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A B S T R A C T

Many areas of science and engineering encounter data defined on spherical
manifolds. Modelling and analysis of spherical data often necessitates spher-
ical harmonic transforms, at high degrees, and increasingly requires efficient
computation of gradients for machine learning or other differentiable program-
ming tasks. We develop novel algorithmic structures for accelerated and dif-
ferentiable computation of generalised Fourier transforms on the sphere S2

and rotation group SO(3), i.e. spherical harmonic and Wigner transforms, re-
spectively. We present a recursive algorithm for the calculation of Wigner
d-functions that is both stable to high harmonic degrees and extremely paral-
lelisable. By tightly coupling this with separable spherical transforms, we ob-
tain algorithms that exhibit an extremely parallelisable structure that is well-
suited for the high throughput computing of modern hardware accelerators
(e.g. GPUs). We also develop a hybrid automatic and manual differentiation
approach so that gradients can be computed efficiently. Our algorithms are im-
plemented within the JAX differentiable programming framework in the S2FFT
� software code. Numerous samplings of the sphere are supported, including
equiangular and HEALPix sampling. Computational errors are at the order
of machine precision for spherical samplings that admit a sampling theorem.
When benchmarked against alternative C codes we observe up to a 400-fold
acceleration. Furthermore, when distributing over multiple GPUs we achieve
very close to optimal linear scaling with increasing number of GPUs due to
the highly parallelised and balanced nature of our algorithms. Provided access
to sufficiently many GPUs our transforms thus exhibit an unprecedented effec-
tive linear time complexity.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Research efforts in many fields of science and engineering, both in industrial and academic settings, are increas-
ingly considering the analysis of data that live on spherical manifolds, or variants thereof. The diversity in applications
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is remarkable, ranging from quantum chemistry [1, 2], molecular modelling [3, 4], biomedical imaging [5, 6, 7, 8],
geophysical inverse problems [9, 10, 11, 12], general relativity and gravitational waves [13, 14, 15], to the wider
cosmos [16, 17, 18, 19] and beyond. Reflecting the growth of scientific interest, consortiums within these fields have
grown in both size and scope, with international missions including, e.g., ESA’s Planck [20] and Euclid [21] satellite
missions, the Dark Energy Survey [DES; 22], the Rubin Observatory Legacy Survey of Space and Time [LSST; 23]
and soon the Laser Interferometer Space Antenna [LISA; 24]. As such, a substantial global community of researchers
have an interest in the development and use of foundational technology for the analysis and modelling of spherical
data.

For many of these applications a harmonic analysis of data can be insightful, in some cases critical. Many physical
models are best described in harmonic space (often due to the independent physical evolution of different harmonic
modes) necessitating spherical harmonic transforms, for example in cosmology [25] and seismology [26]. Further-
more, many analyses either rely on spherical harmonic transforms for a direct analysis or as an integral component of
other analysis techniques, for example wavelets on the sphere [e.g. 27, 28, 29] or geometric machine learning on the
sphere [e.g. 30, 4, 31, 32, 33].

Widespread uses of the harmonic analysis of spherical data, combined with increasingly large data volumes,
heightens the need for scalable and efficient algorithms, with readily accessible and easy to use software, to compute
generalised fast Fourier transforms on both the sphere S2 and rotation group SO(3). Modern hardware accelerators,
such as GPUs and TPUs, provide a great opportunity to leverage high throughput computing to address the increasing
computational challenge. With the growth of differentiable programming opening up many new types of analysis,
many applications also require spherical transforms that are differentiable. Machine learning models on the sphere
require differentiable transforms so that the models may be trained by gradient-based optimisation algorithms. Emerg-
ing physics-enhanced machine learning approaches [34] also require differentiable physical models, which in many
cases themselves require differentiable spherical transforms, for hybrid data-driven and model-based approaches [e.g.
35, 36, 37, 38, 39]. While a number of software codes are available to compute spherical harmonic transforms, these
do not typically run on hardware accelerators (e.g. GPUs) or support differentiable transforms.

In this work we address precisely this need by developing spherical transforms that are both differentiable and
accelerated. Specifically, we develop algorithms to compute generalised Fourier transforms on the sphere and also on
the rotation group, also referred to as spherical harmonic and Wigner transforms, respectively. Our algorithmic struc-
tures are designed to be highly parallelised in order to effectively exploit very high parallel throughput on hardware
accelerators like GPUs. We pay careful attention to the computation of gradients through a hybrid automatic and
manual differentiation approach, avoiding the memory overhead of full automatic differentiation while also avoid-
ing the complexities of full manual differentiation. We implement these algorithms in a new open-source software
code called S2FFT �, which is developed in the JAX differentiable programming framework. Our algorithms and
code support a number of different approaches to sample the sphere: including various equiangular samplings that
admit sampling theorems [40, 41, 42] and thus theoretically exact spherical harmonic transforms; and also the popular
HEALPix scheme [43], which, although it does not support exact harmonic transforms, has the practical advantage of
pixels of equal area. Various sampling schemes are illustrated in Fig. 1.

The remainder of this article is structured as follows. In Sec. 2 we review the mathematical background that
underpins themes throughout this article. Following this, in Sec. 4 we present a recursive algorithm suitable for the
parallel calculation of the Wigner d-functions. Algorithms to compute the spherical harmonic transform for arbitrary
spin and the Wigner transform are presented in Sec. 4. In Sec. 5 we present various approaches to the efficient
computational of the gradients of our spherical transforms. Penultimately, we provide an overview of our software
implementation with benchmarking results in Sec. 6, before drawing concluding remarks in Sec. 7.

2. Fourier transforms on the sphere and rotation group

We concisely review the generalised Fourier transform on the two-sphere S2 and three-dimensional rotation group
SO(3). We first review the scalar spherical harmonic transform, after which we generalise to spin functions. We de-
scribe the generalised Fourier transform on the rotation group, the so-called Wigner transform, and draw connections
to spin spherical harmonic transforms. Finally, we discuss sampling spherical signals for the computation of spher-
ical transforms, highlighting the distinction between sampling schemes and sampling theorems (the latter of which
provide exact quadrature and exact harmonic transforms), and discuss a number of common spherical samplings that
our algorithms support.

https://github.com/astro-informatics/s2fft
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(a) McEwen & Wiaux (MW) [41] (b) Gauss-Legendre (GL) [41, 44] (c) Driscoll & Healy (DH) [40] (d) HEALPix [43]

Fig. 1: Visualisation of sample positions on the sphere for various sampling schemes. The Driscoll & Healy [DH; 40], McEwen & Wiaux [MW;
41], and Gauss-Legendre [GL; 41, 44] samplings all admit sampling theorems with exact spherical harmonic transforms, although HEALPix does
not. Both MW and GL sampling require ∼ 2L2 samples (although the MW sampling is slightly more efficient), whereas DH [40] sampling requires
∼ 4L2, and HEALPix considers ∼ kL2 samples, where k typically ranges from 3 to 12. The HEALPix scheme has the practical advantage of
equal-area pixels and is widely adopted in cosmology. Modern computer vision, machine learning and geophysical applications typically adopt
equiangular sampling and thus map most efficiently and straightforwardly onto the MW sampling.

2.1. Spherical harmonic transforms for scalar functions
The scalar spherical harmonic functions Yℓm : S2 → C form the canonical orthogonal basis for the space of square

integrable scalar functions on the sphere and are defined by

Yℓm(ϑ, φ) =

√
2ℓ + 1

4π
(ℓ − m)!
(ℓ + m)!

Pm
ℓ (cosϑ) eimφ, (1)

for spherical coordinates with colatitude ϑ ∈ [0, π] and longitude φ ∈ [0, 2π), natural order ℓ ∈ N and integer
degree m ∈ Z, |m| ≤ ℓ, and where Pm

ℓ (·) are the associated Legendre functions. Throughout this article we adopt the
Condon-Shortley phase convention such that the conjugate symmetry relation Y∗ℓm(ϑ, φ) = (−1)m Yℓ,−m(ϑ, φ) holds.
The orthogonality and completeness relations for the spherical harmonics read

⟨Yℓm,Yℓ′m′⟩ =
∫
S2

dµ(ϑ, φ) Yℓm(ϑ, φ) Y∗ℓ′m′ (ϑ, φ) = δℓℓ′δmm′ (2)

and
∞∑
ℓ=0

ℓ∑
m=−ℓ

Yℓm(ϑ, φ) Y∗ℓm(ϑ′, φ′) = (sinϑ)−1 δ(ϑ − ϑ′) δ(ϕ − ϕ′), (3)

respectively, where ⟨·, ·, ⟩ denotes the inner product, dµ(ϑ, φ) = sinϑ dϑ dφ is the rotationally invariant Haar measure
on the sphere, δi j is the Kronecker delta symbol and δ(·) is the Dirac delta function.

By the orthogonality and completeness of the spherical harmonic functions, any square integrable function f ∈
L2(S2) may be represented by its spherical harmonic expansion

f (ϑ, φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

f̂ℓm Yℓm(ϑ, φ), (4)

where the square summable spherical harmonic coefficients f̂ ∈ l2 are given by the projection

f̂ℓm = ⟨ f ,Yℓm⟩ =
∫
S2

dµ(ϑ, φ) f (ϑ, φ) Y∗ℓm(ϑ, φ). (5)

We denote the forward spherical harmonic transform by F : L2(S2) → l2, which maps functions on the sphere to
their spherical harmonic coefficients F : f 7→ f̂ . Similarly, we denote the inverse spherical harmonic transform
by F −1 : l2 → L2(S2), which maps spherical harmonic coefficients to the corresponding function on the sphere
F −1 : f̂ 7→ f . For real signals, note that the Hermitian symmetry relation f̂ ∗ℓm = (−1)m f̂ℓ,−m holds.
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2.2. Spherical harmonic transforms for spin functions
The (scalar) spherical harmonic functions are sufficient to characterise the harmonic representation of scalar func-

tions on the sphere, however they do not fully capture the symmetries associated with spin functions. Square integrable
spin-s functions on the sphere s f ∈ L2(S2) exhibit an additional symmetry such that they transform by s f ′ = e−sχ

s f
under right-handed rotations χ in the local tangent plane. The spin spherical harmonics sYℓm : S2 → C form the
canonical orthogonal basis for L2(S2) spin-s functions on the sphere.

Spin spherical harmonics may be defined through actions of spin raising operator ð and lowering operator ð̄ on
the scalar spherical harmonics, which are given by [45, 46, 47]

ð = − sins ϑ

(
∂ϑ +

i∂φ
sinϑ

)
sin−s ϑ and ð̄ = − sin−s ϑ

(
∂ϑ −

i∂φ
sinϑ

)
sins ϑ. (6)

The action of the spin raising and lowering operators on the spin spherical harmonics sYℓm is given, respectively, by

ðsYℓm =
√

(ℓ − s)(ℓ + s + 1) s+1Yℓm and ð̄sYℓm = −
√

(ℓ + s)(ℓ − s + 1) s−1Yℓm. (7)

It therefore follows that any spin spherical harmonic basis function can be generated from s repeated applications of
the spin raising or lowering operators on the scalar (spin s = 0) spherical harmonics:

sYℓm =


(−1)s

√
(ℓ+s)!
(ℓ−s)! ð̄

−sYℓm for − ℓ ≤ s ≤ 0√
(ℓ−s)!
(ℓ+s)! ð

sYℓm for 0 ≤ s ≤ ℓ
. (8)

The spin spherical harmonics, for a given spin, satisfy identical orthogonality and completeness relations as the
scalar spherical harmonics, cf. Eq. 2 and Eq. 3, respectively. Consequently, the forward and inverse spin spherical
harmonic transforms are also similar to the scalar transforms, cf. Eq. 5 and Eq. 4 respectively, but with the scalar
spherical harmonics replaced by the spin spherical harmonics. We denote forward and inverse spin spherical harmonic
transforms by sF and sF

−1, respectively, often dropping the explicit reference to spin s for notational brevity. The
Hermitian symmetry relation of the spin spherical harmonic coefficients is given by s f ∗ℓm = (−1)s+m

−s fℓ,−m for a
function satisfying s f ∗ = −s f (which for a spin s = 0 function equates to the usual reality condition).

2.3. Wigner transforms for functions on the rotation group
In many settings we encounter functions defined over the space of three-dimensional rotations. The Wigner D-

functions Dℓmn : SO(3) → C form an irreducible unitary representation of SO(3), the group of three-dimensional
rotations, for natural ℓ ∈ N and integers m, n ∈ Z such that |m|, |n| ≤ ℓ [48]. The Wigner D-functions are related to the
spin spherical harmonics by

Dℓmn(α, β, γ) = (−1)n

√
4π

2ℓ + 1 −nY∗ℓm(β, α) e−inγ, (9)

where (α, β, γ) are the Euler angles parameterising SO(3), with α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π). We adopt the
zyz Euler convention corresponding to the rotation of a physical body in a fixed co-ordinate system about the z, y and z
axes by γ, β and α respectively. The Wigner D-functions may be decomposed in terms of the real Wigner d-functions
by [48]

Dℓmn(α, β, γ) = e−imα dℓmn(β) e−inγ. (10)

The orthogonality and completeness relations for the Wigner D-functions read, respectively,

⟨Dℓmn,D
ℓ′

m′n′⟩ =

∫
SO(3)

dµ(α, β, γ)Dℓmn(α, β, γ) Dℓ
′∗

m′n′ (α, β, γ) =
8π2

2ℓ + 1
δℓℓ′δmm′δnn′ , (11)

and
∞∑
ℓ=0

ℓ∑
m=−ℓ

ℓ∑
n=−ℓ

Dℓmn(α, β, γ) Dℓ∗mn(α′, β′, γ′) = δ(α − α′) δ(cos β − cos β′) δ(γ − γ′), (12)

where we overload the notation ⟨·, ·⟩ to denote inner products on both the sphere and rotation group (note that the case
considered can be easily inferred from the context) and dµ(α, β, γ) = sin βdαdβdγ is the rotationally invariant Haar
measure on the rotation group.
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The space of square integrable functions f ∈ L2(SO(3)) admits the Wigner expansion

f (α, β, γ) =
∞∑
ℓ=0

2ℓ + 1
8π2

ℓ∑
m=−ℓ

ℓ∑
n=−ℓ

f̂ ℓmn Dℓ∗mn(α, β, γ), (13)

where the square summable Wigner coefficients f̂ ∈ l2 are given by the projection

f̂ ℓmn = ⟨ f ,D
ℓ∗
mn⟩ =

∫
SO(3)

dµ(α, β, γ) f (α, β, γ) Dℓmn(α, β, γ). (14)

As before, we introduce an operator notation with forward Wigner transform W : L2(SO(3)) → l2, which maps
functions on the rotation group to their harmonic coefficientsW : f 7→ f̂ . Similarly, we denote the inverse Wigner
transform by W−1 : l2 → L2(SO(3)), which maps Wigner harmonic coefficients to the corresponding function
on the rotation group W−1 : f̂ 7→ f . Note that we use f to denote functions on both the sphere and rotation
group, with corresponding harmonic coefficients f̂ . For real signals, note that the Hermitian symmetry relation
f̂ ℓ∗mn = (−1)m+n f̂ ℓ−m,−n holds.

Due to the relationship between the Wigner D-functions and the spin spherical harmonics (Eq. 9), Wigner trans-
forms can be expressed as a series of spin spherical harmonic transforms and Fourier transforms [42]. For complete-
ness, the forward Wigner transform may be expressed as

f̂ ℓmn = (−1)n

√
4π

2ℓ + 1

∫
S2

dµ(β, α) fn(α, β) −nY∗ℓm(β, α), (15)

where

fn(α, β) =
∫ 2π

0
dγ f (α, β, γ) e−inγ. (16)

Note that Eq. 15 corresponds to a (scaled) spin spherical harmonic transform with spin −n. The inverse Wigner
transform may be expressed as

f (α, β, γ) =
ℓ∑

n=−ℓ

fn(α, β) einγ, (17)

where

fn(α, β) = (−1)n
∞∑
ℓ=0

ℓ∑
m=−ℓ

√
2ℓ + 1
16π3 f̂ ℓmn −nYℓm(β, α). (18)

Note that Eq. 18 corresponds to an inverse spin spherical harmonic transform (of scaled harmonic coefficients) with
spin −n. These expressions may be leveraged to compute Wigner transforms simply through spin spherical harmonic
transforms and standard 1D Fourier transforms [42].

2.4. Sampling schemes versus sampling theorems on the sphere and rotation group
Up until this point we have considered the continuous form of generalised Fourier transforms on the sphere and

rotation group. In practice, however, one recovers sampled values of the signal of interest at a finite number of
positions. Consequently, sampling schemes must be adopted to pixelise the sphere and rotation group. Generalised
Fourier transforms must then be computed from these sampled values.

Often we consider the space of bandlimited signals BL(Ω), where Ω represents either the sphere or rotation group,
i.e. Ω = {S2,SO(3)}. Bandlimited signals are those whose harmonic coefficients are zero for degrees ℓ greater than
or equal to the bandlimit L. A bandlimited signal on the sphere has f̂ℓm = 0 for all ℓ ≥ L, while a bandlimited signal
on the rotation group has f̂ ℓmn = 0 for all ℓ ≥ L. Consequently, harmonic coefficients for bandlimited signals on the
sphere and rotation group live, respectively, in CL2

and C(4L3−L)/3 [42, 49]. For bandlimited signals, summations over
degree ℓ (cf. Eq. 4 and Eq. 13) may be truncated to L − 1. In many settings azimuthal bandlimits also arise, such
that harmonic coefficients are zero for m ≥ M and/or n ≥ N (summations over m and n may than also be truncated).
Real-world signals may be approximated accurately by bandlimited signals for a suitable bandlimit.

For the spatial signal representation, we distinguish between sampling schemes and theorems. For sampling
schemes, the sphere or rotation group may be sampled in any arbitrary manner and harmonic coefficients computed
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by approximate quadrature. This provides a great deal of flexibility in how sample positions are set. However, this
flexibility comes at a cost: for an arbitrary sampling, harmonic transforms can only be computed approximately and in
some cases can be quite inaccurate. Furthermore, for an arbitrary sampling the computation of the spherical harmonic
transform scales as O(L4). By adopting an isolatitude sampling, where φ samples are collected in isolatitudinal rings
for each colatitude ϑ, one may apply a separation of variables to reduce computational complexity to O(L3) [e.g. 43,
41, 42, 50]. For this reason isolatitudinal sampling is typically adopted; hence, we focus on isolatitudinal sampling in
the remainder of this article. A sampling theorem, in contrast, provides a way to capture all of the information content
of a bandlimited signal in a finite set of sampled values. Since all information content of the underlying continuous
signal is captured, a sampling theorem implicitly provides a quadrature rule to compute harmonic coefficients exactly.
Sampling theorems are thus tied to particular structured samplings of the sphere.

For both arbitrary sampling schemes and sampling theorems, the forward spin spherical and Wigner transforms
of Eq. 5 and Eq. 14, respectively, may be discretised by

s f̂ℓm ≃
∑
θ,ϕ

q(θ, ϕ) s f (θ, ϕ) sY∗ℓm(θ, ϕ) (19)

and
f̂ ℓmn ≃

∑
α,β,γ

q(α, β, γ) f (α, β, γ) Dℓmn(α, β, γ), (20)

where we have introduced an upright notation to denote sampled angles, i.e. (ϑ, φ) 7→ (θ, ϕ) and (α, β, γ) 7→ (α, β, γ).
We adopt the symbol ≃ to denote that the computation is approximate for arbitrary sampling schemes but is exact for
sampling theorems. Inverse spherical and Wigner transforms of Eq. 4 and Eq. 13, respectively, involve summations
only and so can be computed directly (up to a particular degree ℓ).

We again adopt an operator notation overloading the previous notation to now consider bandlimited signals with
forward spin spherical harmonic transform F : BL(S2) → CL2

and inverse F −1 : CL2
→ BL(S2). Similarly, the

forward Wigner transform is denotedW : BL(SO(3))→ C(4L3−L)/3, with inverseW−1 : C(4L3−L)/3 → BL(SO(3)).

2.5. Specific isolatitudinal sampling schemes and theorems on the sphere and rotation group

To complete this section, let us briefly discuss the sampling schemes and theorems considered throughout this
article and in the associated software implementation. One of the most common spherical sampling schemes is the
Hierarchical Equal Area isoLatitude Pixelisation of the sphere, abbreviated HEALPix [43].1 HEALPix has numerous
practical advantages, such as a hierarchical representation and equal area pixels. Consequently, it is widely used
in many application domains [e.g. 20]. However, since HEALPix does not exhibit a sampling theorem, spherical
harmonic transforms are necessarily approximate. In fact, harmonic transforms can be quite inaccurate with absolute
errors of ∼ 10−1 in some settings [51]. For this reason, iterations are usually performed to increase accuracy.

The canonical sampling theorems on the sphere for equiangular samplings are those of Driscoll & Healy [DH;
40] and McEwen & Wiaux [MW; 41]. Spherical sampling theorems differ significantly to the Euclidean setting.
The Nyquist-Shannon sampling theorem for Euclidean spaces results in an identical number of samples in both the
spatial and harmonic domains. In contrast, no sampling theorem on the sphere achieves the optimal dimensionality
of bandlimited spherical signals in harmonic space, given by L2. The MW sampling theorem provides the most
efficient equiangular sampling, with ∼ 2L2 spatial samples, reducing the Nyquist rate on the sphere by a factor of
two compared to the DH sampling scheme, which requires ∼ 4L2 spatial samples.2 Fast algorithms for both the
DH and MW sampling theorems have been developed. While a number of algorithms have been introduced for the
DH sampling theorem [40, 53], some of which have computational complexity of O(L2 log L), the only variant is
that is universally stable is the so-called semi-naive algorithm, with complexity of O(L3). Fast algorithms for the
MW sampling theorem also achieve complexity of O(L3) [41]. While equiangular samplings are the most common
structured sampling, for example matching the acquisition format of 360 panoramic photos and videos, spherical
sampling theorems based on Gauss-Legendre (GL) quadrature have also been proposed [e.g. 54, 41], with samples

1https://healpix.sourceforge.io/
2Note that an equiangular sampling scheme that achieves the optimal number of spatial samples has been developed [52]. A sampling theorem

with exact quadrature is not recovered but high accuracy is nevertheless obtained.

https://healpix.sourceforge.io/
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defined on isolatitudinal rings with θ specified by the roots of the Legendre polynomials of order L. GL sampling
exhibits a similar, although slightly greater, number of samples as the MW sampling theorem.

Both the DH and MW sampling theorems have been extended to the rotation group SO(3) [55, 42]. Both exhibit
fast algorithms with complexityO(L4), while the MW sampling theorem again achieves a reduction in the Nyquist rate
on SO(3) by a factor of two, requiring ∼ 4L3 spatial samples [42] rather than ∼ 8L3 samples [55]. Note that in many
practical settings low azimuthal bandlimits arise, reducing a factor of L in both number of samples and complexity to
N ≪ L. The Gauss-Legendre sampling theorem has also been extended to SO(3) [49], requiring a similar (although
slightly larger) number of samples as the MW sampling theorem on SO(3).

Throughout the remainder of this article we develop general spherical transforms that can be applied to any
isolatitudinal sampling that exhibits an explicit quadrature (either exact or approximate). In particular, our software
implementation supports the HEALPix sampling scheme, due to its widespread use and practical advantages, and the
DH and MW sampling theorems, due to the exact spherical transforms afforded.

3. Parallelised and differentiable Wigner computation

To compute spin spherical harmonic and Wigner transforms it is necessary to compute the Wigner D-functions,
or equivalently the real Wigner d-functions (Eq. 10). Since we target accelerated computation on modern hardware
accelerators, such as GPUs and TPUs that can execute a very large number of threads in parallel, it is desirable to
compute Wigner functions in a highly parallelised manner. Furthermore, since we also target differentiable transforms,
we must compute Wigner functions in a manner that lends itself to efficient automatic differentiation. Finally, we are
interested in use cases that reach very high harmonic degrees ℓ, hence careful attention must be given to ensure stable
computation up to very high ℓ. In this section we first define explicit expressions for the Wigner functions, before
discussing in greater detail the specific requirements that must be met to achieve a high degree of parallel computation
and efficient automatic differentiation. We then present a recursive algorithm to compute Wigner functions that
meets these requirements, discussing specific considerations to ensure our approach is suitable for differentiable
programming frameworks such as JAX [56].

3.1. Explicit Wigner representations

We relate the Wigner D-functions to the spin spherical harmonics above (Eq. 9), and also to the Wigner d-functions
(Eq. 10). However, we of course require an explicit representation for computational purposes. We leverage the
decomposition of the Wigner D-functions in terms of the d-functions and thus focus on the computation of dℓmn(β).

A number of explicit representations of the d-functions can be considered, such as the differential representation
[48, Sec. 4.3.2, p. 77, Eq. 7]

dℓmn(β) =
(−1)ℓ−n

2ℓ

√
(ℓ + m)!

(ℓ − m)!(ℓ + n)!(ℓ − n)!
(1 − cos β)−

(m−n)
2 (1 + cos β)−

(m+n)
2

dℓ−m

(d cos β)ℓ−m

[
(1 − cos β)ℓ−n(1 + cos β)ℓ+n],

(21)
or the expression in terms of Jacobi polynomials Pµ,νs (·) given by [48, Sec. 4.3.4, p. 78, Eq. 13–15]

dℓmn(β) = ζmn

√
s!(s + µ + ν)!

(s + µ)!(s − ν)!

(
sin
β

2

)µ(
cos
β

2

)ν
Pµ,νs (cos β), (22)

where µ = |m − n|, ν = |m + n|, s = ℓ − (µ + ν)/2 and

ζmn =

{
1 if n ≥ m
(−1)n−m if n < m . (23)

However, these expressions do not lend themselves to convenient computation (indeed the Jacobi representation
simply shifts the task to the computation of the Jacobi polynomials). Instead, it is typical to compute Wigner d-
functions by recursion.
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3.2. Requirements for parallel computation and automatic differentiation

While the Wigner d-functions can be computed by recursion, our aim is to deploy our algorithms efficiently
on hardware accelerators that provide very high levels of parallelisation and to ensure they are stable to very high
harmonic degrees ℓ. Careful attention therefore must be given to the recursion used to ensure these requirements are
met.

A number of recursions, while stable, recurse over both harmonic degree ℓ and order m [e.g. 57, 58]. This limits
the degree of parallelisation that can be achieved. Three-term recurrences typically recurse over a single index only,
which is well-suited for high levels of parallelisation, although they can be unstable with errors compounding and
resulting in highly inaccurate calculation [59]. Nevertheless, careful attention can be given to ensure stability can be
achieved [e.g. 60, 61].

For spin spherical harmonic transforms we need to compute dℓmn(β) for all ℓ, m, and β, but only for a single n
(the spin number of interest). We can compute Wigner transforms in terms of a series of spin spherical harmonic
transforms (as discussed in Sec. 2.3). We therefore target a recursion over m only that we can compute for arbitrary ℓ,
n, and β. Such a recursion supports high degrees of parallelisation, where computations for ℓ, n, and β are independent
and so can be parallelised across the very large number of threads available on modern hardware accelerators, such
as GPUs and TPUs. Furthermore, this avoids the need for any recursion to compute transforms for all spins ≤ n,
providing an efficiency saving over alternative approaches that often compute spin transforms through n repeated
application of spin lowering/raising operations. We pay careful attention in the next section (Sec. 3.3) to how such a
recursion can be computed in a stable manner up to very high degrees ℓ.

Another key aim of our approach is to provide differentiable transforms. A final requirement is that our recursive
algorithm must therefore be structured in such a way as to provide computationally efficient automatic differentiation.
We pay careful attention below (Sec. 3.4) to how the recursion we consider can be computed efficiently and stably in
a differentiable programming framework such as JAX. Further details regarding automatic differentiation of not only
the computation of the Wigner functions but the full spherical transforms are discussed in Sec. 5.

3.3. Recursion

Our algorithm is built upon the three-term Wigner d-function recursion [48, Sec. 4.8.3, p. 93, Eq. 17]

n − m cos β
sin β

dℓmn(β) =
1
2

√
(ℓ + m)(ℓ − m + 1) dℓm−1,n(β) +

1
2

√
(ℓ − m)(ℓ + m + 1) dℓm+1,n(β). (24)

This recursion iterates across order m independently of ℓ, n, and β, thereby supporting an algorithmic structure that
can be highly parallelised. While computing this recursion for increasing m is unstable, it can be computed stably for
decreasing m (as discussed in detail in Prézeau and Reinecke [60], although they consider recursion over n). One may
straightforwardly rearrange Eq. 24 to recover

dℓm−1,n(β) = λm am−1 dℓmn(β) −
am−1

am
dℓm+1,n(β), (25)

where, for notational brevity, the recursion coefficients are concisely refactored into

λm =
n − m cos β

sin β
and am =

2
√

(ℓ − m)(ℓ + m + 1)
. (26)

The recursion needs to be initialised at dℓ
ℓn(β) so that we can recurse down in m, starting from m = ℓ. We therefore

initialise the algorithm using the relation

dℓℓn(β) =

√
(2ℓ)!

(ℓ + n)!(ℓ − n)!

(
− sin

β

2

)ℓ−n (
cos
β

2

)ℓ+n

, (27)

which follows by the expression for the Wigner d-functions in terms of Jacobi polynomials of Eq. 22. To sketch how
one reaches this result, consider the case in which the spin number n = ℓ, the Jacobi polynomial term then reduces to
unity, and the symmetry relation dℓmn(β) = (−1)n−mdℓnm(β) [48, Sec. 4.4, p. 79, Eq. 1] can then be applied to reorder the
m and n indices, following which the trigonometric expressions and prefactor follow straightforwardly. We calculate
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Initialisation (see Eq. 27)

Recursion (see Eq. 25)

Fig. 2: Overview of the recursive strategy that we adopt to calculate the Wigner d-functions dℓmn(β), which underpin both the spin spherical
harmonic and Wigner transforms. The recursion iterates across order m independently of ℓ, n, and β, in the direction of reducing m (to ensure
stability). Such a recursion supports high degrees of parallelisation, where computations for ℓ, n, and β are independent and so can be parallelised
across the very large number of threads available on modern hardware accelerators, such as GPUs and TPUs. Furthermore, this approach avoids the
need for any recursion to compute transforms for different spins n, providing an efficiency saving over alternative approaches that often compute
spin transforms through repeated application of spin lowering/raising operations. The algorithm is initialised for dℓ

ℓn(β). We also consider a non-
conditional renormalisation approach to avoid under- and over-flow in a manner that is applicable to differentiable programming frameworks such
as JAX. The resulting recursive algorithm is stable to at least ℓ ∼ 10, 000 and likely well beyond.

these terms in log-space to mitigate numerical issues inherent in evaluating large factorials. Also note that d ℓ
ℓ+1,n(β) is

trivially zero as d ℓmn(β) = 0 for all m > ℓ.
While some spherical samplings avoid samples at the north and south poles, others do have samples on the poles.

Since we aim to support a number of different spherical samplings (as discussed in Sec. 2.5), including those with
samples defined on the poles, we must be able to evaluate Wigner d-functions on the poles. The initialisation and
recursion presented above are not suitable on the poles (β = {0, π}) since the recursion coefficient λm is undefined
due to the sin β term in the denominator. Fortunately, simple forms for these elements of the Wigner d-functions are
available, which we implement explicitly. Specifically, at the north pole [48, Sec. 4.16, p. 112, Eq. 1]

dℓmn(0) = δmn (28)

and at the south pole
dℓmn(π) = (−1)ℓ+mdℓm,−n(0) = (−1)ℓ+mδm,−n, (29)

which follows from Varshalovich et al. [48, Sec. 4.4, p. 79, Eq. 1]. Our recursive algorithm to compute the Wigner
d-functions in a highly parallelised and stable manner, and its initialisation, is outlined graphically in Fig. 2 for clarity.

Additionally, note that the Wigner d-functions exhibit an extreme dynamic range. For example, the magnitude
of these coefficients dℓmn(β) often ranges in excess of many hundreds of orders of magnitude. Hence, not only must
one recurse along stable paths but one must also develop protocols to avoid under- and over-flowing, which can be
equally catastrophic. A common approach to address this issue is to implement a renormalisation scheme, which
conditionally compresses the dynamic range during the recursion to an acceptable interval. However, while this may
solve the dynamic range problem in theory, algorithms with this conditional structure do not permit efficient automatic
differentiation. In fact, due to branching trees, such an algorithm can become extremely expensive to differentiate.
Alternative methods exist, such as continued fractions [e.g. 59], however, as we discuss below in Sec. 3.4, with some
careful software engineering it is possible to develop non-conditional algorithms for renormalisation that are not only
feasible, but exhibit preferable complexity scaling.
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3.4. Stable JAX recursion

Beginning from the initial values given by Eq. 27 sequentially evaluating the recursion presented in Eq. 25 can
rapidly result in iterates dℓmn(β) that under- or over-flow 64-bit representations. One may diligently check the iterates
magnitude at recursive step j against some large scaling factor C and, if larger, update a running normalisation constant
Cℓβ → Cℓβ/C before retrospectively renormalising all dℓ

ℓ−k,n → dℓ
ℓ−k,n/C for k ≤ j therefore avoiding problematic

numerical overflows. This approach is simple and effective for serial evaluation, however it creates two issues for
accelerated differentiable programming.

Firstly, suppose whilst recursing the iterate magnitude becomes larger than C after each j iterations, at which point
the above renormalisation scheme is executed. For a given harmonic degree ℓ one would expect to encounter ∼ ℓ/ j
renormalisation nested loops. The average number of iterates that must be renormalised within each of these loops
is straightforwardly ∼ ℓ/2. Compounding these factors it is clear that this approach to renormalisation changes the
overall complexity of the recursion fromO(ℓ) toO(ℓ2). Adopting such an approach for a spherical harmonic transform
with bandlimit L results in O(L4) complexity which is prohibitive for high L.

Secondly, although control flow primitives acting on tracer objects, such as checking the magnitude of iterates,
are supported by JAX, they are inefficient in this case. Both branches of the conditional flow must be compiled and
executed at runtime, whether the condition is met or not. The renormalisation strategy involves two such primitives
within every iteration, one to determine whether the renormalisation condition is met and another to determine which
elements to which to apply this renormalisation. Not only do such nested conditional flow primitives require exponen-
tial memory allocation, they also require CPU scheduling incurring further communication overhead. Similar issues
are prevalent when evaluating the gradients of such primitives.

We propose, perhaps counter-intuitively, to instead update the normalisation after every recursive step, in effect
performing a running renormalisation by default, rather than dynamically renormalising when under- or over-flow
conditions are met. In this manner we avoid passing back over terms many times to renormalise, thus avoiding the
associated computation cost and conditional branching that is otherwise required. Explicitly, we begin by normalising
dℓ
ℓ,n to unity and store this value as our initial normalisation. We then iterate once in descending m calculating the

normalised version of dℓ
ℓ−1,n, before undoing the normalisation and reading off dℓ

ℓ−1,n. At this point the absolute value
of the normalised dℓ

ℓ−1,n is computed and aggregated into the normalisation factor. Hence, each recursive step begins
normalised to unity with an appropriate running normalisation. Updating the normalisation in this way is computa-
tionally inexpensive and is a fair price to pay to retain O(ℓ) complexity. Moreover, as we automatically renormalise
after each iteration, no control flow primitives are needed, and thus issues pertaining to automatic differentiation and
nested branching trees are avoided entirely. Throughout we compute and store terms in log-space to achieve a larger
dynamic range, further mitigating the risk of under- and over-flow.

Through the approaches presented, we are able to compute Wigner d-functions in a manner that can be efficiently
deployed on modern hardware accelerators exhibiting high degrees of parallelisation, that provides efficient automatic
differentiation, and that are stable to very high degrees ℓ, to at least ℓ ∼ 10, 000 and likely well beyond. In the
following section we leverage these approaches to compute spin spherical harmonic and Wigner transforms.

4. Fast Fourier transforms on the sphere and rotation group

We present in this section algorithms for the fast computation of Fourier transforms on the two-sphere S2 and
three-dimensional rotation group SO(3): namely, spherical harmonic transforms (for any arbitrary spin) and Wigner
transforms, respectively. We consider a simple general algorithmic structure that is well suited to many different
sampling approaches and for deployment on modern hardware accelerators, such as GPUs and TPUs, leveraging the
parallelised and differentiable Wigner d-function computation presented in Sec. 3. We discuss in Sec. 5 the gradient
computation for the spherical transforms presented in this section.

In much the same way that the standard fast Fourier transform [FFT; 62] is reliant on uniform sampling, fast
generalised Fourier transforms on the sphere and rotation group are reliant on isolatitudinal sampling. Consequently,
we focus our attention solely to isolatitudinal sampling (as discussed in Sec. 2.4), which includes the majority of
commonly adopted spherical sampling approaches (as discussed in Sec. 2.5). The key advantage of isolatitudinal
samplings is that a separation of variables may be performed to reduce computational complexity [e.g. 43, 41, 42, 50].

Since our aim is to support many different spherical sampling approaches (e.g. DH, MW, GL, HEALPix), we adopt
a general algorithmic structure for the computation of spherical transforms that can be applied to any isolatitudinal
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sampling that exhibits an explicit quadrature for the spherical transform. Not all sampling approaches necessarily
exhibit an explicit quadrature and we discuss some tricks to address this.

We focus first on the general algorithmic form of the spherical harmonic transform and then the specifics of
different sampling schemes. We then discuss a precomputation approach that is highly efficient for moderate ban-
dlimits, before presenting an alternative optimisation applicable for high bandlimits that is achieved by interleaving
the Wigner d-function recursion with the computation of the harmonic transform. Finally, we discuss the application
of the techniques presented to also compute Wigner transforms.

4.1. Spin spherical harmonic transforms
We consider the computation of the spin spherical harmonic transform of bandlimited signals f ∈ BL(S2) denoted

by F : BL(S2) → CL2
and the inverse denoted by F −1 : CL2

→ BL(S2). Since we consider isolatitudinal samplings
where the transform can be expressed through an explicit quadrature, a separation of variables can be applied to the
discretised representation of the forward transform given by Eq. 19, yielding

s f̂ℓm ≃ (−1)s

√
2ℓ + 1

4π

∑
θ

qΘ(θ) dℓm,−s(θ) s f̃m(θ), (30)

with
s f̃m(θ) =

∑
ϕ

qΦ(ϕ) s f (θ, ϕ) e−imϕ. (31)

Without loss of generality we have expressed the quadrature weights in the separable form q(θ, ϕ) = qΘ(θ) qΦ(ϕ)
(merely for notational convenience for comparison with the inverse transform subsequently). Recall that we adopt the
symbol ≃ to denote that the computation is approximate for arbitrary sampling schemes (e.g. HEALPix) but is exact
for sampling theorems (e.g. DH, MW, GL).

Note that Eq. 30 is a projection onto the Wigner d-functions that can be computed with complexity O(L3), while
Eq. 31 is simply a one-dimensional Euclidean Fourier transform that can be computed by an FFT for each isolat-
itudinal ring at θ with overall complexity O(L2 log L). The separation of variables therefore results in an overall
complexity of O(L3+L2 log L) = O(L3), in contrast with the O(L4) complexity of direct computation by Eq. 19. Since
Eq. 31 is simply computed by FFTs, the main computational challenge is the efficient computation of Eq. 30, which
is discussed in greater detail in Sec. 4.3 and Sec. 4.4.

A similar approach through a separation of variables may also be applied to compute the inverse transform of
Eq. 4, with a further reordering of summations, yielding

s f (θ, ϕ) =
∑

m
s f̃m(θ) eimϕ, (32)

with

s f̃m(θ) =
∑
ℓ

(−1)s

√
2ℓ + 1

4π s f̂ℓm dℓm,−s(θ). (33)

Again, Eq. 32 may be computed by FFTs with overall complexity O(L2 log L) and Eq. 33 may be computed with com-
plexity O(L3), resulting in an overall complexity of O(L3 + L2 log L) = O(L3), in contrast with the O(L4) complexity
of direct computation by Eq. 4. The efficient computation of Eq. 33 is discussed further in Sec. 4.3 and Sec. 4.4.

For now we simply note that since we develop methods to compute the Wigner d-functions that recurse over m
only (see Sec. 3) that we can compute independently for all ℓ and θ, and typically fixed n, Eq. 30 and Eq. 33 can be
computed in a highly parallelised manner on hardware accelerators, i.e. GPUs and TPUs, before reducing over θ or ℓ.

Next we discuss how to map various sampling approaches onto the general algorithmic structure for the forward
and inverse spherical harmonic transform presented here. In many cases this is straightforward, although in some
cases it is non-trivial.

4.2. Specifics of different sampling approaches
We summarise the details required to support a number of different sampling approaches, including the DH, MW,

and GL sampling theorems, which admit theoretically exact spherical transforms, and the HEALPix sampling scheme,
which admits only approximate spherical transforms but exhibits the practical advantage of equal-area pixels. All
sampling approaches are mapped onto the general algorithmic structure presented in Sec. 4.1 for the computation of
spherical harmonic transforms through a separation of variables with an explicit quadrature for the spherical transform.
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4.2.1. Driscoll & Healy (DH) sampling theorem
The DH [Driscoll & Healy; 40] sampling theorem adopts equiangular sampling position on the sphere defined by

θt =
πt
2L

for t ∈ {0, 1, . . . , 2L − 1} (34)

and
ϕp =

2πp
2L

for p ∈ {0, 1, . . . , 2L − 1}, (35)

resulting in ∼ 4L2 samples on the sphere. These sample locations afford a sampling theorem with explicit quadrature
weights for spherical transforms given by [40, 63]

q(θ, ϕ) =
2π
L2 sin θ

L−1∑
k=0

sin
(
(2k + 1) θ

)
2k + 1

. (36)

Spherical harmonic transforms can thus be computed straightforwardly for the DH sampling theorem, following the
algorithmic structure outlined above in Sec. 4.1.

4.2.2. McEwen & Wiaux (MW) sampling theorem
The MW [McEwen & Wiaux; 41] sampling theorem provides an alternative equiangular sampling theorem re-

quiring only ∼ 2L2 samples on the sphere, providing a reduction in the Nyquist rate on the sphere by a factor of two
compared to the DH sampling theorem.

There are two variants of the MW sampling scheme: the original scheme which provides the minimal Nyquist
sampling on the sphere [41]; and a variant which slightly over samples (but yet still with ∼ 2L2 samples) to yield
sample locations with antipodal symmetry that is useful for many practical applications [6, 64], denoted MWSS (MW
with symmetric sampling). The MW sample positions are given by

θt =
(2t + 1)π
2L − 1

for t ∈ {0, 1, . . . , L − 1} (37)

and
ϕp =

2πp
2L − 1

for p ∈ {0, 1, . . . , 2L − 2}, (38)

whereas the MWSS sample positions are given by

θt =
2πt
2L

for t ∈ {0, 1, . . . , L} (39)

and
ϕp =

2πp
2L

for p ∈ {0, 1, . . . , 2L − 1}. (40)

Quadrature weights have been presented for both the MW [41] and MWSS [64] cases, which we unify into a
single expression. The MW sampling theorem is based on an extension of the sphere to the torus through careful
period extensions of the function of interest to the θ domain [0, 2π); recall that on the sphere θ ∈ [0, π]. Consider the
bandlimited representation of the function defined by sin θ on [0, π] and zero on (π, 2π), given by

w(θt) =
∑

m

ŵ(m′)eim′θt , (41)

with Fourier coefficients

ŵ(m′) =
∫ π

0
sin(θ)eim′θdθ =


±iπ/2 m′ = ±1
0 m′ odd,m′ , ±1
2/(1 − m′2) m′ even

. (42)

The unified quadrature weights are then given by folding back contributions from (π, 2π) onto (0, π) and read

q(θt, ϕ) =
2π
T 2

(
w(θt) + ζt(−1)sw(θreflect

t )
)
, (43)
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where

T =

 2L − 1 for MW
2L for MWSS

; θreflect
t =

 θ2L−2−t for MW
θ2L−t for MWSS

; ζt =

 (1 − δt,L−1) for MW
(1 − δt0)(1 − δtL) for MWSS

. (44)

Note, however, that these quadrature weights are for the integration of a function bandlimited at L and not for the
computation of the spherical harmonic transform of Eq. 5, the integrand of which is bandlimited at 2L. While one
could derive an explicit quadrature weight associated with the spherical transforms, we simply upsample signals on
the sphere by a factor of two and consider quadrature weights appropriate for the integration of a function bandlimited
at 2L. Note that the signal on the sphere is simply upsampled and the resulting spherical harmonic transform is still
performed at bandlimit L.

Signals sampled following either of the MW sampling approaches can first be extended to the torus by a reflection
in θ, combined with the introduction on the extended domain of a shift of π in ϕ and a (−1)s sign shift [41]. While this
extension can be computed in harmonic space for either MW or MWSS sampling theorems, it can also be straight-
forwardly computed in the spatial domain for MWSS due to the symmetric nature of the sample positions. Once
the extended function on the torus is computed it can be upsampling simply by zero padding in the Fourier domain
and then truncated back to the spherical domain θ ∈ [0, π]. Following this approach the algorithmic structure of the
spherical harmonic transform algorithms presented in Sec. 4.1 can be followed directly.

4.2.3. Gauss-Legendre (GL) sampling theorem
An alternative sampling theorem on the sphere can be built on Gauss-Legendre quadrature, where sample positions

in θ are defined by the roots of the Legendre polynomials of order L [e.g. 54, 41]. Samples positions in ϕ may be
defined by

ϕp =
2πp

2L − 1
for p ∈ {0, 1, . . . , 2L − 2}. (45)

While equiangular sampling theorems are usually preferred for practical purposes due to the regular nature of sample
positions in θ, the GL sampling theorem on the sphere recovers the same asymptotic number of samples on the sphere
as the MW sampling theorem (∼ 2L2), although in practice slightly more samples are required by the GL sampling
compared to MW. Explicit quadrature weights for the computation of spherical transforms are given by [65]

q(θ, ϕ) =
4π sin2 θ

(2L − 1)
(
PL
′(cos θ)

)2 , (46)

where above the prime denotes the derivative of the Legendre polynomial. Spherical harmonic transforms can thus
by computed straightforwardly for the GL sampling theorem, following the algorithmic structure outlined above in
Sec. 4.1.

4.2.4. HEALPix sampling scheme
HEALPix sampling is designed to provide pixels of equal area, which can be a very useful practical property. We

refer the reader to Górski et al. [43] for full details regarding HEALPix, including the precise definition of sample
positions, and focus here on the implications for computing spherical harmonic transforms. Since pixels have equal
area, approximate quadrature weights are simply given by q(θ, ϕ) = 4π/Npix where Npix denotes the total number
of samples over the sphere. Before proceeding, note that for HEALPix it is customary to compute transforms to a
maximum degree denoted by ℓmax, which is related to our definition of bandlimit L by ℓmax = L − 1.

By construction HEALPix samples are defined on isolatitudinal rings with two additional attributes to support a
hierarchical tessellation of the sphere: (i) every other ring is shifted by a fixed longitudinal offset; and (ii) the total
number of samples per ring is not constant. The ring offsets are managed straightforwardly by a phase correction term
which is very cheap and easily accounted for within the Fourier transform by modification of the exponential term.

For the forward spherical harmonic transform a 1D Fourier transform of f (θ, ϕ) over ϕ for a ring of constant θ
is performed to compute the intermediate functions f̂m(θ) of Eq. 31. In theory, each ring contributes information to
all |m| ≤ ℓ for ℓ ≤ L, and when in the equatorial region (the region near the equator) HEALPix collects sufficient
samples to capture this information. In the polar regions the number of longitudinal samples per ring is dynamic
and (potentially much) less than m, hence information is lost. This is in fact precisely why HEALPix provides only
approximate spherical harmonic transforms.
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1. Fourier transform each ring

and apply phase shift e−imφ0 .

2. Extend to all m to

enforce periodic boundaries.

3. Proceed to recursion over

Wigner d-functions.

φ −−−−−→−−−−−→

θ

−−
→

−−→

m−−−−−→−−−−−→

θ

−−
→

−−→
m−−−−−→−−−−−→

θ

−−
→

−−→

Fig. 3: Overview of the additional steps required for HEALPix sampling [43] when computing Fourier transforms over ϕ. For HEALPix one must:
(i) compute the Fourier transform each ring at varying resolution, determined by nϕ per ring; then (ii) generate synthetic orders m′ by extending
periodically available orders |m | ≤ |m′ |. For the inverse spherical harmonic transform the order is reversed and step (ii) is simply replaced by
aliasing higher orders m′ |m′ | > |m | into lower orders m. This is in fact precisely why HEALPix provides only approximate spherical harmonic
transforms. For equirectangular sampling schemes this entire step can be computed simply by an FFT for each ϕ for all rings in a single line of
code.

To mitigate this effect in the polar regions it is customary to first perform a fast Fourier transform over ϕ before
repeating the intermediate function f̂ polar

m′≤m(θ), extending the coefficients periodically to fill out the Fourier m line.
Correspondingly, during the inverse transform one folds the full order f̂m(θ) onto f̂ polar

m′≤m(θ), aliasing high frequency
information into the low frequency components. As this nuance is perhaps not obvious, we provide an illustration in
Fig. 3 for clarity.

From a software engineering perspective, this raises some further complications. Ideally, the FFTs of Eq. 31
and Eq. 32 would be implemented as a single function call to jax.numpy.fft across a regular array. However,
jax.numpy.fft does not support ragged arrays and therefore each ring within the polar region must computed by
individual function calls within a scheduled loop. As the arrays are dynamic this cannot be replaced by, e.g., a lax

scan, and therefore suffers from compile time bloat due to unrolled loops in XLA compilation. Moreover, such serial
evaluation of fast Fourier transforms for each isolatitudinal ring does not fully exploit the distributed compute of GPU
devices. Nevertheless, the compute time of the overall transform is dominated by the Wigner d-functions summations
and therefore this inefficiency of HEALPix is relatively minor, and may be solved by future developments of core JAX
primitives. In summary, HEALPix just-in-time compilation is therefore slow, although this only needs to be performed
on the first function call (further optimisations to improve this will be considered in future). Once HEALPix transforms
are just-in-time compiled, execution is a little slower than for equiangular samplings but nevertheless still relatively
fast.

4.3. Full precomputation

We now consider how best to evaluate the summations involving the Wigner d-functions presented in Eq. 30 and
Eq. 33. For moderate bandlimits (L ≲ 2048) the Wigner d-functions may be precomputed, yielding highly efficient
harmonic transforms, although at a cost of increased memory usage. One may precompute and store all required
elements dℓm,−s(θ), the weighted sum of which can then be implemented extremely straightforwardly. Explicitly, for a
forward spherical harmonic transform, given the precomputation and storage of the Wigner d-functions D = dℓm,−s(θ)
for all ℓ,m, θ at a fixed spin s, the transform is simply given by a series of 1D FFTs over ϕ for each θ, followed
by multiplication by the quadrature weights, followed by multiplication by matrix D, followed by an ℓ-dependent
scaling. The core implementation of the spherical harmonic transform therefore collapses effectively to a single
line of code jnp.einsum(‘‘tlm, tm -> lm’’, D, jnp.fft(f)). The inverse transform follows analogously,
with minor changes (different ordering, forward 1D FFTs replaced by inverse FFTs, and different scalings). While
this precompute approach is highly computationally efficient, it requires O(L3) memory, which is not feasible at
high bandlimits L. We next consider an approach that avoids fully precomputing Wigner d-functions, eliminating
O(L3) memory requirements, and thus is scalable to high degrees L. In this approach we do consider an optional
precomputation of some other internal terms, although in a manner that limits memory requirements to O(L2).
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Fig. 4: Diagrammatic overview of our forward and inverse spin spherical harmonic transforms. The forward transform F begins from a bandlimited
signal on the sphere s f (θ, ϕ) (bottom right) from which an intermediate function s f̃m(θ) (top right) is calculated by performing a 1D FFT over ϕ for
each θ. This intermediate function s f̃m(θ) is subsequently projected onto dℓmn (top left) before being summed over θ to produce harmonic coefficients
s f̂ℓm (bottom left). The inverse spin spherical harmonic F −1 follows straightforwardly in the reverse direction as illustrated. We provide support for
two operational modalities: precompute and on-the-fly. Our precompute transform explicitly calculates and stores dℓmn(θ) for a given spin number
n, which produces dramatically accelerated transforms at runtime at the cost of O(L3) memory overhead. Our on-the-fly transform evaluates dℓmn(θ)
for a given spin number n and single harmonic mode m (see Sec. 3) at each recursive step (curved arrow) projecting onto harmonic space by

∑
θ or

the intermediate representation by
∑
ℓ.

4.4. Interleaving recursion and computation for on-the-fly transforms

To scale to high resolutions (from L ≳ 1024, to L ∼ 10, 000 and beyond), the Wigner d-function components
dℓm,−s(θ) must instead be computed, used, and discarded recursively on-the-fly. Suppose one adopts the recursive
algorithm defined in Eq. 25, then evaluation of Eq. 30 is best solved by interleaving the summation over θ with the
recursive step over order m. In the following we adopt the shorthand Dℓθj for the jth iterant during our recursive
computation of dℓm,−s(θ). Within a recursive step j we: (i) evaluate Dℓθj+1 from Dℓθj and Dℓθj−1 after which these arrays
are incremented; (ii) renormalise Dℓθj+1 as discussed in Sec. 3; (iii) project onto Dℓθj+1; and (iv) sum over all co-latitudes
θ. In this way our peak memory overhead is capped with complexity O(L2) which is the memory required to store a
single spherical image. Furthermore, we optionally precompute some additional internal terms to save computational
time, while keeping memory overhead to O(L2). The inverse transform is completely analogous. This resulting
program is outlined in Fig. 4.

As noted above, the Wigner summation terms of the forward and inverse transforms, given by Eq. 30 and Eq. 33,
can be computed in a highly parallelised manner on hardware accelerators, i.e. GPUs and TPUs, before reducing
over θ or ℓ. We recover O(L2) independent threads, which for high bandlimits L ∼ 104 can reach L ∼ 108. We
are therefore able to make good use of the very large number of threads available on modern hardware accelerators.
Furthermore, we can trivially distribute computations over multiple accelerators, e.g. multiple GPU devices, through
single program multiple data (SPMD) computation, which is handled seamlessly in JAX. Asymptotically, such dis-
tributed computation recovers a computational saving given by the number of GPU devices available, and so for large
clusters the acceleration can be extreme (indeed, in practice we find very close to a linear computational saving; see
Sec. 6). Due to the O(L2) distribution and parallelisation of our algorithms, given sufficient computational resources
our transforms exhibit O(L) time complexity.
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4.5. Wigner transforms
To conclude this section we consider the computation of the forward Wigner transform of bandlimited signals

f ∈ BL(SO(3)) denoted byW : BL(SO(3)) → C(4L3−L)/3 and the inverse denoted byW−1 : C(4L3−L)/3 → BL(SO(3)).
As discussed in Sec. 2.3 [42] by relating the Wigner D-functions to the spin spherical harmonic basis functions, one
can compute the Wigner transform through a series of spin spherical harmonic transforms and Fourier transforms (see
Eq. 15–Eq. 18). We can therefore make use of the approach previously discussed to compute forward and inverse
spherical harmonic transforms for arbitrary spin, making the association α ↔ ϕ and β ↔ θ, and simply include an
additional 1D FFT with respect to γ.

By selecting an equiangular sampling in γ we can appeal to the usual Nyquist sampling theorem for periodic
functions on the circle S1. The full quadrature weights can then be written as q(α, β, γ) = qΦ(α) qΘ(β) qΓ(γ), where
qΦ(α) qΘ(β) vary depending on the spherical sampling theorem or scheme adopted (as discussed in Sec. 4.2). Since
for all spherical samplings we consider equiangular sampling in γ, the corresponding quadrature weights read qΓ(γ) =
2π/(2N − 1) for azimuthal bandlimit N. Whether or not we recover a sampling theorem on SO(3) with exact Wigner
transforms simply depends on whether we adopt a sampling scheme (e.g. HEALPix) or theorem (e.g. DW, MW, GL)
on the sphere.

This formulation of the Wigner transform straightforwardly inherits the advantages of our JAX spin spherical
harmonic implementation and provides further avenues for distribution. The internal forward or inverse spherical
harmonic transform considered must be evaluated for each spin number n, however each of these operations is inde-
pendent and can be parallelised and/or distributed. Therefore for our Wigner transforms one may choose to distribute
over not only ℓ and β but also n.

5. Gradients of spherical transforms

One of the primary goals of this work is not only to provide computational approaches for spherical transforms
that can be deployed on hardware accelerators but that also facilitate the efficient computation of gradients. Gradients
are essential for differentiable programming applications. For example, machine learning models on the sphere [66, 4,
32, 33] often require spherical transforms that are differentiable so that the models may be trained by gradient-based
optimisation algorithms. Differentiable physical models are also required for hybrid data-driven and model-based
approaches; in many cases an underlying component of such physical models includes spherical transforms, for
example in cosmology [25] and seismology [26].

In this section we present techniques to efficiently compute gradients associated with forward and inverse spherical
transforms. We discuss both automatic and manual differentiation and their respective merits, and derive explicit
expressions for Jacobian-vector and vector-Jacobian products. Finally we present a hybrid approach, where we adopt
manual differentiation for some components and automatic differentiation for others. Our hybrid approach avoids the
large memory overhead of (reverse-mode) automatic differentiation, while also avoiding the cumbersome bespoke
implementation of full manual differentiation.

5.1. Automatic differentiation (AD) modes
Modern automatic differentiation (AD) predominately relies on one of two gradient propagation schemes: forward-

and reverse-mode. Forward-mode AD applies the chain rule sequentially to each primitive operation in a forward (pri-
mal) trace of a function, accumulating the primal and derivative (tangent) variables during a single forward pass [67].
Conversely, in reverse-mode AD forward and reverse passes are performed. During the forward pass primal variables
are computed and propagated, with intermediate values stored in memory for use in the following reverse pass. In the
reverse pass the derivatives (cotangents) with respect to intermediate values are propagated backwards [68]. Reverse
mode AD applied to training neural networks with a scalar cost function is commonly referred to as back-propagation
[69]. Forward- and reverse-mode AD provide efficient ways to compute, respectively, Jacobian-vector products and
vector-Jacobian (transposed Jacobian-vector) products for the traced function.

The choice of which mode is most efficient is determined by the problem at hand. Consider the case in which
we wish to compute the derivative of a function F : Rn → Rm. A full column of the Jacobian can be computed in
a single pass of forward-mode AD, whereas a full row of the Jacobian can be computed in a single pass of reverse-
mode AD [68]. Consequently, when n ≪ m forward-mode AD is most efficient, whereas when m ≪ n reverse-mode
is most efficient. However, note that intermediate values must be stored for reverse-mode AD, increasing memory
requirements, which is not the case for forward-mode AD.
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In machine learning scenarios one typically wishes to optimise a scalar loss function that depends on a very large
number of input parameters (e.g., millions or billions of weights of a neural network). To train a model using a
gradient-based optimiser it is therefore necessary to compute gradients of a function F : Rn → R, where the Jacobian
is identified with the gradient vector ∇F ∈ Rn. Reverse-mode AD is thus typically the preferred approach for training
machine learning models. Nevertheless, we support both forward- and reverse-mode AD.

5.1.1. Jacobian-vector product (JVP)
Consider the general setting of a function F : Rn → Rm and its Jacobian ∂F(x) evaluated at x ∈ Rn. The Jacobian

provides a linear map between the tangent space of the domain of F at x (isomorphic to Rn) to the tangent space of
the codomain of F at F (x) (isomorphic to Rm): ∂F (x) : Rn → Rm. Computationally, the Jacobian-vector product
(JVP) of the Jacobian at x and a tangent vector v ∈ Rn is given by the functional mapping

(
x, v

)
7→

(
F (x), ∂F (x)v

)
.

When composing multiple functions both the primal and tangent values are computed and propagated. Since values
are used as they are computed in a single forward pass, intermediate values do not need to be stored.

To compute the Jacobian explicitly, forward-mode AD is initialised by setting a single element of v to unity,
corresponding to the input variable of interest, and the remainder to zero (i.e. one hot encoding). It is therefore clear
that a full column of the Jacobian can be computed in a single pass of forward-mode AD and hence it is most efficient
for m ≫ n, i.e. for tall Jacobians, as commented above.

5.1.2. Vector-Jacobian product (VJP)
Consider again the function F : Rn → Rm. Now, however, consider an element v ∈ Rm of the cotangent space

(i.e. the tangent space of the codomain of F ). Computationally, the vector-Jacobian product (VJP) is given by the
functional mapping

(
x, v

)
7→

(
F (x), vT∂F (x)

)
. One may alternatively consider the linear mapping of a VJP as the

transpose of the linear mapping of a JVP:
(
x, v

)
7→

(
F (x), ∂F (x)Tv

)
. The map ∂F (x)T : Rm → Rn provides a linear

mapping on cotangent spaces. Since the mapping is in the reverse direction to the application of the function F ,
cotangents need to be propagated in reverse.

When composing multiple functions, for reverse-mode AD an initial forward pass is performed to compute and
propagate the primals F (x), storing intermediate values of x. On the reverse pass the cotangents are computed by
∂F (x)Tv, making use of the intermediate values of x to compute ∂F (x)T, and then accumulated in reverse.

To compute the Jacobian explicitly, reverse-mode AD is initialised by setting a single element of v to unity,
corresponding to the output variable of interest, and the remainder to zero. It is therefore clear that a full row of the
Jacobian can be computed in a single pass of reverse-mode AD and hence it is most efficient for m ≪ n, i.e. for wide
Jacobians, as commented above.

5.2. Automatic versus manual differentiation

By leveraging an AD framework, such as JAX, one can compute JVPs and VJPs simply through the framework.
This approach avoids the need for any gradient-related implementation, thus eliminating complexity and possibilities
for errors. However, as discussed above, reverse-mode AD induces a memory overhead that in the worst case can grow
in proportion to the number of operations of the traced function [68]. Furthermore, for machine learning applications,
reverse-mode AD is the mode of interest since it is most efficient for gradient-based optimisation of scalar loss
functions that depend on a very large number of input parameters. For the spherical transforms considered in this
article, we indeed observed that the computation of VJPs purely by reverse-mode AD exhibited a very high memory
overhead (as discussed further below).

An alternative to automatic differentiation is manual differentiation, where explicit expressions for JVPs and VJPs
are determined analytically and then implemented directly. For linear transforms, such as the spherical transforms
considered herein, JVPs and VPJs take relatively straightforward forms, where the JVP is simply the transform itself
and the VJP is closely related to the adjoint transform. Algorithms to compute adjoints of spherical transforms effi-
ciently have been constructed previously [70, 71, 72]. Such a direct implementation of manual derivatives requires
bespoke implementation, which can be cumbersome (especially to support the subtleties of different spherical sam-
plings) and thus can be prone to errors. Nevertheless, a forward pass to compute VJPs is not required, eliminating the
memory overhead that is otherwise necessary.
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5.3. Manual JVPs and VJPs

We derive analytic expressions for the JVP and VJP (and adjoint) of spherical transforms. For simplicity, but with-
out loss of generality, we focus on the forward and inverse spherical harmonic transforms, although the expressions
presented can be trivially extended to Wigner transforms. For notational brevity we drop the explicit spin subscript in
what follows, although the results presented directly hold for spin functions on the sphere.

5.3.1. Forward spin spherical harmonic transform
Consider the forward spin spherical harmonic transform F : BL(S2)→ CL2

. For computational purposes we must
of course consider discretised representations of signals, which for sampling theorems corresponds to the space of
bandlimited signals f ∈ BL(S2). When adopting a sampling scheme that does not exhibit a formal sampling theorem
(e.g. HEALPix), the space of signals is not formally BL(S2). Nevertheless, we avoid making an explicit distinction
to avoid complicating notation. Furthermore, while for Eq. 19 we distinguished between the exactness of sampling
theorems and the approximation of sampling schemes, we consider the computed harmonic coefficients here f̂ ∈ CL2

(rather than underlying true coefficients of a bandlimited signal) and so expressions that follow are computationally
equal, rather than approximate.

The elements of the Jacobian of the forward transform F follow from Eq. 19 and read

(
∂F ( f )

)θϕ
ℓm
=
∂ f̂ℓm
∂ f (θ, ϕ)

= q(θ, ϕ) sY∗ℓm(θ, ϕ). (47)

Critically, notice that the Jacobian is independent of the signal f , i.e. ∂F ( f ) = ∂F . Consequently, intermediate primal
values do not need to be stored in reverse-mode AD (nevertheless, other memory overheads do arise, as discussed
below). The JVP of a tangent v ∈ T fBL(S2) � BL(S2), where T f denotes the tangent space evaluated at f , is then
given by (

∂F v
)
ℓm
=

∑
θϕ

q(θ, ϕ) v(θ, ϕ) sY∗ℓm(θ, ϕ), (48)

which as expected is nothing more than the transform itself, i.e.

∂F v = F v. (49)

The VJP of a cotangent v̂ ∈ TF ( f )CL2
� CL2

, where TF ( f ) denotes the cotangent space evaluated at F ( f ), is given by(
∂F Tv̂

)
θϕ
=

∑
ℓm

q(θ, ϕ) v̂ℓm sY∗ℓm(θ, ϕ), (50)

which may be expressed in terms of an inverse transform F −1 by

∂F Tv̂ = (Q F −1v̂∗)∗, (51)

where Q is the diagonal operator acting on spatial functions that corresponds to multiplication by the quadrature
weights q(θ, ϕ). It is apparent that a VJP can be computed by an inverse spherical harmonic transform of a complex
conjugated cotangent vector, followed by the application of quadrature weights and subsequent conjugation.

Adjoint operators of transforms are commonly required (e.g. when solving inverse problems posed as variational
regularisation problems by convex optimisation techniques; [70, 71, 72]). The VJP is closely related to the adjoint
operator of the transform up to complex conjugation. For completeness we note the adjoint of the forward spherical
harmonic transforms F can be represented as

F H = Q F −1. (52)

While we have focused on the forward spin spherical harmonic transform F the above results extend trivially to
the forward Wigner transform. It is simply necessary to replace the spherical harmonic transform F with the Wigner
transform for discretised signals W : BL(SO(3)) → C(4L3−L)/3 and to let Q represent application of the quadrature
weights q(α, β, γ) on SO(3).
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5.3.2. Inverse spin spherical harmonic transform
Let us now consider the inverse spin spherical harmonic transform F −1 : CL2

→ BL(S2). Again, for computational
purposes we must of course consider discretised representations of signals.

The elements of the Jacobian of the inverse transform F −1 follow from Eq. 4 and simply read(
∂F −1( f̂ )

)ℓm
θϕ
=
∂ f (θ, ϕ)

∂ f̂ℓm
= sYℓm(θ, ϕ). (53)

The Jacobian of the inverse transform differs to the Jacobian of the forward transforms only due to complex conjuga-
tion and the absence of quadrature weights (cf. Eq. 47). Notice again that the Jacobian is independent of the signal f̂ ,
i.e. ∂F −1( f̂ ) = ∂F −1. Consequently, intermediate primal values again do not need to be stored in reverse-mode AD
(but again other memory overheads do arise). The JVP of a tangent v̂ ∈ T f̂CL2

� CL2
is then given by(

∂F −1v̂
)
θϕ
=

∑
ℓm

v̂ℓm sYℓm(θ, ϕ), (54)

which again as expected is nothing more than the transform itself, i.e.

∂F −1v̂ = F −1v̂. (55)

The VJP of a cotangent v ∈ TF −1( f̂ )BL(S2) � BL(S2) is given by(
∂F −Tv

)
ℓm
=

∑
θϕ

v(θ, ϕ) sYℓm(θ, ϕ), (56)

where we have adopted the notation F −T = (F −1)T. The VJP may be expressed in terms of a forward transform F by

∂F −Tv = (FQ−1v∗)∗. (57)

It is apparent that a VJP can be computed by the application of quadrature weights to a complex conjugated cotangent
vector, followed by a forward spherical harmonic transform and subsequent conjugation.

For completeness, the adjoint of the inverse transform is closely related to the VJP and can be represented as

F −H = FQ−1. (58)

Again, the above results extend trivially to the inverse Wigner transforms simply by replacing F −1 by W−1 :
C(4L3−L)/3 → BL(SO(3)) and let Q represent application of the quadrature weights q(α, β, γ) on SO(3). A commutative
diagram is provided in Figure 5 to more clearly summarise our formulation of the JVPs and VJPs associated with the
various spherical harmonic transforms.

5.4. Hybrid automatic and manual differentiable spherical transforms
In Sec. 5.3 we derive analytic expressions for JVP and VJPs of spherical harmonic and Wigner transforms, which

can be expressed simply in terms of forward or inverse transforms and application of quadrature weights (with ap-
propriate complex conjugation). Due to the linear nature of the generalised Fourier transforms considered, we also
show that intermediate primal values do not need to be stored for reverse-mode AD, substantially alleviating memory
overheads.

In principle AD would seem like the preferred approach since it avoids the complexity and implementation over-
head of manual differentiation. However, in practice the recursive nature of the computation of the Wigner d-functions
requires a scan operation. The scan carry requires O(L2) memory and the total number of iterations over which one
must scan is O(L). Hence, in JAX for reverse-mode AD O(L3) memory is required, which is prohibitive at high
bandlimits.

It would therefore seem that manual differentiation is the preferred approach to avoid significant memory over-
head. However, the simple nature of the explicit expressions for the JVPs and VPJs given in Sec. 5.3 hides the subtlety
surrounding the details of different spherical samplings (e.g. the specific details discussed in Sec. 4.2, particularly for
HEALPix and MW samplings).

We therefore consider a hybrid approach. We adopt manual differentiation for the core internal components
of spherical transforms related to recursions but adopt AD for surrounding components of the transforms that deal
with the subtleties of spherical samplings. In this manner we avoid the prohibitive memory overhead of a pure
AD approach, while also avoiding the subtleties of cumbersome direct implementations of a manual differentiation
approach.



20 Price & McEwen / Journal of Computational Physics (2023)

TfBL

(
S2

)

f ∈ BL

(
S2

)

TF(f)CL2

f̂ ∈ CL2

Forward transform JVP v 7→ v̂ = ∂Fv = Fv

Forward transform VJP v̂ 7→ v = ∂FT v̂

Tf̂ CL2

TF−1(f̂)BL

(
S2

)
Inverse transform VJP v̂ 7→ v = ∂F−1v̂ = F−1v̂

Inverse transform JVP v 7→ v̂ = ∂F−T

Forward transform f 7→ f̂ = Ff

Inverse transform f̂ 7→ f = F−1f̂

πBL(S2) πCL2

πCL2πBL(S2)

Fig. 5: Commutative diagram describing JVPs and VJPs for both the forward (top loop in black) and inverse (bottom loop in grey) spherical
transforms. These relations hold for both scalar and spin spherical harmonic transforms and also for Wigner transforms. Note that in this diagram
πX denotes the generalised projection of a function onto X. In each case the tangent (cotangent) space is isomorphic with the target space.

5.4.1. Forward spin spherical harmonic transforms
Consider the forward transform F = FΘFΦ : f 7→ f̂ in terms of the separate transforms with respect to ϕ and

θ, respectively FΦ : f 7→ f̃ (Eq. 31) and FΘ : f̃ 7→ f̂ (Eq. 30). Since the computation of FΘ requires evaluation of
the Wigner d-functions by recursion, we compute gradients of this transform by explicit manual gradients, avoiding
the memory overheads of AD. Remaining computations, which effectively capture the computation of FΦ through
multiple weighted 1D FFTs, are computed by AD, avoiding the subtleties of specific sampling schemes. In the
following we therefore focus on the computation of manual gradients for FΘ.

The elements of the Jacobian of the forward transform FΘ read

(
∂FΘ( f̃ )

)θ
ℓ
=
∂ f̂ℓm
∂ f̃m(θ)

= (−1)s

√
2ℓ + 1

4π
qΘ(θ) dℓm,−s(θ). (59)

Again, notice that the Jacobian is independent of the signal f̃ , i.e. ∂Fθ( f̃ ) = ∂FΘ. The JVP is then given by

(
∂FΘṽ

)
ℓ
=

∑
θ

(−1)s

√
2ℓ + 1

4π
qΘ(θ) ṽm(θ) dℓm,−s(θ), (60)

which, as expected due to linearity, is simply given by the transform itself, i.e.

∂FΘ = FΘ. (61)

The VJP is given by (
∂F T
Θ v̂

)
θ
=

∑
ℓ

(−1)s

√
2ℓ + 1

4π
qΘ(θ) v̂ℓm dℓm,−s(θ), (62)

which may be expressed by
∂F T
Θ = QΘF

−1
Θ = F

H
Θ , (63)

where F −1
Θ

is given by Eq. 33, QΘ is the diagonal operator corresponding to multiplication by the quadrature weights
qΘ(θ), and F H

Θ
denotes the corresponding adjoint operator. Note the similarity to Eq. 51 and Eq. 52, although here

complex conjugations are not required due to the reality of the transform (which follows from the reality of the Wigner
d-functions).
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5.4.2. Inverse spin spherical harmonic transforms
Consider the inverse transform F −1 = F −1

Φ
F −1
Θ

: f̂ 7→ f in terms of the separate transforms with respect to θ and
ϕ, respectively F −1

Θ
: f̂ 7→ f̃ (Eq. 33) and F −1

Φ
: f̃ 7→ f (Eq. 32). For identical reasons to the forward transform,

we compute gradients of F −1
Θ

manually and gradients of F −1
Φ

by AD. In the following we therefore focus on the
computation of the manual gradients of F −1

Θ
.

The elements of the Jacobian of the inverse transform F −1
Θ

read

(
∂F −1
Θ ( f̃ )

)ℓ
θ
=
∂ f̃m(θ)

∂ f̂ℓm
= (−1)s

√
2ℓ + 1

4π
dℓm,−s(θ), (64)

which is independent of the signal itself, i.e. ∂F −1
θ ( f̃ ) = ∂F −1

Θ
. The JVP is then given by

(
∂F −1
Θ v̂

)
θ
=

∑
ℓ

(−1)s

√
2ℓ + 1

4π
v̂ℓm dℓm,−s(θ), (65)

which, as expected, is simply given by the transform itself, i.e.

∂F −1
Θ = F

−1
Θ . (66)

The VJP is given by (
∂F −T
Θ ṽ

)
ℓ
=

∑
θ

(−1)s

√
2ℓ + 1

4π
ṽm(θ) dℓm,−s(θ), (67)

which may be expressed by
∂F −T
Θ = FΘQ

−1
Θ = F

−H
Θ , (68)

where recall FΘ is given by Eq. 30 and we have adopted the notation F −H = (F −1)H.

5.4.3. Wigner transforms
The extension to compute gradients for Wigner transforms follows straightforwardly. As discussed in Sec. 2.3,

Wigner transforms can be computed via a series of spherical harmonic transforms of varying spin, combined with a
Fourier transform for γ. Following the hybrid differentiable approach discussed directly above, we compute explicit
manual gradients for transforms with respect to β and adopt AD for transforms with respect to both α and γ. This
yields the best of both approaches, avoiding memory overheads associated with AD of the recursions of Wigner
d-functions, while also avoiding the computational complexities associated with manual differentiation for different
sampling schemes.

6. Software and evaluation

A key aim of this work is the development of a modern open-source Python library for the accelerated computation
of generalised Fourier transforms on the sphere and rotation group and their derivatives. We target deployment on
one or more modern hardware accelerators, such as GPUs and TPUs. By leveraging the parallelised computation
of Wigner functions presented in Sec. 3 and the general algorithmic framework presented in Sec. 4, we ensure our
algorithms are able to well-utilise hardware accelerators. Moreover, our algorithmic framework ensures we are largely
agnostic to the choice of approach used to sample the sphere. Critically, to support the increasing interest surrounding
differentiable programming, gradients must be able to be computed efficiently. By paying careful attention to the
computation of gradients through a hybrid automatic and manual differentiation approach as described in Sec. 5,
we avoid the memory overhead of full automatic differentiation while also avoiding the complexities of full manual
differentiation. Finally, as with all good software packages, our library must be simple to use and easy to pick up.

A variety of differentiable programming and machine learning ecosystems exist in Python that could be considered
for the implementation of our software, e.g. TensorFlow and PyTorch, both of which exhibit a mature collection of
Python APIs. However, over time these libraries have become somewhat rigid due to the nature of heavily templated
object oriented software focused on machine learning and hence the development of other bespoke functionality is
hindered by, for example, significant boilerplate code. Consequently, we choose to develop our software in JAX, which
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is a functional differentiable programming Python framework recently developed by Google [56]. JAX is particularly
well-suited to scientific software development, where flexibility and rapid development are highly desirable.

With the above in mind we introduce S2FFT3 �, which is an open-source JAX package implementing the par-
allelised Wigner recursions presented in Sec. 3 and generalised Fourier transforms on the sphere and rotation group
presented in Sec. 4 and their derivatives as presented in Sec. 5. The software code has been developed following
software engineering best practices, exhibits an extensive test suite and is well documented. In the remainder of this
section we briefly discuss the spherical sampling schemes supported and JAX hardware acceleration, before present-
ing benchmarking results in terms of precision and computational speed.

6.1. Sampling agnostic transforms

As discussed, our software is largely agnostic to the choice of spherical sampling considered. We simply require
an isolatitudinal sampling, which most popular spherical samplings follow due to the considerable computational
savings that it affords through a separation of variables, and corresponding quadrature weights. As a starting point
Driscoll & Healy [40], McEwen & Wiaux (both MW and MWSS) [41, 6, 64], and HEALPix [43] samplings are
supported. To simplify further open-sourced contributions, our code is designed with integration of future sampling
schemes in mind, should the need arise. It is worth noting that once sample locations and associated quadrature
weights are defined, all downstream functionality should work seamlessly.

6.2. Hardware acceleration

By design JAX functions can straightforwardly be deployed on hardware accelerators, e.g. GPU and TPUs. In
fact, the ease with which existing Python codebases, particularly those which make frequent use of numpy, may
be abstracted for GPU deployment is one of the primary advantages of JAX. In addition, we integrate the single
program multiple data (SPMD) functionality accessible in JAX by the pmap API. Specifically, for core transforms
we provide an spmd flag that when set distributes expensive operations evenly across available devices. As we show
when benchmarking (Sec. 6.3) we recover approximately linear acceleration in the number of devices considered.
This distribution is straightforwardly engineered to balance the compute load across devices (see Sec. 4). Of course,
for very low bandlimits the communication overhead incurred during distribution is significant. However, for even
moderate to low bandlimits this communication is sub-dominant and significant computational savings are realised.
Currently, the codebase provides tested and documented support for intra-node distribution (i.e. multiple GPUs on a
single node), with inter-node distribution to be added in future (i.e. multiple nodes each with multiple GPUs).

6.3. Benchmarking

We present comprehensive benchmarking of the core transforms provided by our S2FFT software. First, we
quantify the precision of our transforms by computing the round-trip error and find errors to be at the level of numerical
precision for the sampling theorems considered. Second, we compute the average wall-clock computational speed
of transforms, in both single and multiple GPU scenarios, for both our on-the-fly algorithms (computing Wigner d-
functions on-the-fly) and precompute algorithm (computing and storing Wigner d-functions a priori). We compare
computational time to the SSHT4 [41] and SO35 [42] codes that compute spherical harmonic and Wigner transforms,
respectively, for which underlying algorithms are implemented in C. An extensive comparison against a wide variety
of existing spherical transform software codes is beyond the scope of this study (furthermore, while there are numerous
spherical harmonic transforms codes there are relatively few codes capable of also computing Wigner transforms).
In any case, comparison against other codes can be inferred from contemporary papers. In addition, all algorithms
implemented in S2FFT are validated through extensive unit and regression tests.

3https://github.com/astro-informatics/s2fft
4https://github.com/astro-informatics/ssht
5https://github.com/astro-informatics/so3

https://github.com/astro-informatics/s2fft
https://github.com/astro-informatics/s2fft
https://github.com/astro-informatics/ssht
https://github.com/astro-informatics/so3
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Spherical harmonic transform round-trip error

On-the-fly transform Precompute transform

L MW MWSS DH MW MWSS DH

8 3.6 × 10−16 1.7 × 10−16 5.1 × 10−16 4.6 × 10−16 4.3 × 10−16 4.3 × 10−16

16 3.7 × 10−16 2.7 × 10−16 6.3 × 10−16 5.4 × 10−16 4.5 × 10−16 4.5 × 10−16

32 7.5 × 10−16 6.3 × 10−16 3.5 × 10−16 7.3 × 10−16 7.2 × 10−16 7.2 × 10−16

64 1.2 × 10−15 1.1 × 10−15 6.7 × 10−16 1.2 × 10−15 1.2 × 10−15 1.2 × 10−15

128 2.3 × 10−15 2.3 × 10−15 1.3 × 10−15 2.5 × 10−15 2.4 × 10−15 2.4 × 10−15

256 4.7 × 10−15 5.0 × 10−15 2.6 × 10−15 4.7 × 10−15 4.7 × 10−15 4.7 × 10−15

512 1.0 × 10−14 9.8 × 10−15 4.6 × 10−15 9.8 × 10−15 9.7 × 10−15 8.9 × 10−15

1024 1.9 × 10−14 1.9 × 10−14 9.3 × 10−15 1.7 × 10−14 1.5 × 10−14 1.2 × 10−14

2048 3.7 × 10−14 3.8 × 10−14 1.9 × 10−14 – – –
4096 7.5 × 10−14 7.7 × 10−14 3.8 × 10−14 – – –
8192 1.5 × 10−13 1.5 × 10−13 8.3 × 10−14 – – –

Table 1: Round-trip error for scalar spherical harmonic transforms, i.e. E[∥ f̂ − FF −1 f̂ ∥2]. Random bandlimited functions are generated, which
are passed sequentially through an inverse and then forward spherical harmonic transform. Errors are averaged across 10 realisations. We consider
samplings of the sphere that exhibit a sampling theorem with exact spherical harmonic transforms. As expected, accuracy is therefore at the level
of machine precision.

6.3.1. Precision
Natively, our software supports both 32-bit and 64-bit floating point precision, however due to the unstable nature

of three term recursions [59] as outlined in Sec. 3 it is strongly recommended to adopt 64-bit precision. To mimic the
most likely use-case, in our benchmarking we default to 64-bit precision, which is provided by JAX as an extended
data type. Both Driscoll & Healy sampling [40] and both McEwen & Wiaux sampling schemes [41] afford sampling
theorems on the sphere and therefore transforms based on such samplings are theoretically exact to machine precision.

The protocol for assessing accuracy in practice is to first generate a random set of bandlimited generalised Fourier
coefficients f̂ from which a round-trip error metric E[∥ f̂ − FF −1 f̂ ∥2] is evaluated, where the expectation is computed
across 10 randomised experiments. Note that for a Wigner transform one clearly should replace F withW. When
considering Wigner transforms we enforced an azimuthal bandlimit of N = 5, corresponding to 9 equally spaced
directions within each tangent plane, which is a typical use case. The results of these experiments are presented in
Table 1 and Table 2 and also summarised in the bottom panels of Fig. 6 and Fig. 7. In all cases our transforms are
exact to 64-bit machine precision. Note also that the gradient algorithms derived herein, and implemented in S2FFT,
are validated against finite differences using the check grads functionality provided within JAX.

In the era of high precision science, access to theoretically exact transforms is of great importance [73, 20, 21, 24].
The best way to perform high precision science is to avoid introducing numerical errors in the first place. For other
applications one may wish to adopt 32-bit floating point precision, which can further accelerate compute and will half
memory overhead. Such applications may include geometric machine learning on the sphere [74, 30, 4, 32], where
32-bit precision (or lower) is often adopted. When adopting 32-bit precision one may expect to recover commensurate
errors, i.e. errors beginning at approximately O(10−8) rather than O(10−16).

6.3.2. Computational speed
To benchmark computational speed our transforms are run over both a single and three NVIDIA A100 GPUs, each

with 40GB on board memory. For comparison the existing SSHT and SO3 C codes are run on a Xeon(R) E5-2650L v3
multithreaded CPU with a dedicated machine.

A summary of computational times are presented in Fig. 6 for a complex scalar spherical harmonic transform, with
raw numerical results tabulated in Table 3. We provide results for both our on-the-fly and precompute transforms;
for the latter we also quote memory requirements for the precompute. Our software handles functions of arbitrary
spin, and therefore performance does not degrade with spin number, in contrast to other approaches. Results for our
implementation of the Wigner transform are presented in Fig. 7, with raw numerical results provided in Table 4.

Unsurprisingly, for very low L we find that when running on GPUs our transforms are slightly slower than those
provided by SSHT, which is primarily due to scheduling and memory communication overheads that can throttle exe-
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Wigner transform round-trip error

On-the-fly transform Precompute transform

L MW MWSS MW MWSS

8 1.6 × 10−15 1.3 × 10−15 1.3 × 10−15 1.2 × 10−15

16 1.2 × 10−15 1.0 × 10−15 1.1 × 10−15 1.1 × 10−15

32 1.3 × 10−15 1.2 × 10−15 1.5 × 10−15 1.2 × 10−15

64 1.5 × 10−15 1.4 × 10−15 1.8 × 10−15 1.4 × 10−15

128 2.2 × 10−15 2.0 × 10−15 3.6 × 10−15 2.0 × 10−15

256 2.9 × 10−15 2.8 × 10−15 4.2 × 10−15 2.9 × 10−15

512 4.2 × 10−15 4.3 × 10−15 6.4 × 10−15 4.2 × 10−15

1024 5.7 × 10−15 5.9 × 10−15 – –
2048 8.1 × 10−15 8.2 × 10−15 – –
4096 1.2 × 10−14 1.3 × 10−14 – –

Table 2: Round-trip error for Wigner transforms with azimuthal bandlimit N = 5, i.e. E[∥ f̂ −WW−1 f̂ ∥2]. Random bandlimited functions are
generated, which are passed sequentially through an inverse and then forward Wigner transform. Errors are averaged across 10 realisations. We
consider samplings of the rotation group that exhibit a sampling theorem with exact Wigner transforms. As expected, accuracy is therefore at the
level of machine precision.

10−5

10−3

10−1

101

103

105
SSHT - [Xeon(R) E5-2650L v3]

S2FFT On-the-fly - [1 x A100]

S2FFT On-the-fly - [3 x A100]

S2FFT Precompute - [1 x A100]

S2FFT On-the-fly - [100 x A100]

S2FFT On-the-fly - [1000 x A100]

0.1

1.0

10.0

100.0

1000.0

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

10−16

10−14

10−12

10−10

O(L)

O(L
3 )

O(L)

Bandlimit L
(a) MW sampling

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

O(L)

O(L
3 )

O(L)

Bandlimit L
(b) MWSS sampling

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

O(L)

O(L
3 )

O(L)

Bandlimit L
(c) DH sampling

E
rr

or
A

cc
el

er
at

io
n

C
om

pu
te

Ti
m

e
(s

)

Fig. 6: Numerical benchmarking results for the spherical harmonic transforms implemented in S2FFT compared to the C implementation of SSHT.
We consider samplings of the sphere that afford a sampling theorem and hence exact spherical harmonic transforms. S2FFT provides multiple
operational modes: a precompute approach with faster compute at O(L3) memory overhead and an on-the-fly transform with negligible memory
overhead (see Sec. 4). Top: Average compute time required for a spherical harmonic transform for each operational modality. Middle: Relative
acceleration of a given modality with respect to their SSHT counterpart. Bottom: Averaged round-trip numerical error. In each case we recover
machine precision. We also empirically observe O(L) error scaling (in line with previous work [41]). The silver and gold stars represent the
performance one may expect to realise should one distribute our on-the-fly algorithms across 100 and 1000 GPUs respectively.
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Fig. 7: Numerical benchmarking results for the Wigner transforms implemented S2FFT compared to the C implementation of SO3. For this
analysis we consider MW and MWSS [41] samplings of the rotation group. As these samplings afford sampling theorems on the rotation group,
their corresponding Wigner transforms are exact. In these comparisons we fix the azimuthal bandlimit to N = 5, a typical use case corresponding
to 9 γ rotation angles. S2FFT provides multiple operational modes: a precompute approach with faster compute at O(NL3) memory overhead
and an on-the-fly transform with negligible memory overhead (see Sec. 4). Top: Average compute time required for a Wigner transform for each
operational modality. Middle: Relative acceleration of a given modality with respect to their SO3 counterpart. Bottom: Averaged round-trip
numerical error. In each case we recover machine precision. We also empirically observe at most O(L) error scaling (in line with previous work
[42]). The silver and gold stars represent the performance one may expect to realise should one distribute our on-the-fly algorithms across 100 and
1000 GPUs respectively.

cution on GPUs. However, for L ≥ 64 our transforms begin to achieve superior speed, reaching as much as a 234-fold
and 459-fold acceleration for the on-the-fly and precompute transforms respectively. When running across multiple
GPUs we see degraded performance at very low L, due to the additional inter-device communication overhead, how-
ever we asymptotically recover a further acceleration by a factor of the number of available devices. In practice for
high bandlimits we achieve very close to optimal linear scaling with increasing number of GPUs due to the highly
parallelised and balanced nature of our algorithms. For example, for spherical harmonic transforms at L = 8192 when
moving from one to three GPUs we achieve an additional acceleration of 2.96, 2.97, 2.87 for DH, MW and MWSS
sampling respectively. For the Wigner transform at L = 4096 and N = 5 we achieve an additional acceleration of
2.99. With this in mind, provided access to sufficiently many GPUs our transforms exhibit an effective linear time
complexity.

7. Conclusions

We have developed differentiable and accelerated algorithms to compute generalised Fourier transforms on the
sphere and rotation group and their gradients. We present a recursive algorithm for the calculation of Wigner d-
functions that is both stable to high harmonic degrees and extremely parallelisable. Leveraging this recursion we
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Spherical harmonic transform computational time (ms)

On-the-fly transform Precompute transform

L Time SSHT Time S2FFT Speed-Up
1 × GPU

Speed-Up
3 × GPU

3 × GPU
Ratio Time S2FFT Speed-Up

1 × GPU

8 8.8 × 10−2 3.3 × 10−1 0.26 0.07 0.27 4.4 × 10−2 2.03
16 4.5 × 10−1 9.2 × 10−1 0.49 0.23 0.47 4.1 × 10−2 11.0
32 2.2 × 100 2.0 × 100 1.08 0.73 0.68 4.0 × 10−2 53.9
64 1.4 × 101 3.6 × 100 3.87 2.83 0.73 7.6 × 10−2 184

128 8.6 × 101 7.8 × 100 11.0 8.74 0.80 2.9 × 10−1 299
256 6.2 × 102 2.4 × 101 26.1 25.8 0.99 1.3 × 100 475
512 4.6 × 103 1.2 × 102 38.1 64.1 1.68 7.1 × 100 646

1024 3.6 × 104 8.6 × 102 41.5 103 2.48 6.0 × 101 592
2048 2.9 × 105 7.5 × 103 39.0 104 2.67 – –
4096 2.4 × 106 5.1 × 104 46.4 135 2.91 – –
8192 1.9 × 107 4.1 × 105 47.0 139 2.96 – –

8 5.0 × 10−2 3.3 × 10−1 0.15 0.04 0.27 4.1 × 10−2 1.20
16 1.5 × 10−1 9.0 × 10−1 0.16 0.07 0.44 4.0 × 10−2 3.63
32 3.8 × 10−1 1.9 × 100 0.20 0.13 0.65 4.3 × 10−2 8.94
64 3.2 × 100 3.6 × 100 0.88 0.62 0.70 5.2 × 10−2 60.5

128 1.3 × 101 7.3 × 100 1.80 1.42 0.79 1.6 × 10−1 80.6
256 1.1 × 102 1.7 × 101 6.32 4.95 0.78 6.7 × 10−1 163
512 6.6 × 102 7.5 × 101 8.85 11.4 1.29 3.6 × 100 184

1024 6.4 × 103 4.3 × 102 14.8 32.9 2.22 3.3 × 101 196
2048 7.2 × 104 3.9 × 103 18.6 49.7 2.67 – –
4096 1.1 × 106 2.4 × 104 46.7 134 2.87 – –
8192 9.1 × 106 2.4 × 105 37.4 111 2.97 – –

8 4.8 × 10−2 4.3 × 10−1 0.11 0.03 0.27 4.6 × 10−2 1.05
16 1.2 × 10−1 8.6 × 10−1 0.14 0.06 0.43 4.5 × 10−2 2.60
32 5.5 × 10−1 1.8 × 100 0.30 0.19 0.63 4.7 × 10−2 11.8
64 3.8 × 100 3.5 × 100 1.09 0.79 0.72 5.0 × 10−2 76.9

128 2.7 × 101 7.2 × 100 3.82 3.06 0.80 1.5 × 10−1 180
256 2.1 × 102 1.7 × 101 12.4 9.80 0.79 6.6 × 10−1 327
512 1.6 × 103 6.8 × 101 24.0 29.7 1.24 3.6 × 100 459

1024 1.3 × 104 4.5 × 102 28.7 64.2 2.24 3.3 × 101 400
2048 1.5 × 105 3.8 × 103 39.6 102 2.58 – –
4096 2.2 × 106 2.6 × 104 83.6 234 2.80 – –
8192 1.8 × 107 2.6 × 105 68.7 197 2.87 – –
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Table 3: Computational time of the S2FFT scalar spherical harmonic transform when distributed over a single and three NVIDIA A100 GPUs
compared to SSHT running on a multithreaded Xeon(R) E5-2650L v3 CPU. We provide raw round-trip wall-clock time benchmarks and quote the
relative acceleration provided by our algorithms. Note that the 3 × GPU ratio corresponds to the ratio of the acceleration realised when running
S2FFT over three compared to one GPU. This ratio approaches the ideal ratio of three that corresponds to optimal linear scaling with increasing
number of GPUs due to the highly parallelised and balanced nature of our algorithms.
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Wigner transform computational time (ms)

On-the-fly transform Precompute transform

L Time SO3 Time S2FFT Speed-Up
1 × GPU

Speed-Up
3 × GPU

3 × GPU
Ratio Time S2FFT Speed-Up

1 × GPU

8 3.0 × 10−1 3.9 × 100 0.08 0.12 1.5 4.3 × 10−2 6.98
16 1.1 × 100 7.7 × 100 0.14 0.28 2.0 3.9 × 10−2 28.7
32 3.4 × 100 1.6 × 101 0.21 0.47 2.24 9.2 × 10−2 36.3
64 2.9 × 101 3.2 × 101 0.93 2.11 2.27 3.1 × 10−1 93.9

128 1.3 × 102 6.8 × 101 1.96 4.93 2.52 1.4 × 100 94.4
256 1.0 × 103 1.6 × 102 6.26 14.9 2.38 5.9 × 100 171
512 6.0 × 103 6.2 × 102 9.73 24.9 2.56 3.0 × 101 200

1024 5.8 × 104 4.5 × 103 12.9 36.1 2.80 – –
2048 6.4 × 105 3.5 × 104 18.4 53.6 2.91 – –
4096 1.0 × 107 2.8 × 105 37.1 111 2.99 – –

Table 4: Computational time of the S2FFT Wigner transform with azimuthal bandlimit N = 5 when distributed over a single and three NVIDIA
A100 GPUs compared to SO3 running on a multithreaded Xeon(R) E5-2650L v3 CPU. We provide raw round-trip wall-clock time benchmarks
and quote the relative acceleration provided by our algorithms. Note that the 3 × GPU ratio corresponds to the ratio of the acceleration realised
when running S2FFT over three compared to one GPU. This ratio approaches the ideal ratio of three that corresponds to optimal linear scaling with
increasing number of GPUs due to the highly parallelised and balanced nature of our algorithms.

develop fast and exact spin spherical harmonic and Wigner transforms that are well-suited for the high throughput
computing provided by modern hardware accelerators. We develop a hybrid differentiation approach so that gradients
can be computed efficiently, avoiding the memory overhead of full automatic differentiation while also avoiding the
complexities of full manual differentiation. Both forward- and reverse-mode differentiation is supported.

To support the above advances, we develop and release S2FFT�, an open-source software library implemented in
the JAX differentiable programming framework. Our transforms provide accelerated computation over one or multiple
hardware accelerators (i.e. GPUs and TPUs), accelerated and memory-efficient gradient computation, and are largely
agnostic to the spherical sampling considered, with support already for DH [Driscoll & Healy; 40], MW [McEwen &
Wiaux; 41, 42], MWSS [McEwen & Wiaux symmetric sampling; 41, 6, 64], and HEALPix [43] sampling, with plans
to add others in the near future. S2FFT supports both real and complex functions of arbitrary spin within a single easy
to use API. As such, and in line with our design ethos, S2FFT is lightweight, straightforward to install, well tested and
documented, and can be integrated into existing differentiable pipelines easily. For moderate resolution application
we also provide a precompute mode, with enhanced computational speed at the cost of added memory requirements.

S2FFT is comprehensively benchmarked up to bandlimit L = 8192 (higher bandlimits are certainly feasible but
have not been considered to date due to the computational burden of further benchmarking). The transforms and
gradient computations implemented are validated, where for sampling theorems that admit exact spherical transforms
the error of a round-trip transform is observed to be of order of machine precision. In addition we benchmark the
accelerated computation time of S2FFT against alternative C codes implementing spherical harmonic [41] and Wigner
[42] transforms. Our transforms provide up to a 234-fold and 400-fold acceleration, respectively, for the on-the-fly
and precompute transforms. Moreover, our spin spherical harmonic transforms are engineered to distribute compute
across many accelerators. For high bandlimits we achieve very close to optimal linear scaling with increasing number
of GPUs due to the highly parallelised and balanced nature of our algorithms, i.e. when considering 3 GPUs we realise
a 3× acceleration compared to running on a single GPU. Provided access to sufficiently many GPUs our transforms
thus exhibit an unprecedented effective linear time complexity.

With researchers becoming increasingly interested in differentiable programming for scientific applications, we
hope these foundational tools will be of great use in coming years. As just one example of potential applications, for
global spherical modelling or analysis of the Earth’s climate or geophysical properties through data-driven or hybrid
methods, sub-kilometre resolution and below is now feasible.

https://github.com/astro-informatics/s2fft
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