for both the forward and inverse wavelet transforms.

The exactness of the algorithms is achieved by appealing to the Driscoll and Healy sampling theorem24,25 on
the sphere. However, there is scope to further optimize this part of the algorithms, i.e. integrals and summations
over θ and β. Recently, two of the authors of this article developed a novel sampling theorem on the sphere,19

superseding the Driscoll and Healy sampling theorem. This new sampling theorem reduces the number of samples
on the sphere required to represent a band-limited signal from ∼ 4L2 to ∼ 2L2. Furthermore, FFTs are exploited
to yield fast algorithms to compute spherical harmonic transforms associated with the new sampling theorem
rapidly.19 In future work we plan to integrate these recent developments into the algorithms presented herein,
replacing the use of the Driscoll and Healy sampling theorem with the new sampling theorem of Ref. 19. This
will reduce the number of sample values required to represent wavelet coefficients (and functions on the sphere)
by a factor of two, while retaining all of their information content, and will further improve the speed of the
algorithms to compute the scale-discretized wavelet transform on the sphere.
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