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Abstract

We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised
wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework
defined natively on the sphere that is able to probe the directional intensity of spin signals. Furthermore,
directional spin scale-discretised wavelets support the exact synthesis of a signal on the sphere from its
wavelet coefficients and satisfy excellent localisation and uncorrelation properties. Consequently, directional
spin scale-discretised wavelets are likely to be of use in a wide range of applications and in particular for
the analysis of the polarisation of the cosmic microwave background (CMB). We develop new algorithms
to compute (scalar and spin) forward and inverse wavelet transforms exactly and efficiently for very large
data-sets containing tens of millions of samples on the sphere. By leveraging a novel sampling theorem on
the rotation group developed in a companion article, only half as many wavelet coefficients as alternative
approaches need be computed, while still capturing the full information content of the signal under analysis.
Our implementation of these algorithms is made publicly available.
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1. Introduction

Wavelet transforms on the sphere [e.g. 1, 2, 4, 5, 8, 26, 28, 30, 34, 41, 42, 46, 48, 57, 59, 62, 63, 68, 71]
to analyse scalar signals defined on a spherical domain have found widespread use. For example, wavelet
analyses on the sphere have led to many insightful scientific studies in planetary science [e.g. 3], geophysics
[e.g. 60] and cosmology, in particular for the analysis of the cosmic microwave background (CMB) [e.g.
6, 9, 21, 24, 35–38, 43, 47, 50–53, 55, 56, 58, 65–67, 72, 73]; for a review see [44].

Discrete wavelet frameworks on the sphere that can support the exact synthesis of signals from their
wavelet coefficients in a stable manner have received a great deal of attention recently, including: needlets
[4, 28, 48]; directional scale-discretised wavelets [26, 42, 71]; and the isotropic undecimated and pyramidal
wavelet transforms [62]. All three of these approaches have also been extended to the three-dimensional
(3D) ball formed by augmenting the sphere with the radial line [11, 22, 23, 40], such as the distribution of
galaxies in our Universe.

Data acquired on spherical domains come in a variety of different forms: not only scalar but also vector
and tensor signals defined on the sphere. Spin functions [49] provide a unifying framework for representing
such signals, where spin s = 0 functions are scalar, s = ±1 functions are vector, and higher spin orders
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correspond to tensor functions. An example of a spin s = ±1 signal of interest is geomagnetic anomalies
over the Earth [54], while an example of a spin s = ±2 signal is the polarised radiation of the CMB [19, 74].
Motivated largely by the analysis of CMB polarisation, spin wavelet transforms on the sphere have been
developed recently [12–14, 61], focusing predominantly on the spin s = ±2 setting.

The isotropic undecimated and pyramidal wavelet transforms on the sphere [62] have been extended to
spin s = ±2 signals [61]. A number of constructions are proposed in [61], settling on a transform constructed
by firstly decomposing a spin-2 signal into its parity even and odd components, so-called E- and B-mode
signals [19, 74], before performing the scalar wavelet transform of [62]. This construction does not easily
generalise to signals of arbitrary spin and is restricted to wavelets that can only probe isotropic signal
content. The spin curvelet construction of [61] that supports a directional analysis is built on the twelve
base-resolution faces of the healpix [17] pixelisation, as are the scalar curvelets of [61], and as such is not
natively defined on the sphere. This approach leads to (blocking) artefacts [62].

Needlets have also been extended to the analysis of spin functions on the sphere, in a variety of manners
[12–14]. The standard spin needlet construction [12, 13] is defined by a linear projector onto the space
of spin functions. Consequently, the needlet coefficients of spin signals are spin quantities themselves, of
the same spin number. Alternatively, the so-called mixed needlet construction [14] results in spin needlet
coefficients that are scalar quantities. Both spin needlet constructions satisfy excellent localisation and
uncorrelation properties and generalise easily to signals of arbitrary spin number [12–14]. However, spin
needlet constructions can also only probe isotropic signal content.

A spin wavelet framework on the sphere capable of probing the directional intensity of spin signals does
not yet exist. We develop such a framework in this article, generalising directional scale-discretised wavelets
[26, 42, 71] to the analysis of signals on the sphere of arbitrary spin. Directionality provides an additional
source of localisation, where oriented signal features can be probed. For example, it is widely known that
the peaks of the CMB, in models where the CMB is assumed to be a realisation of an isotropic Gaussian
random field, are predicted to be elongated [7]. Indeed, directional analyses of CMB temperature data have
revealed signatures of physical processes and effects that have been detected at high statistical significance
[e.g. 35, 43, 47]. In related articles, we construct spin ridgelet [30] and curvelet [8] transforms defined
natively on the sphere and built on the general spin scale-discretised wavelet framework presented herein. In
another recent article [33] we show that directional scale-discretised wavelets satisfy excellent localisation and
uncorrelation problems similar to needlets, in both the scalar setting and the spin generalisation presented
here.

An overview of our spin scale-discretised wavelet construction was first presented in [31]. In this ar-
ticle, however, we present a more complete construction, prove a number of important properties of the
construction, develop new algorithms to compute the wavelet transform exactly and efficiently, evaluate our
implementation of these algorithms, and present an illustrative application. The remainder of this article is
structured as follows. Harmonic analysis on the sphere and rotation group is reviewed concisely in Sec. 2.
The directional spin scale-discretised wavelet framework is derived in Sec. 3, while an algorithm to compute
the wavelet transform and its inverse exactly and efficiently for very large data-sets is presented and eval-
uated in Sec. 4. Applications are discussed and an illustrative denoinsing example is presented in Sec. 5,
before concluding remarks are made in Sec. 6.

2. Harmonic analysis on the sphere and rotation group

We concisely review harmonic analysis on the sphere and rotation group in this section, presenting the
mathematical preliminaries required throughout the remainder of the article. General spin signals on the
sphere are first reviewed, before we specialise to spin-2 signals and highlight alternative representations of
practical interest. Signals on the rotation group are then discussed, followed by a description of the rotation
of functions on the sphere, expressed in both the spatial and harmonic domains.
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2.1. Spin signals on the sphere

Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, are defined by their
behaviour under local rotations. By definition, a spin function transforms as [16, 19, 49, 74]

sf
′(ω) = e−isχ

sf(ω) (1)

under a local rotation by χ ∈ [0, 2π), where the prime denotes the rotated function.5 It is important to
note that the rotation considered here is not a global rotation on the sphere but rather a rotation by χ in
the tangent plane centred on the spherical coordinates ω = (θ, ϕ), with colatitude θ ∈ [0, π] and longitude
ϕ ∈ [0, 2π).

The spin spherical harmonics sY`m ∈ L2(S2) form an orthogonal basis for L2(S2) spin s functions on
the sphere, for natural ` ∈ N and integer m ∈ Z, |m| ≤ `, |s| ≤ `. We adopt the Condon-Shortley
phase convention, such that the conjugate symmetry relation sY

∗
`m(θ, ϕ) = (−1)s+m−sY`,−m(θ, ϕ) holds.

The orthogonality and completeness relations for the spherical harmonics read

〈sY`m, sY`′m′〉 = δ``′δmm′ (2)

and
∞∑
`=0

∑̀
m=−`

sY`m(θ, ϕ) sY
∗
`m(θ′, ϕ′) = δ(cos θ − cos θ′) δ(ϕ− ϕ′), (3)

respectively, where δij is the Kronecker delta symbol and δ(·) is the Dirac delta function. The inner product
of f, g ∈ L2(S2) is defined by

〈f, g〉 =

∫
S2

dΩ(ω) f(ω) g∗(ω) , (4)

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure on the sphere and complex conjugation is
denoted by ·∗.

Spin raising and lowering operators, ð and ð̄ respectively, increment and decrement the spin order of a
spin-s function by unity and are defined by

ð ≡ − sins θ
( ∂
∂θ

+
i

sin θ

∂

∂ϕ

)
sin−s θ (5)

and

ð̄ ≡ − sin−s θ
( ∂
∂θ
− i

sin θ

∂

∂ϕ

)
sins θ , (6)

respectively [16, 19, 49, 74]. The spin-s spherical harmonics can thus be expressed in terms of the scalar
(spin-zero) harmonics through the spin raising and lowering operators by [16, 19, 49, 74]

sY`m(ω) =

[
(`− s)!
(`+ s)!

]1/2

ðsY`m(ω) , (7)

for 0 ≤ s ≤ `, and by

sY`m(ω) = (−1)s
[

(`+ s)!

(`− s)!

]1/2

ð̄−sY`m(ω) , (8)

for −` ≤ s ≤ 0, where Y`m denote the scalar (spin-zero) spherical harmonics.
Due to the orthogonality and completeness of the spin spherical harmonics, any square integrable spin

function on the sphere sf ∈ L2(S2) may be represented by its spherical harmonic expansion

sf(ω) =

∞∑
`=0

∑̀
m=−`

sf `m sY`m(ω) , (9)

5The sign convention adopted for the argument of the complex exponential differs to the original definition [49] but is
identical to the convention used in the context of the polarisation of the CMB [19, 74].
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where the spin spherical harmonic coefficients are given by the usual projection onto each basis function:

sf `m = 〈sf, sY`m〉. The conjugate symmetry relation of the spin spherical harmonic coefficients is given by

sf
∗
`m = (−1)s+m −sf`,−m for a function satisfying sf

∗ = −sf (which for a spin s = 0 function equates to the
usual reality condition) and follows directly from the conjugate symmetry of the spin spherical harmonics.
Throughout, we consider signals on the sphere band-limited at L, that is signals such that sf `m = 0,
∀` ≥ L. The spherical harmonic transform can be computed exactly and efficiently for band-limited signals
by appealing to sampling theorems on the sphere and fast algorithms [10, 29, 32, 45, 69].

2.2. Spin-2 signals on the sphere

Although we typically consider signals of arbitrary spin throughout, we specialise to spin-2 signals on
the sphere in some cases to illustrate connections between scalar and spin-2 wavelet transforms. Moreover,
the spin-2 setting is of particular interest for the analysis of linearly polarised radiation. We briefly review
spin-2 signals in this context.

The Stokes parameters of polarised radiation are denoted I,Q, U, V ∈ L2(S2), where I encodes the inten-
sity, Q and U the linear polarisation of the incident radiation, and V the circular polarisation component,
which is assumed to be zero. The linear polarisation signal that is observed depends on the choice of local
coordinate frame. The component (Q ± iU) transforms under a rotation of the local coordinate frame by
χ ∈ [0, 2π) as (Q± iU)′(ω) = e(∓i2χ)(Q± iU)(ω) and is thus a spin ±2 signal on the sphere [19, 74] (hereafter
the appropriate spin number subscript is denoted). The quantity ±2(Q± iU) can be decomposed into parity
even and odd components, so-called E- and B-modes, by

Ẽ(ω) = −1

2

[
ð̄2

2(Q+ iU)(ω) + ð2
−2(Q− iU)(ω)

]
(10)

and

B̃(ω) =
i

2

[
ð̄2

2(Q+ iU)(ω)− ð2
−2(Q− iU)(ω)

]
, (11)

respectively, where Ẽ, B̃ ∈ L2(S2) are scalar signals. The spin spherical harmonic coefficients of the ±2(Q±
iU) Stokes signal are related to the scalar spherical harmonic coefficients of the E- and B-mode signals by

±2(Q± iU)`m = −(E`m ± iB`m) , (12)

where B̃`m =
√

(`+2)!
(`−2)! B`m and Ẽ`m =

√
(`+2)!
(`−2)! E`m.

2.3. Signals on the rotation group

Since we construct directional wavelet transforms, we also consider square integrable functions on the
rotation group f ∈ L2(SO(3)), where rotations are parameterised by the Euler angles ρ = (α, β, γ), with
α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π). We adopt the zyz Euler convention corresponding to the rotation of
a physical body in a fixed coordinate system about the z, y and z axes by γ, β and α, respectively.

The Wigner D-functions D`
mn ∈ L2(SO(3)), with natural ` ∈ N and integer m,n ∈ Z, |m|, |n| ≤ `, are the

matrix elements of the irreducible unitary representation of the rotation group SO(3) [64]. Consequently, the
D`∗
mn also form an orthogonal basis in L2(SO(3)).6 The Wigner D-functions satisfy the conjugate symmetry

relation D`∗
mn(ρ) = (−1)m+nD`

−m,−n(ρ). The orthogonality and completeness relations for the Wigner D-
functions read

〈D`
mn, D

`′

m′n′〉 = 8π2δ``′δmm′δnn′/(2`+ 1) (13)

and
∞∑
`=0

∑̀
m=−`

∑̀
n=−`

D`
mn(α, β, γ)D`∗

mn(α′, β′, γ′) = δ(α− α′)δ(cosβ − cosβ′) δ(γ − γ′) , (14)

6We adopt the conjugate D-functions as basis elements since this convention simplifies connections to wavelet transforms
on the sphere.
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respectively [64]. The inner product of f, g ∈ L2(SO(3)) is defined by

〈f, g〉 =

∫
SO(3)

d%(ρ) f(ρ) g∗(ρ) , (15)

where d%(ρ) = sinβ dα dβ dγ is the usual invariant measure on the rotation group. Note that 〈·, ·〉 is used
to denote inner products over both the sphere and the rotation group (the case adopted can be inferred
from the context). The Wigner D-functions may also be related to the spin spherical harmonics by [16]

e−isγ
sY`m(β, γ) = (−1)s

√
2`+ 1

4π
D` ∗
m,−s(α, β, γ) . (16)

Due to the orthogonality and completeness of the Wigner D-functions, any square integrable function
on the rotation group f ∈ L2(SO(3)) may be represented by its Wigner expansion

f(ρ) =

∞∑
`=0

2`+ 1

8π2

∑̀
m=`

∑̀
n=−`

f `mnD
`∗
mn(ρ) , (17)

where the Wigner coefficients are given by the projection onto each basis function: f `mn = 〈f, D`∗
mn〉. The

conjugate symmetry relation of the Wigner coefficients is given by f ` ∗mn = (−1)m+nf `−m,−n for a real function
satisfying f∗ = f and follows directly from the conjugate symmetry of the Wigner D-functions. Throughout,
we consider signals on the rotation group band-limited at L, that is signals such that f `mn = 0, ∀` ≥ L. The
Wigner transform can be computed exactly and efficiently for band-limited signals by appealing to sampling
theorems on the rotation group and fast algorithms [20, 32].

2.4. Rotation of signals on the sphere

We define the rotation of a spin function on the sphere sf ∈ L2(S2) by

(Rρ sf)(ω) ≡ e−isϑ
sf(R−1

ρ ω̂) , (18)

where ω̂ ∈ R3 denotes the Cartesian vector corresponding to ω and Rρ is the 3D rotation matrix corre-
sponding to the rotation defined by ρ = (α, β, γ). The angle ϑ ∈ [0, 2π) is defined by the third Euler angle of
the rotation Rρ′ = R−1

ρ Rω, i.e. ρ′ = (·, ·, ϑ), where Rω is the 3D rotation matrix corresponding to a rotation
defined by (α, β, γ) = (ϕ, θ, 0) for ω = (θ, ϕ). The exponential factor appearing in Eq. (18) is required to
ensure that the rotation of a spin s function results in a function with the same spin order.7 The magnitude
of a spin function is rotated in the usual manner (i.e. through a coordinate rotation), however the addi-
tional phase factor means that the real and imaginary components of the signal are not rotated solely by a
coordinate rotation. For the scalar setting where s = 0, Eq. (18) reduces to the typical rotation operator
defined solely through a rotation of the coordinate system.

It is convenient to also express the rotation operator in harmonic space. First, we note the additive
property of the Wigner D-functions given by [27]

D`
mn(ρ) =

∑̀
k=−`

D`
mk(ρ1)D`

kn(ρ2) , (19)

7In general, performing purely a coordinate rotation of a spin function does not result in a rotated function with the same
spin number. This can be seen by considering the special property of spin functions about the poles. At the pole, the tangent
coordinate frame coincides with the azimuthal coordinate ϕ. Hence, the spin symmetry relation (e.g. invariance under a
rotation by π for a spin s = ±2 function) must also hold in ϕ at the poles. Although this symmetry holds only locally at the
poles, since band-limited functions are smooth, it also holds approximately in the vicinity of the poles. Any rotation of a spin
function where the poles rotate to a point that is not a pole will break this symmetry property since there is no guarantee that
the rotated function will exhibit the required symmetry at the poles. Consequently, the rotated function will not be of the
same spin as the original function.
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where ρ describes the rotation formed by composing the rotations described by ρ1 and ρ2, i.e. Rρ = Rρ1Rρ2 .
By noting the relation between the Wigner D-functions and the spin spherical harmonics of Eq. (16), it
follows that the spin spherical harmonics can be rotated by

(Rρ sY`m)(ω) =
∑̀
n=−`

D`
nm(ρ) sY`n(ω) , (20)

and thus

(Rρ sf)`m =
∑̀
n=−`

D`
mn(ρ) sf`n . (21)

From Eq. (20) it is apparent that the rotation of a spin s spherical harmonic, with rotation operator defined
by Eq. (18), results in a function of the same spin number s. Consequently, this property also holds for
general spin functions: with rotation operator defined by Eq. (18), the rotation of a spin function results in
a function with the same spin number.

3. Directional spin wavelet transform on the sphere

The directional spin scale-discretised wavelet transform on the sphere is developed in this section. We
present the wavelet analysis and synthesis of a signal of arbitrary spin (i.e. forward and inverse wavelet
transforms), before describing the construction of the wavelets themselves. Important properties of the
directional spin wavelet transform are then discussed.

3.1. Wavelet analysis

The spin scale-discretised wavelet transform on the sphere of a spin function sf ∈ L2(S2) may be defined
analogously to the scalar transform, with wavelet coefficients given by the directional convolution

W sΨ(j)

(ρ) ≡ (sf ~ sΨ
(j))(ρ) ≡ 〈sf, Rρ sΨ(j)〉 =

∫
S2

dΩ(ω) sf(ω) (Rρ sΨ(j))∗(ω) , (22)

where the operator ~ denotes directional convolution on the sphere and the wavelet sΨ
(j) ∈ L2(S2) is now

also a spin function on the sphere. The wavelets are designed to be localised in scale, position and orientation,
and are constructed explicitly in Sec. 3.3. The wavelet transform of Eq. (22) thus probes directional structure
in the signal of interest sf , where γ of ρ = (α, β, γ) can be viewed as the orientation about each point on
the sphere (θ, ϕ) = (β, α). The wavelet scale j ∈ N0 encodes the angular localisation of Ψ(j).

By decomposing the function sf and wavelet sΨ
(j) into their spherical harmonic expansions, and noting

the orthogonality of the spin spherical harmonics and their rotation by Eq. (20), the wavelet transform of
Eq. (22) may be written

W sΨ(j)

(ρ) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

sf`m sΨ
(j)∗
`n D`∗

mn(ρ) , (23)

where sf `m = 〈sf, sY`m〉 and sΨ
(j)
`m = 〈sΨ(j), sY`m〉 are the spin spherical harmonic coefficients of the function

of interest and wavelet, respectively. Eq. (23) is the spin generalisation of the harmonic representation of
the directional convolution typically considered for scalar functions [39, 42, 68, 70, 71]. From Eq. (23) it is
apparent that the spin wavelet transform results in scalar wavelet coefficients defined on the rotation group.
Comparing Eq. (23) and Eq. (17) it is apparent that the Wigner coefficients of the wavelet coefficients
defined on SO(3) are given by (

W sΨ(j))`
mn

=
8π2

2`+ 1
sf`m sΨ

(j)∗
`n , (24)
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where
(
W sΨ(j))`

mn
= 〈W sΨ(j)

, D`∗
mn〉, as noted previously for the scalar setting [42, 68, 71]. As we elaborate

further in Sec. 4.1, the forward wavelet transform of Eq. (22) may thus be computed via an inverse Wigner
transform.

The wavelets do not probe the low-frequency content of the signal sf ; hence, a scaling function sΦ ∈ L2(S2)

is introduced for this purpose, with scaling coefficients W sΦ(j) ∈ L2(S2) given by the axisymmetric convolu-
tion

W sΦ(ω) ≡ (sf � sΦ)(ω) ≡ 〈sf, Rω sΦ〉 =

∫
S2

dΩ(ω′) sf(ω′) (Rω sΦ)∗(ω′) , (25)

where we adopt the shorthand notation Rω = R(ϕ,θ,0) and the operator � denotes axisymmetric convolution
on the sphere with kernels that are invariant under azimuthal rotations when centred on the North pole. We
design the scaling function to be axisymmetric such that R(0,0,γ)sΦ = sΦ since directional structure of the
low-frequency signal content probed by the scaling function is not typically of interest. Consequently, the spin
spherical harmonic coefficients of the scaling function are non-zero for m = 0 only: sΦ`0δm0 = 〈sΦ, sY`m〉.

It follows from Eq. (23) that the scaling coefficients may be decomposed into their harmonic expansion

W sΦ(ω) =

∞∑
`=0

∑̀
m=−`

√
4π

2`+ 1
sf`m sΦ

∗
`0 Y`m(ω) , (26)

where we have noted Eq. (16). Notice that the scaling coefficients are a scalar function on the sphere, even
when analysing a spin function sf (cf. the wavelet coefficients). Clearly, the spherical harmonic coefficients
of the scaling coefficients read (

W sΦ
)
`m

=

√
4π

2`+ 1
sf`m sΦ

∗
`0 , (27)

where
(
W sΦ

)
`m

= 〈W sΦ, Y`m〉.

3.2. Wavelet synthesis

The signal sf can be synthesised exactly from its wavelet and scaling coefficients by

sf(ω) =

∫
S2

dΩ(ω′)W sΦ(ω′) (Rω′ sΦ)(ω) +

J∑
j=J0

∫
SO(3)

d%(ρ)W sΨj

(ρ) (Rρ sΨj)(ω) , (28)

where J0 and J are the minimum and maximum wavelet scales considered, respectively, i.e. J0 ≤ j ≤ J ,
and are defined explicitly in Sec. 3.3.

By decomposing the wavelet and scaling coefficients and functions into their harmonic expansions, noting
the orthogonality of the spherical harmonics and the Wigner D-functions, and also Eq. (16) and Eq. (21),
Eq. (28) may be written

sf(ω) =
∞∑
`=0

∑̀
m=−`

[√
4π

2`+ 1

(
W sΦ

)
`m sΦ`0 +

J∑
j=J0

∑̀
n=−`

(
W sΨ(j))`

mn s
Ψ

(j)
`n

]
sY`m(ω) . (29)

As we elaborate further in Sec. 4.1, the inverse wavelet transform of Eq. (28) may thus be computed via a
forward Wigner transform. Noting Eq. (24) and Eq. (27), it is clear that sf can only by synthesised from
its wavelet and scaling coefficients through Eq. (28) if the admissibility condition given by the following
resolution of the identity holds:

4π

2`+ 1

∣∣
sΦ`0

∣∣2 +
8π2

2`+ 1

J∑
j=J0

∑̀
n=−`

∣∣
sΨ

(j)
`n

∣∣2 = 1 , ∀` . (30)
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3.3. Wavelet construction

We have specified that wavelets should be well-localised in both the spatial and harmonic domains and
satisfy the admissibility condition of Eq. (30) but we have not yet defined an explicit construction. We
are now in a position to construct wavelets that satisfy these properties. We follow the design of scalar
scale-discretised wavelets [26, 33, 42, 71], which are constructed in harmonic space. However, rather than
construct wavelets in the space of scalar spherical harmonics, we construct them in the space of spin spherical
harmonics.

Wavelets are defined in spin spherical harmonic space in the factorised form:

sΨ
(j)
`m ≡

√
2`+ 1

8π2
κ(j)(`) sζ`m , (31)

in order to control their angular and directional localisation separately, respectively through the kernel
κ(j) ∈ L2(R+) and directionality component sζ ∈ L2(S2), with harmonic coefficients sζ`m = 〈sζ, sY`m〉.
Without loss of generality, the directionality component is normalised to impose

∑̀
m=−`

|sζ`m|2 = 1 , (32)

for all values of ` for which ζ`m are non-zero for at least one value of m. The angular localisation properties
of the wavelet sΨ

(j) are then controlled by the kernel κ(j), while the directionality component ζ controls
the directional properties of the wavelet (i.e. the behaviour of the wavelet with respect to the azimuthal
variable ϕ, when centred on the North pole).

The kernel κ(j)(t) is a positive real function, with argument t ∈ R+, although κ(j)(t) is evaluated only
at natural arguments t = ` in Eq. (31). The kernel controls the angular localisation of the wavelet and is
constructed to be a smooth function with compact support, as follows. Consider the infinitely differentiable
Schwartz function with compact support t ∈ [λ−1, 1], for dilation parameter λ ∈ R+

∗ , λ > 1:

sλ(t) ≡ s
(

2λ

λ− 1
(t− λ−1)− 1

)
, (33)

where

s(t) ≡

{
exp
(
−(1− t2)−1

)
, t ∈ (−1, 1)

0, t /∈ (−1, 1)
. (34)

Define the smoothly decreasing function kλ by

kλ(t) ≡
∫ 1

t
dt′

t′ s
2
λ(t′)∫ 1

λ−1
dt′

t′ s
2
λ(t′)

, (35)

which is unity for t < λ−1, zero for t > 1, and is smoothly decreasing from unity to zero for t ∈ [λ−1, 1].
Define the wavelet kernel generating function by

κλ(t) ≡
√
kλ(λ−1t)− kλ(t) , (36)

which has compact support t ∈ [λ−1, λ] and reaches a peak of unity at t = 1. The scale-discretised wavelet
kernel for scale j is then defined by8

κ(j)(`) ≡ κλ(λ−j`) , (37)

which has compact support on ` ∈
[
bλj−1c, dλj+1e

]
, where b·c and d·e are the floor and ceiling functions

respectively, and reaches a peak of unity at λj .

8We adopt the j indexing convention followed by [26] where increasing j corresponds to smaller angular scales but higher
frequency content, which differs to the convention adopted in [33, 42, 71].
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The directionality component ζ is constructed to carefully control the directional localisation of the
wavelet. An azimuthal band-limit N is imposed such that ζ`m = 0, ∀`,m with |m| ≥ N . The directionality
component is defined by imposing a specific form for the directional auto-correlation of the wavelet, as
outlined in [33, 71] and presented in detail in [33]. The resulting directionality component reads

sζ`m = η υ

√
1

2p

(
p

(p−m)/2

)
, (38)

where η = 1 for N − 1 even and η = i for N − 1 odd, υ = [1 − (−1)N+m]/2 and p = min{N − 1, ` −
[1 + (−1)N+`]/2}. We have imposed the symmetries sζ(θ,−ϕ) = (−1)N−1

sζ(θ, ϕ) and sζ(θ, ϕ + π) =
(−1)N−1

sζ(θ, ϕ).
Scaling functions are required to probe the low-frequency content of the signal of interest not probed by

the wavelets and are thus defined by

sΦ`m ≡
√

2`+ 1

4π

√
kλ(λ−J0`) δm0 . (39)

The maximum wavelet scale J is set to ensure the wavelets reach the band-limit L of the signal of interest,
yielding J = dlogλ(L− 1)e. The minimum wavelet scale J0 may be freely chosen, provided 0 ≤ J0 < J . For
J0 = 0, the wavelets probe the entire frequency content of the signal of interest except its mean, which is
incorporated in the scaling coefficients.

By this construction the wavelets and scaling functions tile the harmonic line `, as illustrated in Fig. 1,
while satisfying the admissibility condition of Eq. (30). Wavelets are well-localised simultaneously in the
spatial domain, both in position and orientation, and the harmonic domain. It is shown in [33] that scale-
discretised wavelets exhibit excellent concentration properties, both in the scalar setting and in the spin
setting presented in this article. Examples of spin scale-discretised wavelets are plotted in Fig. 2. Notice
that the absolute value of the spin scale-discretised wavelets is directional.

3.4. Steerability

A function on the sphere is steerable if an azimuthal rotation of the function can be written as a linear
combination of weighted basis functions. The steerability property of scalar scale-discretised wavelets extends
directly to the spin setting. By imposing an azimuthal band-limit N on the directionality component such
that sζ`m = 0, ∀`,m with |m| ≥ N , we recover wavelets that are steerable [71]. Moreover, if T ∈ N of the
harmonic coefficients sζ`m are non-zero for a given m for at least one `, then the number of basis functions
M ∈ N required to steer the wavelet directionality component satisfies M ≥ T and the optimal number
M = T can be chosen. Furthermore, if sζ exhibits an azimuthal band-limit, then it can be steered using
basis functions that are in fact rotations of itself:

(R(0,0,γ)sζ)(ω) =

M−1∑
g=0

z(γ − γg) (R(0,0,γg)sζ)(ω) , (40)

where g ∈ N. The rotation angles γg ∈ [0, 2π) and interpolating function z ∈ L2(R) are defined subsequently.
Note that the interpolating function is independent of the directionality component sζ of the wavelet. Due
to the linearity of the wavelet transform, the steerability property is transferred to the wavelet coefficients
themselves, yielding

W sΨ(j)

(α, β, γ) =

M−1∑
g=0

z(γ − γg)W sΨ(j)

(α, β, γg) . (41)

Steerability may be proved, and the interpolating functions defined explicitly, by considering the harmonic
expansion of Eq. (40). It follows that the Fourier coefficients of the interpolating function are given by
zm = 1/M and the symmetries of sζ outlined in Sec. 3.3 may be exploited to optimise the number of basis
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Figure 1: Scale-discretised wavelet tiling in spin spherical harmonic space (L = 128, λ = 2, J0 = 2, J = 7).

functions to M = N , with equiangular sampling γg = gπ/M . The derivation is entirely analogous to the
scalar setting [33, 71].

A steered wavelet for N = 3 and its basis wavelets, given by rotated versions of the wavelet, are plotted
in Fig. 3. The wavelet can be steered to any continuous orientation γ by taking weighted sums of its three
basis wavelets.

3.5. Parseval frame

Spin scale-discretised wavelets on the sphere satisfy the following tight frame property:

A ‖sf‖2 ≤
∫
S2

dΩ(ω)
∣∣〈sf, Rω sΦ〉

∣∣2 +

J∑
j=J0

∫
SO(3)

d%(ρ)
∣∣〈sf, Rρ sΨ(j)〉

∣∣2 ≤ B ‖sf‖2 , (42)

with A = B ∈ R+
∗ , for any band-limited sf ∈ L2(S2), and where ‖ · ‖2 = 〈·, ·〉. We adopt a shorthand

integral notation in Eq. (42), although by appealing to exact quadrature rules [32, 45] these integrals may
be replaced by finite sums.

This property may be proved by considering the term between inequalities in Eq. (42), substituting
harmonic expansions of all terms and noting the orthogonality of the spin spherical harmonics and the
Wigner D-functions. By the wavelet admissibility condition Eq. (30) it follows that this term reduces to
‖sf‖2. Spin scale discretised wavelets hence constitute a Parseval frame on the sphere, where A = B = 1.

3.6. Connection to scalar wavelet transform

For spin s = ±2 signals, a connection can be made between the spin wavelet transform of 2(Q +
iU) and scalar wavelet transforms of E- and B-mode signals, which are not directly observable. First,
consider the wavelet coefficients of the observable 2(Q+ iU) signal computed by a spin wavelet transform:

W 2Ψ(j)

2(Q+iU)(ρ) ≡ 〈2(Q+ iU), Rρ 2Ψ(j)〉. Second, consider the wavelet coefficients of the unobservable Ẽ and
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(a) Real
{
2Ψ(j=1)

}
(b) Imag

{
2Ψ(j=1)

}
(c) Abs

{
2Ψ(j=1)

}

(d) Real
{
2Ψ(j=2)

}
(e) Imag

{
2Ψ(j=2)

}
(f) Abs

{
2Ψ(j=2)

}
Figure 2: Spin scale-discretised wavelets on the sphere (s = 2, λ = 2, N = 5). Notice that the absolute value of the wavelet is
directional, allowing it to probe signal content localised not only in scale and position but also orientation.

zγ0 +zγ1 +zγ2 =

Figure 3: Absolute value of basis and steered spin wavelets (s = 2, λ = 2, N = 3, j = 3). The wavelet can be steered to any
continuous orientation γ by taking weighted sums of its three basis wavelets.
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B̃ signals computed by a scalar wavelet transform: W 0Ψ̃j

Ẽ
(ρ) ≡ 〈Ẽ, Rρ 0Ψ̃j〉 and W 0Ψ̃j

B̃
(ρ) ≡ 〈B̃, Rρ 0Ψ̃j〉.

If the wavelet used in the scalar wavelet transform is a spin lowered version of the wavelet used in the
spin wavelet transform, i.e. 0Ψ̃j = ð̄2

2Ψj , then the wavelet coefficients of Ẽ and B̃ are simply related to

the wavelet coefficients of 2(Q+ iU) by W 0Ψ̃j

Ẽ
(ρ) = −Re

[
W 2Ψj

2(Q+iU)(ρ)
]

and W 0Ψ̃j

B̃
(ρ) = −Im

[
W 2Ψj

2(Q+iU)(ρ)
]
,

respectively. Similar connections for spin-2 signals exist for standard and mixed needlets [12–14].

4. Exact and efficient computation

The scale-discretised wavelet transform of band-limited spin signals on the sphere can be computed ex-
actly and efficiently by appealing to sampling theorems on the sphere [10, 45] and rotation group [32] and
corresponding fast transforms. By exploiting these sampling theorems we develop a new fast algorithm,
which is theoretically exact, to compute the scale-discretised wavelet transform to very high band-limits.
Moreover, our algorithm requires approximately half as many wavelet coefficients to capture the full in-
formation content of band-limited signals compared to alternative approaches [42]. We then discuss and
evaluate the numerical implementation of this algorithm.

4.1. Fast algorithm

As noted previously, forward and inverse wavelet transforms may be computed via inverse and forward
Wigner transforms, respectively. We therefore defer the majority of the computation of the scale-discretised
wavelet transform to fast algorithms that we developed recently to compute Wigner transforms [32].

In a recent article [32] we developed a novel sampling theorem for signals defined on the rotation group,
such as directional wavelet coefficients, by associating the rotation group with the three-torus through a
periodic extension. All of the information content of a band-limited signal can be captured in 4L3 samples,
reducing the number of required samples by a factor of two compared to other equiangular sampling theorems
[e.g. 10]. Moreover, we developed fast algorithms to compute Wigner transforms to very high band-limits,
which are also theoretically exact. We exploit these developments to compute spin scale-discretised wavelet
transforms exactly and efficiently. The efficient nature of our sampling theorem on the rotation group [32]
means that only half as many wavelet coefficients must be computed compared to alternative approaches
[42], while still capturing the full information content of the signal under analysis.

The forward wavelet transform of Eq. (22) for a given scale j can be represented by the inverse Wigner
transform of Eq. (23), with Wigner coefficients given by Eq. (24). For each scale j, the complexity of
computing Eq. (24) is O(NL2), while the complexity of computing Eq. (23) is reduced from the naive case
of O(N2L4) to O(NL3) by our fast Wigner transform [32]. Recall that N is the azimuthal band-limit of
the wavelet. Scaling coefficients can be computed by Eq. (27) at O(L2), followed by an inverse spherical
harmonic transform at O(L3) by exploiting our novel sampling theorem and corresponding fast spherical
harmonic transforms [45]. For a given scale j, computing the forward wavelet transform is dominated by
the inverse Wigner transform and thus scales as O(NL3).

The inverse wavelet transform of Eq. (28) can be computed via forward Wigner transforms. It is apparent
from Eq. (29) that the spherical harmonic coefficients of sf can be recovered by

sf`m =

√
4π

2`+ 1

(
W sΦ

)
`m sΦ`0 +

J∑
j=J0

∑̀
n=−`

(
W sΨ(j))`

mn s
Ψ

(j)
`n . (43)

Firstly, Wigner coefficients
(
W sΨ(j))`

mn
must be computed by a forward Wigner transform of the wavelet

coefficients W sΨ(j)

(ρ). By exploiting our novel sampling theorem on the rotation group and fast Wigner
transform, which connects the rotation group SO(3) to the three-torus through a periodic extension and
appeals to FFTs on the three-torus, the computation of Wigner coefficients for a given scale j can be reduced
from the naive case of O(N2L4) to O(NL3) (for further details see [32]). The contribution to sf`m for a
given scale j can then be computed at O(NL2). The contribution from the scaling coefficients can be
computed at O(L2) after a spherical harmonic transform at O(L3) by exploiting our fast spherical harmonic
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transforms [45]. For a given scale j, computing the contribution to synthesise the original signal from its
wavelet coefficients is dominated by the forward Wigner transform and thus scales as O(NL3).

We have so far considered individual wavelet scales only. Naively, when including all Jtot = J − J0 + 1
wavelet scales j, both the forward and inverse wavelet transforms scale as O(JtotNL

3). However, since the
wavelets themselves have compact support in harmonic space (see Fig. 1) it is not necessary to perform all
wavelet transforms at the full band-limit L. Furthermore, the lower harmonic support of the wavelets for
large scales (smaller j) can also be exploited to increase computational efficiency. A multi-resolution algo-
rithm is constructed following these optimisations, where the computation is dominated by the largest two
scales. Hence, the overall complexity of computing both forward and inverse wavelet transforms, including
all scales, is effectively O(NL3). In addition, for real signals we exploit their conjugate symmetry to further
reduce computational and memory requirements by a factor of two.

4.2. Implementation

We have implemented the exact and efficient algorithm described previously to compute spin scale-
discretised wavelet transforms on the sphere in the existing s2let code [26], which has also been extended
to support directional wavelets. The core algorithms of s2let are implemented in C, while Matlab, Python
and IDL interfaces are also provided. Consequently, s2let is able to handle very large harmonic band-limits,
corresponding to data-sets containing tens of millions of pixels. s2let9 is publicly available, and relies on
the ssht10 code [45] to compute spherical harmonic transforms, the so311 code [32] to compute Wigner
transforms and the fftw12 code to compute Fourier transforms. Note that it also supports the analysis of
data on the sphere defined in the common healpix13 [17] format.

4.3. Numerical evaluation

We evaluate the numerical accuracy and computation time of the spin scale-discretised wavelet transform
implemented in the s2let code. We simulate band-limited test signals on the sphere defined by uniformly
random spherical harmonic coefficients sf`m with real and imaginary parts distributed in the interval [−1, 1].
We then compute an inverse spherical harmonic transform to recover a band-limited test signal on the sphere.
A forward wavelet transform is then performed, followed by an inverse transform to synthesise the original
signal from its wavelet coefficients. Ten simulated signals are considered for band-limits from L = 32 to
L = 2048. All numerical experiments are performed on a standard desktop with a 3.5 GHz Intel Core i7
processor and 32 GB of RAM.

4.3.1. Numerical accuracy

Numerical accuracy of a round-trip wavelet transform is measured by the maximum absolute error
between the spherical harmonic coefficients of the original test signal sf

o
`m and the recomputed values sf

r
`m,

i.e. ε = max`,m
∣∣
sf

r
`m − sf

o
`m

∣∣. Results of the numerical accuracy tests, averaged over ten random test
signals, are plotted in Fig. 4. We plot results for a spin s = 2 signal, although the accuracy for different
spin numbers is identical. The numerical accuracy of the round-trip transform is close to machine precision
and found empirically to scale as O(L).

4.3.2. Computation time

Computation time is measured by the round-trip computation time taken to perform a forward and
inverse wavelet transform. Results of the computation time tests, averaged over ten random test signals,
are plotted in Fig. 5. We plot results for a spin s = 2 signal, although the computation time for different
spin numbers is identical since the spin number is simply a parameter of the transform (rather than applied
through spin lowering/raising operators). For constant N , computation time is found empirically to scale
as O(L3), as predicted in Sec. 4.1.

9http://www.s2let.org
10http://www.spinsht.org
11http://www.sothree.org
12http://www.fftw.org
13http://healpix.jpl.nasa.gov
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Figure 4: Numerical accuracy of a round-trip wavelet transform (s = 2, N = 5, λ = 2). Accuracy is close to machine precision
and found empirically to scale as O(L).
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Figure 5: Computation time of a round-trip wavelet transform (s = 2, N = 5, λ = 2). For constant N , computation time
is found empirically to scale as O(L3), as expected. Furthermore, the multiresolution transform is approximately an order of
magnitude faster than the full-resolution transform.
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5. Applications

We discuss applications of our directional spin scale-discretised wavelet analysis on the sphere in this
section. Firstly, we illustrate their use in a simple denoising example. Secondly, we give brief overviews of
recent applications of spin scale-discretised wavelets for cosmological analyses.

5.1. Illustration

We consider linearly polarised radiation and construct the spin-2 signal x = 2(Q + iU) ∈ L2(S2) from
the Q and U Stokes parameters, as described in Sec. 2.2. The observed signal y ∈ L2(S2) is contaminated
with zero-mean Gaussian white noise on the sphere n ∈ L2(S2), with variance E

(
|n`m|2

)
= σ2, ∀`, m,

and thus reads y = x+ n, where all signals are band-limited at L.
To assess the fidelity of noisy signals, we consider the signal-to-noise ratio (SNR) defined by

SNR(y) ≡ 10 log10

‖x‖22
‖y − x‖22

, (44)

where signal energies are calculated by

‖x‖22 ≡ 〈x, x〉 =

∫
S2

dΩ(ω)|x(ω)|2 =

L−1∑
`=0

∑̀
m=−`

|x`m|2 . (45)

We estimate x by denoising y, to recover the denoised signal x̂ ∈ L2(S2), taking advantage of the fact
that most natural signals of interest (e.g., generated by physical processes) have their energy concentrated
in a small number of wavelet coefficients. By contrast, the energy of the noise is spread over all wavelet
scales. Since the wavelet transform is linear, the wavelet coefficients of the observed signal for the j-th scale
are simply given by the sum of signal and noise contributions:

Y 2Ψ(j)

(ρ) = X2Ψ(j)

(ρ) +N 2Ψ(j)

(ρ) , (46)

where upper-case variables denote wavelet coefficients of the corresponding signal denoted by lower-case vari-

ables, i.e. Y 2Ψ(j) ≡ y ~ 2Ψ(j). Due, again, to the linearity of the wavelet transform, the wavelet coefficients
of the noise are also zero-mean and Gaussian, with variance

E
(
|N 2Ψ(j)

(ρ)|2
)

= σ2
∑
`n

∣∣
2Ψ

(j)
`n

∣∣2 ≡ (σ(j)
)2
. (47)

Thus, a simple denoising strategy is to hard-threshold the wavelet coefficients Y 2Ψ(j)

with a threshold
t(j) = 3σ(j). This yields denoised wavelet coefficients

X̂2Ψ(j)

(ρ) =

{
0, if Y 2Ψ(j)

(ρ) < t(j)

Y 2Ψ(j)

(ρ), otherwise
. (48)

Scaling coefficients are not thresholded: we simply take X̂2Φ = Y 2Φ. The denoised signal x̂ is then re-

constructed from its wavelet coefficients X̂2Ψ(j)

and scaling coefficients X̂2Φ by an inverse spin wavelet
transform.

This simple denoising strategy is demonstrated using the full-sky polarised synchrotron emission that
is inferred from WMAP data [15] and shown in Fig. 6, which is used as the input test signal x. This test
signal is highly structured and generated by real astrophysical processes. Consequently, it is a good example
signal for a denoising illustration, even though it already contains some noise. The test signal is corrupted
with noise to yield the observed signal y, such that SNR(y) = 11 dB. By applying the denoising algorithm
described above (with parameters L = 512, λ = 2, N = 4, and J0 = 0) a denoised signal x̂ is recovered with
SNR(d) = 18 dB. Noisy and denoised data are plotted in Fig. 7. Repeating the denoising using axisymmetric
spin scale-discretised wavelets (by setting N = 1) degrades the fidelity of the denoised signal by ∼ 1dB. In
this illustration, where a very simple hard-thresholding algorithm is adopted, the denoising is surprisingly
effective given that the input signal is taken from real astrophysical data and already contains residual noise.
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Figure 6: Full-sky polarised synchrotron emission inferred from WMAP data [15], plotted using a Mollweide projection, in
units of µK. The colour scale of the plot shows the amplitude of the spin-2 signal 2(Q+ iU), while the direction of the headless
vectors show its phase. These data provide the test signal used for the denoising illustration.

(a) |2(Q+ iU)|

(b) ∠ 2(Q+ iU)

Figure 7: Wavelet denoising of the full-sky polarised synchrotron emission shown in Fig. 6. The amplitude of the spin-2 signal

2(Q + iU) is shown in panel (a) in units of µK, while its phase is shown in panel (b). Noisy data is plotted on the left and
denoised data recovered by a simple hard-thresholding strategy is plotted on the right. Noisy data is constructed with an SNR
of 11 dB, while denoised data is recovered with an SNR of 18 dB.
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5.2. Cosmological applications

Just as directional scalar wavelets have found widespread use in cosmological studies, particularly for the
analysis of CMB temperature observations, we anticipate directional spin wavelets will be similarly useful
in cosmology. In particular, CMB polarisation [74] and cosmic shear due to weak gravitational lensing [18]
give rise to spin-2 signals on the celestial sphere. In a number of recent articles some of the authors of
this article have already applied the spin wavelet framework constructed here to cosmological problems, as
described below (these are only a small selection of cosmological examples where directional spin wavelets
are likely to be useful and are not an extensive set of examples).

5.2.1. CMB component separation

In [56] the Spin-SILC algorithm is developed to remove foreground contamination from multi-frequency
polarised CMB observations. Spin-SILC is applied to Planck data to recover a clean estimate of the CMB
polarisation signal. This approach acts coherently on the observed spin quantity (the Stokes parameters
Q± iU), unlike alternatives that consider Q and U (or E and B) independently.

5.2.2. Weak gravitational lensing

In [25] our spin wavelet framework is extended from the sphere to the 3D ball. Moreover, we express
the theory of 3D weak gravitational lensing in directional spin wavelet space and construct wavelet covari-
ance estimators to relate data to cosmological theory. This approach allows one to handle effectively, and
simultaneously, complicated sky coverage and uncertainties associated with the physical modelling of small
scales.

5.2.3. E/B reconstruction

In [24] we exploit the connection between spin wavelet transforms of observed spin-2 signals and scalar
wavelet transforms of the associated E- and B-mode quantities (see Sec. 3.6) to recover E- and B-modes
from partial-sky cosmological observations. The E/B reconstruction problem arises when analysing both
CMB polarisation and weak gravitational lensing. Performing E/B separation in wavelet space supports
the application of scale- and orientation-dependent masking schemes. Furthermore, we derive wavelet space
pure-mode estimators, which rely on spin-1 wavelet transforms (also afforded by our spin wavelet framework
since our construction supports arbitrary spin), reducing leakage due to the partial-sky setting by over an
order of magnitude.

6. Conclusions

The directional spin scale-discretised wavelet framework constructed in this article is the only wavelet
framework defined natively on the sphere that is able to probe the directional intensity of spin signals. The
wavelet transform can thus be used to probe signal content not only in scale and location but also orientation.
This additional degree of freedom improves the sensitivity of wavelet analyses in practical applications, as
demonstrated already for scalar signals in numerous analyses of the temperature anisotropies of the CMB
[e.g. 35, 43, 47]. In addition, our directional spin scale-discretised wavelet framework supports the exact
synthesis of a signal from its wavelet coefficients, in theory and in practice, and is applicable to signals
of arbitrary spin, while the wavelets themselves constitute a Parseval frame and are steerable, implying
wavelet coefficients for any continuous orientation can be computed from a finite number of fixed orientations.
Furthermore, we present exact and efficient algorithms to compute the forward and inverse wavelet transform
for very large data-sets containing tens of millions of samples on the sphere. We require only half as many
wavelet coefficients to capture the full information content of the signal compared to alternative approaches.
Finally, we highlight the applicability of spin directional wavelets by a simple illustration of an application
to denoising linearily polarised radiation observed on the celestial sphere, which is a spin s = ±2 signal.
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