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ABSTRACT

Directional wavelet dictionaries are hierarchical representations which efficiently capture and seg-
ment information across scale, location and orientation. Such representations demonstrate a particu-
lar affinity to physical signals, which often exhibit highly anisotropic, localised multiscale structure.
Many physically important signals are observed over spherical domains, such as the celestial sky in
cosmology. Leveraging recent advances in computational harmonic analysis, we design new highly dis-
tributable and automatically differentiable directional wavelet transforms on the 2-dimensional sphere
S? and 3-dimensional ball B> = RT x S? (the space formed by augmenting the sphere with the radial
half-line). We observe up to a 300-fold and 21800-fold acceleration for signals on the sphere and ball,
respectively, compared to existing software, whilst maintaining 64-bit machine precision. Not only do
these algorithms dramatically accelerate existing spherical wavelet transforms, the gradient informa-
tion afforded by automatic differentiation unlocks many data-driven analysis techniques previously
not possible for these spaces. We publicly release both S2WAV €) and S2BALL ), open-sourced JAX
libraries for our transforms that are automatically differentiable and readily deployable both on and
over clusters of hardware accelerators (e.g. GPUs & TPUs).

Subject headings: Astronomical instrumentation, methods and techniques — Methods: data analysis —

Methods: numerical — Techniques: image processing

1. INTRODUCTION

Many fields of research fundamentally depend on the
distillation of scientifically pertinent information from
data that lives on spherical manifolds; that is data which
lives on the 2-dimensional sphere S2. In many cases such
data is radially distributed, and therefore lives on the
3-dimensional ball B3 = Rt x S? (the space formed by
augmenting the sphere with the non-negative radial half-
line). The diversity of such fields is remarkable, ranging
from: quantum chemistry (Ritchie & Kemp 1999; Choi
et al. 1999), to molecular modelling and protein predic-
tion (Boomsma & Frellsen 2017; Jumper et al. 2021), to
biomedical imaging (Tuch 2004; Goodwin-Allcock et al.
2022), to geophysics and planetary science (Audet 2011;
Simons et al. 2011; Marignier et al. 2020) to atmospheric
and climate physics (Racah et al. 2017; Weyn et al. 2020;
Ravuri et al. 2021), and to the wider cosmos (McEwen
et al. 2008a,b; Price et al. 2021b; Wallis et al. 2021;
Loureiro et al. 2022). Increasingly often spherical data
is encountered in modern computer vision tasks, e.g.
monocular depth estimation and semantic segmentation
of 360° images (Jiang et al. 2019; Zhang et al. 2019;
Ocampo et al. 2023), or 3D object retrieval (Kondor et al.
2018; Esteves et al. 2020; Cobb et al. 2021).

In recent years machine learning techniques have be-
come increasingly widespread within these fields (see e.g.
Ntampaka et al. 2019; Bronstein et al. 2021; Huertas-
Company & Lanusse 2023). Despite numerous advan-
tages afforded by machine learning approaches, their ef-
ficacy is typically predicated on an abundance of training
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data. In many fields such data is not available, and sim-
ulation of such data is simply not feasible; astrophysics
being a classic example. When data is limited, existing
tools can be reimagined and employed to create hybrid
methods, at great effect. One such class of tools is that of
the wavelet transform and its derivatives (see e.g. Bruna
& Mallat 2013; McEwen et al. 2022; Pedersen et al. 2023).

Wavelet theory on the sphere is a mature field of study,
with a plethora of associated wavelet representations, in-
cluding spherical; wavelets (Schroder & Sweldens 1995;
Antoine & Vandergheynst 1998, 1999), needlets (Geller
et al. 2008; Baldi et al. 2009), curvelets (Starck et al.
2006, 2009; Chan et al. 2017), and ridgelets (McEwen
& Price 2019) each tailored towards specific applica-
tions. Of particular interest are scale-discretised spheri-
cal wavelets (Leistedt et al. 2013; McEwen et al. 2015b),
which satisfy important quasi-exponential localisation
and asymptotic uncorrelation properties (McEwen et al.
2018), and can be composed to form isometrically in-
variant representations which are stable to diffeomor-
phisms, i.e. effective representations for learning on the
sphere (McEwen et al. 2022). Slepian wavelet represen-
tations on the sphere have also been developed (Roddy
& McEwen 2021, 2023) which are particularly well suited
to the masked sky, often encountered in astrophysics.

A subset of these wavelet representations have been
lifted to the ball, to facilitate the analysis of spheri-
cally symmetric and radially distributed data. The ex-
act properties of such wavelets is, in part, determined
by the choice of radial discretisation. Radial needlets
(Durastanti et al. 2014) adopt exponential radial ba-
sis functions whereas isotropic wavelets (Lanusse et al.
2012) adopt spherical Bessel functions, and are conse-
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quently built on the Fourier-Bessel transform — which is
encountered throughout cosmology (Abramo et al. 2010;
Rassat & Refregier 2012). As the spherical Bessel func-
tion does not admit exact quadrature (Lemoine 1994),
these isotropic wavelets are not exact. Instead, Fourier-
Laguerre wavelets (Leistedt & McEwen 2012) select La-
guerre polynomials with which to tile the radial half-line,
and leverage Gauss-Laguerre quadrature to provide the-
oretically exact transforms. Interestingly, the spherical
Bessel transform may be evaluated exactly by first pro-
jecting onto Laguerre polynomials, for signals bandlim-
ited in the Fourier-Laguerre sense (Leistedt & McEwen
2012). Slepian wavelets have also been extended to the
ball (Khalid et al. 2016) which are built upon a Fourier-
Laguerre spectral decomposition.

Classically, wavelets representations have been effec-
tively applied as compressive sensing regularisers when
solving inverse problems (e.g. Carrillo et al. 2014; Prat-
ley et al. 2018; Price et al. 2021a). Wavelets may be
composed to form expressive scattering representations,
which are both effective summary statistics and statisti-
cal generative models for highly non-Gaussian textures
(Mallat 2012; Mallat et al. 2020; Allys et al. 2019, 2020;
Cheng et al. 2020; Zhang & Mallat 2021; Eickenberg et al.
2022; McEwen et al. 2022; Price et al. 2023). Perhaps less
well known are their applications for data compression
(Balan et al. 2009; McEwen et al. 2011) and the synthesis
of multifractal fields (Robitaille et al. 2020). Recently, re-
searchers have achieved state-of-the-art performance by
embedding wavelet filters directly within machine learn-
ing models (Huang et al. 2017; Liu et al. 2019), multiscale
conditioning of diffusion-based generative models (Guth
et al. 2022), and by solving partial differential equations
with wavelet neural operators (Gupta et al. 2021; Tripura
& Chakraborty 2022).

Many of these technological advances are fundamen-
tally reliant on readily accessible gradient information,
which is necessary for back-propagation during model
training. A further advantage of many modern tech-
nologies is their affinity for high throughput evaluation;
hence, they benefit greatly from deployment on hard-
ware accelerators (e.g. GPUs and TPUs). Existing soft-
ware packages which provide wavelet transforms on the
sphere, S2LET €), and ball, FLAGLET €), are not engi-
neered with this in mind, and provide neither differen-
tiability nor acceleration. Consequently, it has not been
possible to integrate these wavelet transforms with mod-
ern machine learning techniques on the sphere. To har-
ness the potential of wavelets for next-generation spher-
ical data-analysis techniques, new algorithms and soft-
ware are needed.

In this work we design spherical wavelet transforms
which overcome these fundamental limitations. Building
upon recently released GPU accelerated spherical har-
monic and Wigner transforms, provided by the S2FFT ©)
package (Price & McEwen 2023), we develop highly par-
allel algorithms for the scale-discretised wavelet trans-
form on the sphere and ball. We implement these spher-
ical wavelet transforms in JAX, a differentiable Python
library developed by Google for high-performance deep
learning research (Bradbury et al. 2018). Our transforms
are engineered so as to provide efficient automatic differ-
entiation and be highly distributable both on and over
hardware accelerators; hence, facilitating the integration

the future integration of wavelet techniques with mod-
ern machine learning technologies over spherically sym-
metric spaces. To maximise accessibility our algorithms
are designed to be sampling agnostic, providing support
for McEwen-Wiaux (McEwen & Wiaux 2011), Driscoll-
Healy (Driscoll & Healy 1994), and HEALPix (Gdrski
et al. 2005) sampling of the sphere at launch. Differentia-
bility notwithstanding, the acceleration afforded by our
algorithms alone facilitates previously infeasible analysis
techniques, e.g. sampling methods and machine learn-
ing, with myriad applications from molecular modelling
to the study of the cosmos.

The remainder of this article is structured as follows.
In Section 2 we review mathematical background for har-
monic analysis, with wavelet analysis provided in Section
3. In Section 4 we develop the directional wavelet trans-
form on the sphere and outline our associated software
package S2WAV ©). Subsequently, in Section 5 we abstract
to the ball and outline our associated software package
S2BALL €). Finally, in Section 6 we draw conclusions and
make closing remarks.

2. HARMONIC ANALYSIS ON THE SPHERE;,
ROTATION GROUP, AND BALL

In this section we review harmonic analysis on the two-
sphere S%, rotation group SO(3), three-dimensional ball
B? = RT x S?, and rotational ball H* = R* x SO(3). We
provide a very brief summary of necessary theory relating
to spherical harmonics, Wigner functions, and Fourier-
Laguerre polynomials. Our discussion covers both ax-
isymmetric and directional convolutions on the afore-
mentioned manifolds, for functions of arbitrary spin. We
constrain this discussion to continuous transforms so as
to remain sampling agnostic. In later sections we con-
nect to corresponding transforms over discrete spaces,
bridging the gap to practical applications.

2.1. Functions on the sphere

Spin-s functions on the sphere ,f € L?[S?] are charac-
terised by an additional U(1) symmetry such that they
transform by (Newman & Penrose 1966; Goldberg et al.
1967)

of = e (1)

under right-handed rotations x € [0,27) in the tangent
plane centered at w = (¢, ), for longitude ¢ € [0,27)
and colatitude ¥ € [0,7]. The spin-weighted spherical
harmonics Yz, (w) : S — C form the canonical orthog-
onal basis for square integrable functions L?[S?] on the
sphere for natural £ € N and integers m, s € Z such that
|m|,|s| < £. Any spin-s function ,f € L*[S?] may be
decomposed into this representation such that

= (e Yim) = [ 4960 @) Vi)

where Q(w) = sin ¥ dv dy is the standard invariant mea-
sure on the sphere. By orthogonality and completeness
of the spin-weighted spherical harmonics, ;f may be re-
constructed exactly by

sf = Z Z sf@m sYlnr (3)

LEN |m|< ¢t
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For practical calculation this infinite summation is
truncated at a maximum harmonic degree L such that
sfem = 0 for all £ > L. The terminology is then such
that we say the function ,f is bandlimited at L. Ef-
ficient GPU algorithms have been developed to perform
discretised versions of the transforms given by Equations
2 and 3 (see S2FFT ©), Price & McEwen 2023).

2.2. Functions on the rotation group

As they will play a pivotal role in the construction of
directional wavelet transforms on the sphere we intro-
duce functions on the rotation group, again very briefly.
The Wigner D-functions D, (p) : SO(3) — C for natu-
ral £ € N, integers m,n € Z such that |m|, |n| < ¢, and
zyz Euler angles p = (a, 8,7) form an irreducible uni-
tary representation of the rotation group SO(3) in three
dimensions (Varshalovich et al. 1989).

Any square integrable function f € L?[SO(3)] on the
rotation group may, as before, be decomposed into this
representation such that

f={f D)= / a0p) (o) Dlanlp). (4)
SO(3)

where Q(p) = sin fdadf dvy is the usual invariant mea-
sure on the rotation group. By the orthogonality and
completeness of the Wigner D-functions, f may be re-
constructed exactly by

=Y YN i )

£eN [m|<e€|n|<¢

As for the spin-weighted spherical harmonic trans-
forms, the infinite summation is bandlimited at L. Ef-
ficient GPU algorithms have been developed to perform
discretised version of the Wigner transform, which we
leverage (see S2FFT ), Price & McEwen 2023).

2.3. Functions on the ball

To extend harmonic analysis radially one must intro-
duce basis functions along the positive half-line R*. As
the canonical choice of atlas on spherical spaces are the
spherical polar co-ordinates, which are separable into an-
gular and radial components, we are free to straightfor-
wardly adopt either spin-weighted spherical harmonics
or Wigner D-functions for the angular components and
independent basis functions along the radial half-line.

The canonical choice of radial basis functions are the
Bessel functions which, when combined with the angu-
lar basis functions, produce the spherical Bessel func-
tions. Unfortunately, these functions do not afford exact
transforms and can be numerically unstable in practical
settings. Fortunately, alternate basis functions with de-
sirable qualities are available. The Laguerre basis func-
tions K,(r) : RT — R*, which are orthogonal by Gram-
Schmidt and are straightforwardly complete, are defined

to be
_ p! e 2
500 =\ oz 7= 1 (5) (6)

where L;Q) are the p'M-associated 2"d-order Laguerre
polynomials, for natural p € N, and where 7 € RT
is a scaling parameter. Any square integrable function

+f € L?[R*] may be decomposed into this representation
such that

= f Ky = / A K0, (@)

and for the sampling theorem presented by Leistedt &
McEwen (2012) may be recovered exactly by

r) = Z Sfp Kp(r). (8)

peN

Most real-world functions are, to a good approxima-

tion, radially bandlimited which is to say that , f,, = 0 for
all p > P. This is the same as bandlimiting in the angular
components, where instead we say a function f is radially
bandlimited at P. Adopting Gauss-Laguerre quadrature
to compute the integral of Equation 7 discrete Laguerre
transforms can be evaluated exactly (Leistedt & McEwen
2012; McEwen & Leistedt 2013).

One can then straightforwardly compose radial and an-
gular basis functions to form a set of basis functions on
the ball. Suppose for the angular components we adopt
the spin-weighted spherical harmonics, then our overall
basis functions are defined to be

sZZmp(b) - Kp(r) SWM(w)ﬂ (9)

for b = (r,w) € B> = Rt x S%. These basis func-
tions inherit the characteristics of their constituents, and
are therefore trivially orthogonal and complete. Con-
sequently, any square integrable spin-s function ,f €
L?[B%) may be decomposed into their spherical-Laguerre
representation such that

= 2) = [ 90) 0) Zi). (1)

where dQ2(b) = dQ(r)dQ(w) = r? sinddrdddyp is the
standard invariant measure on the ball. It then follows
that ;f may be reconstructed exactly by

sf: Z Z Sf@mp sZZmpz (11>

pLEN |m|< e

where in practice infinite summations over ¢, p are an-
gularly and radially bandlimited by L, P respectively.
Building on previous work (Leistedt & McEwen 2012;
McEwen & Leistedt 2013; Leistedt et al. 2015), in
this work we develop differentiable and highly acceler-
ated GPU algorithms to evaluate this spherical-Laguerre
transform, which we extend to the directional setting.

2.4. Directional convolutions on the sphere

Consider a rotation operator R, with action

(Rp s W) =€ " f(R,'w), (12)

when applied to a spin-s square integrable function on
the sphere. The exponential term here comes from
the additional U(1) symmetry discussed in Equation 1
(McEwen et al. 2015b). By noting the additive property
of the Wigner D-functions, a rotated function permits a
harmonic representation

( /)bf tm — Z Dmnbffn (13)

In|<¢
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Suppose one would like to convolve two spin-s square
integrable functions , f, ;g € L%[S?]. Conceptually, this is
given as the product between , f and R, g for all possible
Euler angles p € SO(3). Mathematically, this reads

(sf ® sg)(l)) = <sfa Rp sg>
_ /S A0W) +f (@) (Ry+9) (@), (14)

where ® is the directional convolution. As this is a func-
tion on the rotation group, we may consider the Wigner
representation for simplicity

2

8w
= sJfm s h ) 15
20 1 f@ 9on ( )

(sf® sg)f;m

from which the convolved function can be recovered ex-
actly by (McEwen et al. 2007, 2015b; Cobb et al. 2021)

=2 X

LeN |mmn|<e

(sf ®59)(p) sfem 590 Dﬁrr (16)

When we restrict the possible rotations to the sphere,
that is when p = (o, 8,7) = (o, 3,0) = (¢, ¢) = w, and
when g is axisymmetric sgsm = sge00mo, this convolu-
tion becomes the axisymmetric convolution on the sphere

S2.

2.5. Convolutions on the radial half-line
Further consider a generalised radial translation! 7.
for r € R* defined by its application to the spherical-
Laguerre basis functions
(T Kp)(r) = Kp(r') Kp(r), (17)

presented in McEwen & Leistedt (2013) with action on
square integrable functions f € RT given by

r) = Z fp Kp(r') Kp(r)

peEN
= (T f)p = Kp(r') fp- (18)

Using this definition of the translation operator we can
define the convolution between two functions f,g €
L?[R*] to be given as

(f *9)(r) = ([, Trg)
= [ drr? f(r) (To 9)(r), (19)

R+

which straightforwardly leads to
(f > 9)p="Tp 9 (20)

2.6. Directional convolutions on the ball

Finally, consider the combined 4-dimensional symme-
try transformation £, = T,R, for h = (r,p) € H* =
R* x SO(3), which describes the complete space of rota-
tions and translations present in our system. The total

1 From our construction of the spherical-Laguerre basis functions
this is closer to a translation across Laguerre polynomials, however
we will refer to this as radial translation throughout this article.

convolution of two spin-s functions f,g € L*[B?] is de-
fined analogously to before by (Price & McEwen 2021)

(sf ® sg)(h) = (sf, Lnsg)
= [ 49 .10) (Cr0y®) ()

which is the product between f and g over the composite
space of 4-dimensional translations and rotations. Com-
paring against Equations 15 and 19 one finds
872 ’

2£+1 sJmp Sgnp7 (22)

¢
(Sf ® ég)mnp
from which the convolved function can be recovered in
pixel-space by

8 *
Z Z 267_:_ 1 Sfep 9gnp fnnp(h’)ﬂ

pLEN |mn| <t
(23)

where we have overloaded ® to denote the convolution
under the general symmetry transformation Lp,.

Here we have 1mplicit1y defined the Wigner-Laguerre
basis functions anp which are orthogonal and complete
on H*. By construction the Wigner-Laguerre functions
are straightforwardly separable, hence the decomposition
of square integrable functions f € L2 [H%] is given by

F= Q5 /dﬂ

where Q(h) = r?sin 8drdadf dy is the invariant mea-
sure on H*. As in previous settings, the original function
may be exactly synthesised by

Y, N
f= Y A Y fw Qi @)

p,l €N |mmn|<e

which is practically extremely expensive to evaluate.
Previously, Leistedt & McEwen (2012); Leistedt et al.
(2015) developed algorithms to perform this transform.
In this work, we redesign these algorithms to leverage
recent advances in GPU accelerated and differentiable
harmonic analysis (see S2FFT €), Price & McEwen 2023).

3. WAVELET TRANSFORMS ON THE SPHERE
AND BALL

In this section we discuss the wavelet analysis of signals
on the sphere S? and ball B3 = Rt x S2. We formally de-
fine the directional wavelet transform on both the sphere
and ball, leveraging much of the mathematics provided
in Section 2. Again we remain in the continuous setting.

3.1. Directional wavelet transform on the sphere

Spherical wavelet filters are square integrable bandlim-
ited functions (¥ € L?[S?] constructed to exhibit
strong localisation properties in both the harmonic and
spatial domain (McEwen et al. 2018), as illustrated in
Figure 1. Note that here j € N < J denotes wavelet
scale, which determines the harmonic degrees over which
the wavelet has support (see Appendix A). The wavelet
functions form a dictionary into which spin-s functions
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Fig. 1.—. Directional (

COoe6e

= 256, N = 5) scale-discretised wavelet filters on the sphere, for wavelet scales j € {1,.

,5} from

left to right. As the Wavelet scale increases the filter becomes more highly localised, both in pixel and frequency space (McEwen
et al. 2018). Notice the clearly elongated structure which gives rise to the desired directional sensitivity (McEwen et al. 2015b).
With an azimuthal bandlimit of N = 5 this filter bank is augmented by 9 rotated filters, which are not shown here.

of € L?[S?] may be decomposed through the directional
convolution

WY (p) = (sf ® W) (p) = (/. R, s¥7),  (26)

which from Equation 14 can be given in Wigner space by
the expression

SUINL 87T2 F g
(W )mn = m sfém s\Ilén' (27)
To capture low frequency information an axisymmetric

scaling function (@ € L?[S?] is introduced into which f
may be decomposed as

(Sf @ S(p)(w) = <Sf7 RUJ S¢>7 (28)

where ® denotes the axisymmetric convolution. Again,
this can be given in harmonic space by the expression

qu’(w) =

4m

SQ —
(W)em = 20+1°

flm S(I)EO (29)

Provided a wavelet dictionary which satisfies the admis-
sibility condition

2£+1| Brof*+ 2£+1Z > 1%,

J=0|m|<¢

=1 V¢ (30)

of which there are many (see e.g. Leistedt et al. 2013;
Chan et al. 2017; McEwen & Price 2019), one may ex-
actly reconstruct ;f by

sf = [ dQ)W* (w)(Ru®)(w')

+Z/

In general this transform can be expensive to compute,
motivating the development of efficient algorithms. In
this article we adopt scale-discretised wavelets (Wiaux
et al. 2008; Leistedt et al. 2013; McEwen et al. 2015b).
These wavelets exhibit good harmonic and spatial local-
isation (McEwen et al. 2018), and permit exact synthe-
sis, at least in such a case that a sampling theorem on
the sphere and ball is provided (see e.g. Driscoll & Healy
1994; McEwen & Wiaux 2011; McEwen & Leistedt 2013).

(P)WY (D) (R, W) (). (31)
SO(3)

3.2. Directional wavelet transform on the ball

Ball wavelet filters are square integrable functions
sWii" e L2[B3] with angular and radial bandlimits L and
P respectively. They are designed to exhibit strong local-
isation properties in both spherical-Laguerre and spatial
domain (McEwen et al. 2018), as illustrated in Figure
2. Here we further introduce 5 € N < J’ to denote ra-
dial wavelet scale (see Appendix A for further details).
As in the spherical case, these wavelet functions form
an overcomplete dictionary into which spin-s functions
+f € L?[B®] may be decomposed through the overloaded
directional convolution

W () = (of © W) () = (oS, La W), (32)

which from Equation 22 is represented in Wigner-
Laguerre space by the expression

871'2 K Jj'*
mnp — 2€ +1 sflmp S\Ilénp (33)

To capture low frequency information an axisymmetric
scaling function (@ € L?[B%] is introduced

WD) = (sf ® s®)(b) = (s f, Lp s D), (34)

where L is the axisymmetric simplification of L. The
spherical-Laguerre representation of the scaling coeffi-
cients is given as

Y N
(Wscp)émp — %—Hsfgmp S(I)ZO;D' (35)

On the ball, the wavelet admissibility condition as pre-
sented in Leistedt et al. (2015) reads

872
24 w12 =1
2£+1| ZOPI 2£+1 Z' @mp Vg,p, (36)

mjj’

(W)

which, if satisfied, permits exact synthesis by

S = [ AW R)L2)0)
I i -
+ > / WY ()L WY ) (B).  (37)
J,3'=0

This transform can be extremely expensive to evaluate,
however noticing that each wavelet scale jj’ has compact
support can dramatically reduce the total number of cal-
culations required. Such an acceleration is exploited in
what is referred to as a multiresolution algorithm.
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Fic. 2.—. Directional (N = 5) scale- dlscretlsed wavelet filters on the ball (P = L = 256), for angular wavelet scales j € [3,7]
from left to right, and radial wavelet scale j = 3 for radial nodes r € [1,4]. As the angular wavelet scale increases the filter
becomes more highly localised, both in pixel and frequency space (McEwen et al. 2018). Equally, as the radial scale increases the
localisation along the radial half-line increases. For a given radial scale (as shown here) the energy of a given filter ¥(r) decays
exponentially with r as expected. Notice the clearly elongated structure which gives rise to the desired directional sensitivity.

F1c. 3.—. Surface visualisation of a subset of our tiling of Fourier-Laguerre space with infinitely differentiable Cauchy-Schwartz
functions (see Appendix A.3). Here we present the axisymmetric (m = 0) components of our wavelet filters for j = j'. Notice
that if one were to consider all j < j’ and wvice versa this filtering scheme would span the entire domain.
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3.3. Multiresolution Algorithms

For the development of multiresolution algorithms it is
critical to first note that a given wavelet scale has strictly
compact support over finitely many harmonic degrees ¢,
and polynomials p, as shown in Figure 3. Therefore, both
the expressions for the forward and inverse wavelet trans-
forms, on both the sphere and ball, may be performed at
varying resolutions, without loss of information.

Specifically, the wavelet ;W7 at scale j is only non-zero
over the finite interval of harmonic degrees

e [LAHJ, (A, (38)

where |-] and [-] are the floor and ceiling functions re-
spectively, and A € N > 1 is the dilation parameter of the
wavelets outlined in Appendix A. As the computational
time of a given harmonic degree ¢ scales as O(¢3), the
overall complexity of the directional wavelet transform is
dominated by the highest degrees. It then follows that
only the highest two wavelet scales have non-zero support
near the harmonic bandlimit ¢ ~ L, hence the overall
complexity is effectively that of this single scale.

Precisely the same argument may be applied in the ra-
dial direction, wherein a given radial scale 7’ has compact
support over the finite interval

pel| v ] [, (39)

Consequently, multiresolution algorithms designed to
evaluate the aforementioned wavelet transforms can be
accelerated by a factor of J and J x J’ over the sphere
and ball respectively, without loss of information.

4. THE S2wAvV LIBRARY

Wavelet transforms have demonstrated utility in var-
ious emergent technologies, whether this be embedding
wavelet filters directly within machine learning models
(Huang et al. 2017; Liu et al. 2019) or through mul-
tiscale conditioning (Guth et al. 2022). In any case,
to encorporate such techniques within modern machine
learning technologies requires that the wavelet trans-
forms in question are differentiable, so as to facilitate
the back-propagation of gradient information. Further-
more, a primary advantage of such technologies is their
high throughput, potentially with real-time evaluation.
Therefore the ability to deploy such technologies on hard-
ware accelerators (e.g. GPUs/TPUs) is almost manda-
tory. Wavelet transforms have been developed for Eu-
clidean applications which satisfy the aforementioned re-
mit, however no such transforms exist on the sphere, lim-
iting progress in this area.

In this section we develop and release S2WAV €), a pro-
fessionally developed open-source JAX library (Bradbury
et al. 2018), which provides support for the directional
wavelet transform on the sphere. Specifically, by lever-
aging the recently released S2FFT ) software package
(Price & McEwen 2023) we provide GPU accelerated
and automatically differentiable implementations of the
directional scale-discretised wavelet transform outlined
in Section 3.1. Building upon novel Wigner d-function
recursions, S2FFT is designed to be extremely parallelis-
able, and asymptotically recovers linear scaling across
multiple accelerators. Interestingly this results in S2FFT

demonstrating an effective linear compute scaling with
bandlimit L, which is unprecidented. We inherit both
this computational scaling and functionality, with S2WAV
transforms being efficiently distributable across multiple
hardware devices. In what follows we drop spin sub-
scripts for notational brevity.

4.1. Mathematical Overview

Explicitly, we are primarily concerned with the effi-
cient evaluation of two transforms corresponding to the
forward (analysis) and inverse (synthesis) wavelet trans-
form over S2. Consider the Wigner space representa-
tion of the wavelet coefficients given in Equation 27. In-
troducing D! as an operator which applies the inverse
Wigner transform in Equation 5 to each scale j and Y as
the forward spin spherical harmonic transform in Equa-
tion 2 the wavelet transform of a function f € L%[S?] may
be written as

WY =DTI'N® Y/, (40)
e
ny
operator which applies the tensor outer product of f with
each scale j of a given wavelet dictionary {¥7}, i.e. the
directional convolution on the sphere defined in Equation
27, and N applies the normalisation 872/(2¢ + 1). From
Equation 29 the scaling coefficients are straightforwardly
given by

where W7, with normalised entries given by ¥7*, is an

wWe=Y @Y/, (41)

47 /(20 + 1)®},, is an
operator which denotes the inner product of f with a
scaling dictionary ®, i.e. the axisymmetric convolution.
Adopting analogous operators, the wavelet synthesis
transform presented in Equation 31 may be written as

where ®, with entries given by

F=Y Hoyw?® + Y wDw"), (42
J

where the summation is a tensor contraction over each
scale j. Notice that ® remains the same for both trans-
forms as ®j, = @, and the normalisation prefactor
is the usual harmonic normalisation in both directions
(contrast this with the different normalisations for the
Wigner transform, which arise due to the normalisation
factor appearing in Equation 5).

As the spherical harmonic and Wigner transforms are
provided by S2FFT, we need only efficiently compute the
necessary tensor operations whilst integrating the multi-
scale acceleration method outlined in Section 3.3.

4.2. Precomputed Components

From Equations 40 and 42 it is apparent that the
wavelet and scaling filters, ¥ and & respectively, may
be calculated and cached for future use rather than eval-
uated on the fly. In a multiresolution framework, the
memory complexity associated with each of these ar-
rays is O(NL) and O(L) respectively, which is extremely
small. Though perhaps somewhat clunky, this avoids un-
necessary compute and potential memory issues due to
sequential reallocation of memory during e.g. optimisa-
tion or training.

Additionally, we configure our transforms to support
the precompute functionality within S2FFT. Specifically,
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Algorithm 1 Directional wavelet transform on S?
import s2fft
from s2fft import wigner
from jax.numpy import einsum
procedure ANALYSIS WAVELET TRANSFORM(f € S2):
fevy
We — @f
We — y-1we
for j € [0, J] do
WY « NWJ f
Wi« D-IWYi
return {W‘I’, W‘P}
procedure SYNTHESIS WAVELET TRANSFORM({ W ¥, W }):
W Yyw?
f aWe
for j € [0, J] do
WY« DWYi

D> JAX Spherical harmonic transforms
> JAX Wigner transforms

> JAX Tensor operations
> s2fft.forward(f,L)
> einsum("1lm,1->1m" ,f,<1>)

> s2fft.inverse (W?® ,L)

> einsum("1lm,1ln->nlm", f, Nwi*)

> wigner.inverse WYi,L,N)

> s2fft.forward(W®,L)
> einsum("1m,1->1m", W@ , D)

> wigner.forward(W¥i ,L,N)

f (i oty > einsum("nlm,1ln->1m", W¥5 ,07)
[+« Yflf > s2fft.inverse(f, L)
return f

this optional acceleration precomputes the real polar-d
functions necessary to evaluate forward spin spherical
harmonic, and by extension Wigner, transforms. Though
this can provide extremely fast transforms, it comes with
an O(NL?) memory overhead, which limits the resolu-
tion at which these transforms may be applied (e.g. Cobb
et al. 2021).

4.3. JAX Tensor Operations

Given precomputed wavelet and scaling filters, imple-
menting highly efficient algorithms to evaluate the tensor
operations ¥ and ® is straightforward. By design, JAX
in fact provides support for all such operations through
einsum, which converts understandable symbolic nota-
tion into linear algebraic array operations. This trans-
form is outlined in Algorithm 1 which includes a sketch
of the associated code.

As both the spherial harmonic and Wigner transforms
provided by S2FFT and the einsum primitives are na-
tively differentiable, the directional wavelet transforms
provided by S2WAV also provide automatic differentiation.
Our transforms can therefore be straightforwardly inte-
grated within existing frameworks to extend, e.g. multi-
scale conditioned generative models (Huang et al. 2017;
Liu et al. 2019; Guth et al. 2022) or scattering covariances
(Allys et al. 2020; Mallat et al. 2020) to the spherical set-
ting (Mousset et al in prep).

Moreover, we design S2WAV to utilise the single pro-
gram multiple data (SPMD) functionality of S2FFT to
distribute compute across hardware accelerators. Given
that the complexity of Equations 40 and 42 is domi-
nated by the Wigner transforms, and noting the discus-
sion of Price & McEwen (2023), with sufficient compute
our wavelet transforms asymptotically recover an effec-
tive linear time complexity. In the case where a small
number of GPU devices are available one should expect
to asymptotically recover a further acceleration by the
number of devices.

4.4. Numerical Validation

We benchmark our directional wavelet transforms
against the existing C alternative S2LET ©) (Leistedt et al.
2013; McEwen et al. 2015b). Our protocol is straight-

forward: generate a random bandlimited signal f; map
this to a random bandlimited function on the sphere
f < Y1 f; apply the forward wavelet transform followed
by the inverse transform to recover f’; map this function
onto its harmonic coefficients f’ < Y f’; and evaluate
both the round-trip time and relative error E(|f — f'|).

S2LET transforms were executed on a multithreaded
Xeon(R) E5-2650L v3 dedicated CPU and S2WAV trans-
forms were executed on both a single and three NVIDIA
A100 GPUs. Further testing over many more GPUs has
been left for future development due to computational
constraints. In addition, we provide benchmark results
for both operating modalities discussed in Section 4.2;
wherein real polar d-functions are evaluated on-the-fly
or simply precomputed.

The results of this benchmarking are presented for re-
cursive and precompute transforms in Table 1. As ex-
pected, when distributing across three GPUs we asymp-
totically recover an additional factor of three accelera-
tion, reaching as high as 100x and 300x faster than
existing S2LET transforms, for recursive and precom-
pute respectively. In all cases our transforms are exact
to 64-bit machine precision. Note that here we adopt
McEwen-Wiaux sampling which affords a sampling the-
orem (McEwen & Wiaux 2011; McEwen et al. 2015a)
and is theoretically exact. We also provide support for
HEALPix sampling (Gérski et al. 2005) which does not
support a sampling theorem, and therefore produces ap-
proximate transforms.

5. THE S2BALL LIBRARY

As discussed in Section 4, it has been demonstrated
that various modern machine learning technologies may
be enhanced by the incorporation of wavelet representa-
tions; with the added caveat that the associated wavelet
transforms must be differentiable and, ideally, deployable
on hardware accelerators. Hardware acceleration is even
more critical when considering functions on the ball. In
short, this is because wavelet transforms over this space
are prohibitively expensive. In addition to the aforemen-
tioned contributions, extending spherical wavelet dictio-
naries radially opens up many salient scientific applica-
tions, particularly in the study of geophysics (Simons
et al. 2011; Marignier et al. 2020) and molecular mod-
elling (Boomsma & Frellsen 2017; Jumper et al. 2021).

To this end, we develop and release S2BALL ©), a
highly optimised open-source JAX library which provides
support for the directional wavelet transform on the
ball. Specifically, we provide GPU accelerated and auto-
matically differentiable implementations of the Wigner-
Laguerre wavelet transform outlined in Section 3.2. In
this case, we do not integrate the S2FFT €) package for
spin spherical harmonic and Wigner transforms, instead
providing bespoke implementations for computational ef-
ficiency, as will become apparent.

5.1. Mathematical Overview

Explicitly, this package is designed to efficiently evalu-
ate the forward (analysis) and inverse (synthesis) direc-
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On-the-fly transform

Precompute transform

Speed-Up Speed-Up 3 x GPU Speed-Up
L Time S2LET Time S2WAV 1 x GPU 3 x GPU Ratio Time S2WAV 1 x GPU
8 1.8 x 1071 - - - - 1.4 x 1071 1.3
16 1.3 x 109 - - - - 1.6 x 1071 8.1
32 9.5 x 10° - - - - 2.2 x10~1 43.2
64 3.3 x 10! 7.9 x 10! 0.4 0.7 1.8 4.6 x 1071 71.7
128 2.1 x 102 1.5 x 102 1.4 2.8 2.0 1.5 x 100 140
256 1.8 x 103 3.0 x 102 6.0 13 2.2 6.0 x 109 300
512 1.3 x 10* 9.4 x 102 14 32 2.3 - -
1024 9.8 x 10* 4.3 x 103 23 58 2.5 - -
2048 1.1 x 106 3.0 x 10* 37 92 2.5 - -

TABLE 1. Numerical validation of the recursive (on-the-fly) and precompute S2WAV directional wavelet transform on the sphere against
the existing S2LET package. Note that all timings are quoted in milliseconds. The precompute mode of S2WAV caches elements of the
real polar d-functions necessary to evaluate the spin spherical harmonics transforms. Therefore, though this greatly increases throughput,
the peak memory overhead scales as O(L?) which limits the maximum operational bandlimit. Here we consider a single fixed azimuthal
bandlimit N = 5 which corresponds to 9 rotations of our wavelet filters within each local tangent plane; for the majority of applications this
is more than sufficient to recover almost all directional structure. S2LET functions were executed on a multithreaded Xeon(R) E5-2650L v3
CPU and S2WAV transforms were evaluated on a single and collection of three NVIDIA A100 GPUs. For low bandlimits L communication
and GPU memory allocation costs slow down our transform, however in such cases compute is rarely an issue. Furthermore at low to
moderate resolutions a precompute approach may be adopted, which can provide up to ~ 300x faster. In higher resolution cases our
transforms become up to ~ 100x faster, whilst retaining 64-bit machine precision.

tional wavelet transform of L, P bandlimited functions
f € L%[B3]. First, consider the Wigner-Laguerre space
representation of the wavelet coefficeints given in Equa-
tion 33. Recalling our definition for the inverse Wigner-
Laguerre given in Equation 25 it is clear that the pixel-
space representation of scale {3, j'} is given by

is’ 20+1 33’ N
p,L €N fm,n|<£

(43)
Introducing the operators Z to denote the forward
spherical-Laguerre transforms defined in Equation 10,
and introducing Q! to denote the inverse Wigner-
Laguerre transform defined in Equation 25, one may re-
cast Equation 43 to read

W — Q Nw 7, (44)

where W77 is an operator which applies a scale-wise ten-
sor outer product of f with each scale {j,j'} of a given
wavelet dictionary {U/4'}, i.e. the directional convolu-
tion on the ball defined in Equation 33. Adopting similar
operators, from Equation 35 the scaling coefficients are
given by

We®=2"'®7f, (45)
where ® is an operator which applies the tensor inner
product with scaling dictionary @, i.e. the axisymmetric

convolution. Finally, the continuous synthesis transform
presented in Equation 37 may be written as

f=z N (@zw® + Y wiiQwr),  (46)
Ji’

where the summation performs a tensor contraction over
each scale {j,5'}.

5.2. Precomputed Components

Naive matrix representations of Q and Z can unsurps-
ingly become rather large. Noting that the memory com-
plexity of a function f € L*[HY] scales as O(NPL?),
and that P typically weakly scales as L, we cannot hope
for better than ~ O(NL?) memory requirements. With
some care, the memory complexity for matrix represen-
tations of Q and Z can be reduced to O(NL?).

In the same way that the Wigner-Laguerre basis func-
tions can be decomposed into the orthogonal Laguerre
and Wigner basis functions, the Wigner-Laguerre trans-
form can be expanded as Q = KD where K represents
the forward Laguerre transform defined in Equation 7.
Furthermore, by decomposing the Wigner-D functions
in terms of real polar d-functions

D!, (o, B,7) = db,, (B)e (mrFme) (47)

the Wigner transform defined in Equation 4 reduces to

f= /ﬁ a0 (8) / A0p) f(p) 0T

Fourier Transform

In the discrete setting one may evaluate this double in-
tegral as a 2-dimensional fast Fourier transform (Cooley
& Tukey 1965), which require minimal memory and are
famously extremely efficient with O(N?1log N) complex-
ity. The integral over § is effectively a projection onto
the real polar d-functions, which are often computed re-
cursively (Varshalovich et al. 1989). However, to store
all necessary d’,,,(3) requires O(NL3) memory which is
equivalent to the memory required to store a single signal
on the ball, as outlined above. Therefore, for our pur-
poses we suffer no additional memory complexity from
simply precomputing and caching these matrices, with
the enormous upside of theoretically optimal speed at
runtime.

For completeness, consider the Laguerre transform K
defined in Equation 7. This is simply a projection onto
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the Laguerre polynomials K,(r) with memory complex-
ity ~ O(P?) < O(L?) and therefore negligible. Hence,
we may also precompute and store all K, (r) for efficiency.
Finally, we must consider the memory required to store
the wavelet ¥ and scaling @ filters. The scaling filter ®
comes with memory complexity O(PL) < O(L?) which
is negligible. In contrast, the wavelet filters ¥ exhibit
memory complexity O(JJ'NPL) which can nominally
be rather large. Adopting the multiresolution scheme
discussed in Section 3.3 only the highest scale {J,J'}
need be stored at full resolution, and thus the complex-
ity becomes O(NPL) < O(L?). We are therefore free
to compute and cache all necessary tensors offline with
at most O(NL?) memory, which we subsequently use to
execute transforms extremely efficiently at runtime.

Identical arguments hold for the spherical-Laguerre
transform and their corresponding inverse transforms. In
S2BALL we default to this operational modality, which
has the added benefit of automatically providing the
adjoint wavelet transformations needed for optimisation
based algorithms.

5.3. JAX Tensor Operations

As discussed above, we can precompute effectively all
intermediate tensors. Consequently, implementing ex-
tremely distributed operations is very straightforward.
The entire ball wavelet transform can be written us-
ing the aforementioned einsum and the JAX fast Fourier
transform API. This transform is outlined in Algorithm
2 which includes a sketch of the associated code.

In this case providing cross GPU distribution through
SPMD is not necessary. At low resolutions the addi-
tional communication overhead outweighs the potential
acceleration. At high resolutions this balance may tip in
the favour of distribution across multiple GPUs, however
long before this point the memory overhead becomes un-
tenable. In theory, one could shard precomputed tensors
across multiple (potentially many) GPU devices, how-
ever we leave this for future work.

5.4. Numerical Validation

We benchmark our directional wavelet transform
against the existing C alternative FLAGLET ©) (Leistedt
& McEwen 2012; McEwen & Leistedt 2013). Our pro-
tocol is the same as outlined in Section 4.4, with spheri-
cal harmonic transforms Y interchanged with spherical-
Laguerre transforms Z. FLAGLET transforms were exe-
cuted on a multithreaded Xeon(R) E5-2650L v3 dedi-
cated CPU and S2BALL transforms were executed on a
single NVIDIA A100 GPU.

During these tests we restrict ourselves to azimuthal
bandlimit N = 1 for simplicity, and maintain the most
general setting of P = L radially. It should be noted that
in practice one may work with different radial and angu-
lar resolutions, which are often dictated by the data at
hand. The results of this benchmark are presented in Ta-
ble 2, which includes both round-trip precision and tim-
ings. In every case we recover 64-bit machine precision.
For low bandlimits L ~ 8 our ball wavelet transform is
an order of magnitude faster than their C counterparts.
At higher resolutions this acceleration increases dramat-
ically, peaking at 21800 times faster for L = P = 256.
This substantial acceleration opens up the possibility of

Algorithm 2 Directional wavelet transform on B3
from baller import laguerre
from baller import wigner_laguerre as wlaguerre
from jax.numpy import einsum

procedure ANALYSIS WAVELET TRANSFORM(f € B3):

f «— Zf > laguerre.forward(f,L,P)
W« {)f > einsum("plm,pl->plm", f,®)
We — z-1Wwe > laguerre.inverse(Wq),L,P)

for j € [0,J] and j' € [0,J’] do

W N\Iljj/f > einsum("plm,pln—>pnlm",f,N\IJjj/*)

L o T

Wy Q_IW\I/” > wlaguerre.inverse(W ¥’ L, P, N)

return {W‘I', Wq)}
procedure SYNTHESIS WAVELET TRANSFORM({W ¥ W%}):

We  ZW®
f — @V[;q) > einsum("plm,pl->plm" ,VVA'@ ,P)
for j € [0, J] and 5’ € [0, J'] do

> laguerre.forvard(W®,L,P)

“ L ../ Y
VV‘I']J — QW\II“ D> wlaguerre .forward(W\wJ ,L,P,N)

N o o

f & iy > einsum("pnlm,pln->pln", W¥’’ RZES
f+ Zilf > laguerre.inverse(f,L,P)
return f

computationally expensive statistical methods such as
Bayesian sampling methods, with direct applications in
e.g. geophysical imaging (Marignier et al. 2021).

An additional factor worth highlighting is somewhat
hidden within the wavelet transform. The spherical-
and Wigner-Laguerre transforms we implement and use
to construct the S2BALL wavelet transforms are, in and
of themselves, interesting and of potential use. In
much the same way that spherical harmonic and Wigner
transforms can be seen as generalised Fourier trans-
forms (GFFTs) over S? and SO(3) respectively, the
spherical- and Wigner-Laguerre transforms can be seen
to be GFFTs on B? and H* respectively. In addition to
wavelets, S2BALL provides JAX functions with which one
may readily evaluate these transforms.

Efficient, differentiable, and exact Fourier based con-
volution algorithms on B? and H* present an exciting
opportunity to develop rotational and radially transla-
tional equivariant networks on 3-dimensional spaces; a
natural progression of equivariant learning on the sphere
(see e.g. Cohen et al. 2018; Esteves et al. 2020; Bron-
stein et al. 2021; Cobb et al. 2021; Ocampo et al. 2023).
Not only do such networks provide state-of-the-art per-
formance but they are much more data-efficient, which
is a key consideration for modern astrophysics.

6. CONCLUSIONS

In this article we develop novel efficient algorithms
for the directional scale-discretised wavelet transforms
on the sphere and ball. By construction, our trans-
forms are automatically differentiable and highly dis-
tributable both on and across hardware accelerators, e.g.
GPUs/TPUs. To increase accesibility, and in the spirit
of reproducible science, we provide professionally devel-
oped open-sourced JAX libraries in both settings.

For the multiscale analysis of functions on the sphere,
we publicly release S2WAV €). This package provides
JAX algorithms for scalable and automatically differ-
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Validation of directional ball wavelet (P = L)

L Time FLAGLET Time S2BALL Ratio
8 7.0 x 10° 7.5 x 1071 13

16 1.0 x 102 9.5 x 1071 116
32 8.3 x 102 1.3 x 100 698
64 1.0 x 10* 3.0 x 10° 3690
128 1.0 x 10° 1.7 x 10! 6400
256 3.2 x 106 1.6 x 102 21800

TABLE 2. Numerical validation of our Wigner-Laguerre wavelet
transform against the previous implementation FLAGLET. In each
case we consider N = 1 and maintain a highly general setting where
L = P. All CPU operations were evaluated on a multithreaded
Xeon(R) E5-2650L v3 CPU whereas our transforms were evaluated
on a single NVIDIA A100 GPU. The overall complexity scaling of
the Wigner-Laguerre transform is ~ O(NL*), with an associated
memory overhead of O(NL?) i.e. the memory required to store
the highest scale wavelet coefficients a single function f € H%. In
all cases we are at least an order of magnitude faster, rising as high
as ~ 22,000 times faster, whilst being exact to machine precision.

entiable directional wavelet transforms on the sphere.
These transforms are sampling agnostic, and may be dis-
tributed across many GPUs for extreme parallelisation.
Through benchmarking we find that our transforms are
several orders of magnitude faster than their C counter-
parts, whilst retaining 64-bit floating point precision.

For the multiscale analysis of functions on the ball,
we publicly release S2BALL €). This package provides
JAX algorithms for extremely fast but memory intensive
directional wavelet transforms on the ball. As part of
S2BALL, we provide APIs to evaluate differentaible fast
Fourier transforms on the ball and its SO(3) anologue.
Our transforms are built on a well-known Laguerre dis-
cretisation of the radial half-line, however unlike previ-
ous methods our angular components are sampling ag-
nostic. All transforms are automatically differentiable.
Through benchmarking we find that our transforms are
~ 22 thousand times faster than their C counterparts,
whilst retaining 64-bit floating point precision.

The algorithms and software we provide are critical
for the fusion of wavelet theory and machine learning
on the sphere and ball, unlocking the advantages such a
union entails. Wavelet enhanced technologies over Eu-
clidean spaces are already producing state-of-the-art re-
sults, e.g. as embedded representations (Huang et al.

2017), for multiscale conditioning during diffusion-based
generative models (Guth et al. 2022), or for equivariant
machine learning (McEwen et al. 2022; Ocampo et al.
2023). This work provides the tools by which anologous
results may be realised on the sphere and ball.

Concomitantly with this work, we are currently de-
veloping spherical scattering covariances (an extremely
compact wavelet-based representation) which effectively
encodes complex non-Gaussian structure and from which
realistic cosmological fields may readily be generated
(Mousset et al. in prep), which relies directly on this cur-
rent work. In future work we will encorporate the results
of this work to enhance diffusion models on the sphere,
with a plethora of applications including weather and
climate prediction tasks. As differentiable programming
and hardware acceleration grows in popularity through-
out the scientific community, it is pertinent that our
software tools are modernised. In this work we do just
this, infusing the previous generation of multiscale anal-
ysis tools with characteristics necessary for integration
to truly next generation technologies.
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APPENDIX

A. WAVELET CONSTRUCTION

Scale-discretised wavelets on the sphere and ball R provide a natural dictionary in which many physical fields
are sparsely distributed. For exact decomposition and synthesis into and from a wavelet dictionary respectively W77

must satisfy the admissibility condition
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for all £ and p. When considering functions with no radial extent one may simply ignore both p and radial scales ;.
A key factor which increases the efficacy of wavelets is their localisation properties, and so careful consideration of
how W97 are constructed is critically important. In this section we consider the scale-discretised wavelets which are
separable in the harmonic ¢, azimuthal m, and radial p components and satisfy the admissibility condition in Equation
Al. In the following sections we discuss one such choice of these tiling functions which has proved to be particularly
effective.

A.1. Tiling of the harmonic line

To capture information along the harmonic line ¢ we define positive real functions x(7) (t) for t € N* such that ¢ < L,
where j denotes angular wavelet scale. The construction of this function is given by the following. First, consider the
infinitely differentiable C'°° Schwartz function

sa(t) = s (A(t— %) 1), (A2)

A—1
with compact support ¢t € [A\™!,1] and for dilation parameter \ € Ril. Note that the most common choice of dilation
parameter is A = 2 in which case we recover dyadic wavelets. The function s(t) is given by
1
s(t) = exp (— 1—t2)’ (A3)
for t € [-1,1] and 0 elsewhere. From these functions with compact support we can define the function

Ldt! 2y
ka(t) = e s
3@
A1 ¢ A )

which decays smoothly from unity at ¢ < A~! to zero at t > 1. We can now focus the localisation in ¢ by defining

(A4)

kA(t) = \/k,\()\_lt) — ka(2), (A5)
which is the generating function for the harmonic component of the wavelet construction, with which the scale-
discretised wavelet harmonic kernel for scale j is defined by xU)(¢) = ky\(ML~'¥), which is compact on ¢ €

[IA=GH+) L), [A1=IL]]. With this construction, it is clear that each wavelet scale need only be evaluated between
some lower and upper harmonic degrees, which we will denote hereon out as L;+ respectively. To capture low fre-

quency information one must also introduce a scaling tiling function ny(¢) = /kx(t).
A.2. Tiling of the azimuthal line

To capture the azimuthal (directional) information content of functions on the sphere we define the spin-s square

integrable function ¢ € L*[S?] with harmonic representation (s(, Yzy,), following Equation 2. An azimuthal ban-
dlimited N is introduced such that (s, = 0 for all £, m where |m| > N, in much the same way as was done for
bandlimited functions on the sphere. The azimuthal tiling function is defined as

o =[5 (1, %) (A6)

which is a specific form of the directional auto-correlation with & = 1 for even N — 1 and £ = i else, and p =
[1—(—=1)¥*™]/2 and ¢ = min{N —1,¢ — [1 + (=1)N*¢]/2}. The full details of this derivation are extremely involved
and can be found in related work.

A.3. Tiling of the ball
The wavelet generating function on the radial half-line is in fact identical to that of the harmonic line, the only
difference being that here we consider tiling over the associated 2"%-order Laguerre polynomials indexed by p. Therefore

identical logic to that of Section A.1 may be applied to derive the radial tiling function /ﬁl(j/)(p) and scaling function
n(p), where we define a radial dilation parameter A — v.

Combining this radial tiling and the harmonic tiling discussed in Sections A.1 one may construct a hybrid generating
function for scale-discretised wavelets on the ball, given simply by

w7 (€, p) = w9 (0) 59 (p). (A7)
We finally define the hybrid scaling function generator

(1) = \/zgA (;)ku(t’) 4k (D)ky (t;) —a(Ok (), (AR)

which both captures low frequency information and ensures the constructed dictionary on the ball satisfies the wavelet
admissibility condition.
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A 4. Scale-discretised Wavelet Dictionary

Combining the results from this section we can explicitly define our directional spin-s wavelet functions in their
harmonic representation

;5! 2€ + ]. . ./
S\Il%ﬂp = {772 K’ (Z) K7 (p) sCem.- (A9)

The corresponding scaling functions ;® are given by

2, (55) if £ > Ao, p < po
sPeop = ,/Qf;lm(w) if ¢ < Mo, p>uph (A10)
25;177)\1,()\%,,)%) if€</\Jo7p<1/Jo,

and zero elsewhere. Here Jy and J) denote the minimum wavelet scales jj’, below which the scaling function captures
any remaining information.

This paper was built using the Open Journal of Astrophysics IMTEX template. The OJA is a journal which provides
fast and easy peer review for new papers in the astro-ph section of the arXiv, making the reviewing process simpler
for authors and referees alike. Learn more at http://astro.theoj.org.


http://astro.theoj.org

	ABSTRACT
	Introduction
	Harmonic analysis on the sphere, rotation group, and ball
	Functions on the sphere
	Functions on the rotation group
	Functions on the ball
	Directional convolutions on the sphere
	Convolutions on the radial half-line
	Directional convolutions on the ball

	Wavelet transforms on the sphere and ball
	Directional wavelet transform on the sphere
	Directional wavelet transform on the ball
	Multiresolution Algorithms

	The S2WAV library
	Mathematical Overview
	Precomputed Components
	JAX Tensor Operations
	Numerical Validation

	The S2BALL library
	Mathematical Overview
	Precomputed Components
	JAX Tensor Operations
	Numerical Validation

	Conclusions
	Wavelet Construction
	Tiling of the harmonic line
	Tiling of the azimuthal line
	Tiling of the ball
	Scale-discretised Wavelet Dictionary


