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ABSTRACT

In recent works, compressed sensing (CS) and convex opti-
mization techniques have been applied to radio-interferometric
imaging showing the potential to outperform state-of-the-art
imaging algorithms in the field. We review our latest con-
tributions [1, 2, 3], which leverage the versatility of convex
optimization to both handle realistic continuous visibilities
and offer a highly parallelizable structure paving the way to
significant acceleration of the reconstruction and high-dimen-
sional data scalability. The new algorithmic structure pro-
moted in a new software PURIFY (beta version) relies on the
simultaneous-direction method of multipliers (SDMM). The
performance of various sparsity priors is evaluated through
simulations in the continuous visibility setting, confirming the
superiority of our recent average sparsity approach SARA.

Index Terms— Compressed sensing, radio interferome-
try, interferometric imaging, convex optimization

1. INTRODUCTION

Radio interferometry is a powerful technique that allows ob-
servation of the radio emission from the sky with high angu-
lar resolution and sensitivity [4, 5]. The measurement equa-
tion for radio interferometry defines an ill-posed linear inverse
problem in the perspective of signal reconstruction. Next-
generation radio telescopes, such as the new LOw Frequency
ARray (LOFAR), or the future Extended Very Large Array
(EVLA) and Square Kilometer Array (SKA), will achieve
much higher dynamic range than current instruments, also at
higher angular resolution [5]. Also, these telescopes will ac-
quire a massive amount of data, thus posing large-scale prob-
lems. Classical imaging techniques developed in the field,
such as the CLEAN algorithm and its multi-scale variants
[6, 7, 8], are known to be slow and to provide suboptimal
imaging quality [9, 1]. This state of things has triggered an
intense research to reformulate imaging techniques for radio
interferometry in the perspective of next-generation instru-
ments.

The theory of compressed sensing (CS) introduces a sig-
nal acquisition and reconstruction framework that goes be-

yond the traditional Nyquist sampling paradigm [10, 11, 12].
Recently, CS and convex optimization techniques have been
applied to image deconvolution in radio interferometry [13,
14, 15, 16, 9, 1, 17, 18] showing promising results. These
techniques promise improved image fidelity, flexibility and
computation speed over traditional approaches. This speed
enhancement is crucial for the scalability of imaging tech-
niques to very high dimensions in the perspective of next-
generation telescopes. However, the aforementioned CS-based
imaging techniques have only been studied for low dimen-
sional discrete visibility coverages. Therefore, the extension
of CS techniques to more realistic continuous interferometric
measurements is of great importance.

In this article, we review recent work [3] extending the
previously proposed imaging approaches in [13, 14, 1] to han-
dle continuous visibilities and open the door to large-scale
optimization problems. We summarise a general algorith-
mic framework based on the simultaneous-direction method
of multipliers (SDMM) [19] to solve sparse imaging prob-
lems. The proposed framework offers a parallel implementa-
tion structure that decomposes the original problem into sev-
eral small simple problems, hence allowing implementation
in multicore architectures or in computer clusters, or on graph-
ics processing units. These implementations provide both
flexibility in memory requirements and a significant gain in
terms of speed, thus enabling scalability to large-scale prob-
lems. A beta version of an SDMM-based imaging software
written in C and dubbed PURIFY was released that handles
various sparsity priors, including our recent average sparsity
approach SARA [1], thus providing a new powerful frame-
work for radio-interferometric (RI) imaging1. We summarise
the performance of different priors through simulations within
PURIFY in the continuous visibility setting. Simulation re-
sults confirm the superiority of SARA for continuous Fourier
measurements. Even though this beta version of PURIFY is
not parallelized, we discuss in detail the extraordinary par-
allel and distributed optimization potential of SDMM, to be
exploited in future versions.

1Available at http://basp-group.github.io/purify/.



2. BACKGROUND AND MOTIVATION

2.1. State-of-the-art of CS-based RI imaging algorithms

CS introduces a signal acquisition framework that goes be-
yond the traditional Nyquist sampling paradigm [10, 11, 12],
demonstrating that sparse signals may be recovered accurately
from incomplete data. Consider a complex-valued signal x ∈
CN , assumed to be sparse in some orthonormal basis Ψ ∈
CN×N with K � N nonzero coefficients, and also consider
the measurement model y = Φx+n, where y ∈ CM denotes
the measurement vector, Φ ∈ CM×N is the sensing matrix
and n ∈ CM represents the observation noise. CS provides
results for the recovery of x from y if Φ obeys certain prop-
erties [12].

A radio interferometer takes measurements of the radio
emissions of the sky, the so-called visibilities. Under restric-
tive assumptions of narrow-band (i.e. monochromatic) non-
polarized imaging on small fields of view, the visibilities mea-
sured identify with Fourier measurements [4]. Thus the mea-
surement operator Φ essentially reduces to a Fourier matrix
sampled on M spatial frequencies. In a realistic continu-
ous visibility setting, one usually has M > N and some-
times M � N , which will be increasingly the case for next-
generation telescopes [5].

Reconstruction techniques based on CS and convex opti-
mization have been recently proposed for RI imaging. The
first application of CS and convex optimization to radio in-
terferometry was reported in [13], showing the versatility of
the approach and its superiority relative to standard interfer-
ometric imaging techniques. After this seminal work others
have followed. The works in [15, 9, 17] use the following
unconstrained synthesis problem to recover x from y:

min
ᾱ∈CN

1

2
‖y − ΦΨᾱ‖22 + λ‖ᾱ‖1, (1)

where λ is a regularization parameter that balances the weight
between the fidelity term and the `1 regularization term. The
signal is recovered as x̂ = Ψα̂, where α̂ denotes the solution
to the above problem. The work in [9] studied a CS imaging
approach based on (1) and the isotropic undecimated wavelet
transform, reporting reconstruction results superior to those
of CLEAN and its multi-scale variants.

As opposed to unconstrained problems such as (1), the
works in [13, 14, 16, 1, 18] proposed to use constrained `1
minimization problems of the form

min
x̄∈RN

+

‖Ψ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε, (2)

where Ψ† denotes the adjoint operator of Ψ, ε is an upper
bound on the `2 norm of the noise and RN+ denotes the posi-
tive orthant in RN , which represents the positivity prior on x.
Unconstrained problems are easier to handle since one of the
functions involved in the minimization is differentiable. In

fact, there exist fast algorithms to solve such problems, e.g.
the FISTA algorithm [20]. However, there is no optimal strat-
egy to fix the regularization parameter even if the noise level
is known, therefore constrained problems, such as (3), offer
a stronger fidelity term when the noise power is known, or
can be estimated a priori. Hence, we focus our attention on
solving problem (3) efficiently, especially for very high di-
mensional problems (M � N ).

2.2. The SARA algorithm

Carrillo et al. proposed in [1] an imaging algorithm dubbed
sparsity averaging reweighted analysis (SARA) based on av-
erage sparsity over multiple bases, showing superior recon-
struction qualities relative to state-of-the-art imaging methods
in the field. A sparsity dictionary composed of a concatena-
tion of q bases, Ψ = [Ψ1,Ψ2, . . . ,Ψq], with Ψ ∈ CN×D,
N < D, is used and average sparsity is promoted through
the minimization of an analysis `0 prior, ‖Ψ†x̄‖0. The con-
catenation of the Dirac basis and the first eight orthonormal
Daubechies wavelet bases (Db1-Db8) was proposed as an ef-
fective and simple candidate for a dictionary in the RI imaging
context. See [2] for further discussions on the average spar-
sity model, the dictionary selection and other applications to
compressive imaging.

SARA adopts a reweighted `1 minimization scheme to
promote average sparsity through the prior ‖Ψ†x̄‖0. The al-
gorithm replaces the `0 norm by a weighted `1 norm and
solves a sequence of weighted `1 problems where the weights
are essentially the inverse of the values of the solution of the
previous problem [1]. The weighted `1 problem is defined as:

min
x̄∈RN

+

‖WΨ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε, (3)

where W ∈ RD×D denotes the diagonal matrix with positive
weights.

3. A LARGE-SCALE OPTIMIZATION ALGORITHM

In the case of large-scale data problems, i.e. large number of
visibilities M � N , the visibilities may no longer be pro-
cessed on a single computer but rather in a computer cluster
thus requiring a distributed processing of the data for the im-
age reconstruction task. In this distributed scenario we pro-
pose to partition the data vector y and the measurement oper-
ator into R blocks in the following manner:

y =

y1

...
yR

 and Φ =

Φ1

...
ΦR

 , (4)

where yi ∈ CMi , Φi ∈ CMi×N and M =
∑R
i=1Mi. Each

yi is modelled as yi = Φix + ni, where ni ∈ CMi denotes
the noise vector.



With this partition the optimization problem in (3) can be
reformulated as

min
x̄∈RN

+

‖WΨ†x̄‖1 subject to ‖yi − Φix̄‖2 ≤ εi, i = 1, . . . , R,

(5)
where each εi is an appropriate bound for the `2 norm of the
noise term ni. In order to solve this nonsmooth problem we
need to reformulate it. Note that any convex constrained prob-
lem can be formulated as an unconstrained problem by using
the indicator function of the convex constraint set as one of
the functions in the objective, i.e. f(x) = iC(x) where C
represents the convex constraint set. The indicator function
is defined as iC(x) = 0 if x ∈ C or iC(x) = +∞ other-
wise and belongs to the class of convex lower semicontinuous
functions. Therefore (5) can be rewritten as an unconstrained
problem of the form

min
x∈CN

f1(L1x) + . . .+ fS(LSx), (6)

with S = R + 2. In this formulation f1 and f2 denote the `1
sparsity term and the positivity constraint respectively, and f3

to fS denote the R data fidelity constraints. Thus L1 = Ψ†,
L2 = I and Li+2 = Φi for i = 1, . . . , S.

To solve (6) we use the simultaneous-direction method of
multipliers (SDMM), which belongs to the family of proximal
splitting methods [19]. Proximal splitting methods proceed
by splitting the contribution of each of the functions in (6)
individually so as to yield an easily implementable algorithm.
They are called proximal because each non-smooth function
is incorporated in the minimization via its proximity operator,
which is defined as:

proxf (x) , arg min
z∈RN

f(z) +
1

2
‖x− z‖22, (7)

where f is convex lower-semicontinous function. Typically,
the solution to (6) is reached iteratively by successive applica-
tion of the proximity operator associated with each function.
SDMM is a generalization of the alternating-direction method
of multipliers [21] to a sum of more than two functions. Con-
vergence results of SDMM are based on convergence of the
alternating-direction method of multipliers and can be found
in [21].

The SDMM algorithm is summarized in Algorithm 1. The
algorithm is run for a fixed number of iterations, Tmax, or
until a stopping criteria is met. The algorithm is stopped if the
relative variation between the objective function evaluated at
successive solutions is smaller than some bound ξ ∈ (0, 1)
and if ‖yi−Φix̂

(t)‖2 ≤ εi. The global update (step 5) uses a
conjugate gradient algorithm to solve the linear system. Note
that steps 7 to 9 in Algorithm 1 can be computed in parallel
for each i. See [3] for further details in the derivation of the
algorithm and the computation of the proximity operators.

The advantages of this distributed optimization approach
are: (i) the visibilities yi and the measurement operators Φi

Algorithm 1 SDMM

1: Initialize γ > 0, x̂(0) and z(0)
i = 0, i = 1, . . . , S.

2: r
(0)
i = Lix̂

(0), i = 1, . . . , S.
3: x

(0)
i = L†ir

(0)
i , i = 1, . . . , S.

4: for t = 1, . . . , Tmax do
5: x̂(t) = (

∑S
i=1 L†iLi)

−1
∑S
i=1 x

(t−1)
i .

6: for all i = 1, . . . , S do
7: r

(t)
i = proxγfi(Lix̂

(t) + z
(t−1)
i ).

8: z
(t)
i = z

(t−1)
i + Lix̂

(t) − r(t)
i .

9: x
(t)
i = L†i (r

(t)
i − z

(t)
i ).

10: end for
11: if x̂(t) meets halting criteria then
12: Break.
13: end if
14: end for
15: return x̂(t)

are local to each node in the cluster, therefore the memory
requirements are distributed among R nodes, with a data di-
mensionality Mi � M ; (ii) the measurement operators Φi,
and their adjoint, are applied locally at each node thus dis-
tributing the processing load, for acceleration of the recon-
struction process; (iii) the central processing node, where the
global update x̂(t) = (

∑S
i=1 L†iLi)

−1
∑S
i=1 x

(t−1)
i is com-

puted, and the parallel nodes, where the local updates x(t−1)
i

are computed, only need to exchange information of the size
of the image vector at each iteration rather than of the size of
the visibilities, thus alleviating the communication require-
ments to transfer information between nodes. Note that the
composite operator

∑S
i=1 L†iLi =

∑R
i=1 Φ†iΦi + ΨΨ† + I =

Φ†Φ + 2I, needed in the conjugate gradient solver for the
global update, can be applied in parallel by each node since
Φ†Φ =

∑R
i=1 Φ†iΦi. Although this approach would distribute

the processing load of the conjugate gradient step into the par-
allel nodes, it would incur a communication overhead since
each parallel node needs to communicate its result at each it-
eration of the conjugate gradient algorithm. One approach
that can be used to avoid this situation is to precompute and
store the composite operator Φ†Φ in the central processing
node. The aforementioned distributed optimization approach
could be very appealing for next-generation telescopes where
massive amounts of data are acquired. These distributed op-
timization ideas are not implemented in the beta version of
PURIFY and are the subject of ongoing work. The reader is
referred to [3] for further discussions.

4. EXPERIMENTAL RESULTS

In this section we illustrate the performance of the imaging
algorithms implemented in PURIFY by recovering the well
known 30Dor test image from simulated continuous frequency
visibilities. Figure 2 top-left shows the 256×256 30Dor im-
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Fig. 1. Average reconstruction SNR against normalized num-
ber of visibilities M/N . ISNR is set to 30 dB.

age used as ground truth image. We use as reconstruction
quality metric the signal to noise ratio (SNR). The visibili-
ties are corrupted by complex Gaussian noise with a fixed in-
put SNR (ISNR) set to 30 dB. For the measurement operator,
PURIFY implements a non-uniform FFT that maps a discrete
image into continuous visibilities [22]. See [3] for further de-
tails on the measurement operator.

For our evaluation we compare constrained `1 and TV
minimization problems, as well as their reweighted versions,
in terms of reconstruction quality and computation time. For
the `1 problems we study three different dictionaries Ψ: the
Dirac basis, the Daubechies 8 (Db8) wavelet basis and the
Dirac-Db1-Db8 concatenation for the SARA algorithm [1].
The associated algorithms are respectively denoted BP, BPDb8
and BPSA for the non-reweighted case. The reweighted ver-
sions are respectively denoted RWBP, RWBPDb8 and SARA.
We also study the TV minimization problem with the addi-
tional constraint that x̄ ∈ RN+ , denoted as TV, and its reweigh-
ted version, denoted as RWTV.

In this experiment we use incomplete visibility coverages
generated by random variable density sampling profiles. Such
profiles are characterized by denser sampling at low spatial
frequencies than at high frequencies. This choice mimics
common generic sampling patterns in radio interferometry.
In order to make the simulated coverages more realistic we
suppress the (0, 0) component of the Fourier plane from the
measured visibilities. This generic profile approach allows
us to make a thorough study of the reconstruction quality of
the imaging algorithms with a large numbers of simulations
for arbitrary number of visibilities and without concern for
various telescope configurations. We vary the number of visi-
bilities from M = 0.2N to M = 2N . Reconstruction results
for 30Dor are reported in Figure 1. Average values over 30
simulations and associated one standard deviation error bars
are reported for all plots. The results show that SARA outper-
forms all other methods in reconstruction quality for the test
image. This confirms previous results reported by [1] in the
discrete case now for the more realistic continuous Fourier
setting, including the case when M > N .
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Fig. 2. Reconstruction example of 30Dor for a coverage with
M = 0.4N sampling frequencies. Top row left to right: orig-
inal image and SARA reconstruction (SNR=25.3 dB). Bot-
tom row left to right: reconstructed images by RWBPDb8
(SNR=22.6 dB) and RWTV (SNR=24.1 dB).

Next we present a visual assessment of the reconstruction
quality of the different algorithms. Figure 2 shows the results
for a coverage of M = 26374 ≈ 0.4N visibilities. The re-
constructed images are shown in a log10 scale. These images
confirm the previous results found by examining recovered
SNR levels; SARA yields reconstructed images with fewer
artifacts than the other methods.

5. CONCLUSIONS

In this paper we have reviewed a new algorithmic framework
based on the simultaneous-direction method of multipliers to
solve sparse imaging problems in RI imaging. The new algo-
rithm provides a parallel implementation structure, therefore
offering an attractive framework to handle continuous visi-
bilities and associated high dimensional problems. A variety
of state-of-the-art sparsity regularization priors, including our
recent average sparsity approach SARA, as well as discrete
and continuous measurement operators are available in the
new PURIFY software. Source code for PURIFY is publicly
available. Experimental results confirm both the superiority
of SARA for continuous Fourier measurements and the fact
that the new algorithmic structure offers a promising path to
handle large-scale problems. In future work we will extend
the current PURIFY implementation to take full advantage of
the parallel and distributed structure of SDMM. Also, direc-
tion dependent effects will be included in PURIFY as addi-
tional convolution kernels in the operator Φ as proposed in
[23]. See [18] for first steps in this direction.
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