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ABSTRACT
Weak lensing convergence maps – upon which higher order statistics can be calculated – can
be recovered from observations of the shear field by solving the lensing inverse problem.
For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial
uncertainty on the recovered convergence maps. In this paper we propose novel methods for
quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty
in the cumulative peak statistic – the peak count as a function of signal to noise ratio (SNR).We
adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work,
which provides robust reconstructions and principled statistical interpretation of reconstructed
convergence maps without the need to assume or impose Gaussianity. We demonstrate our
uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard
V-1.6 (large scale structure) N-body simulations. For the first time, this methodology allows
one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic
at well defined confidence levels.
Key words: gravitational lensing: weak – methods: statistical – techniques: image processing
– (cosmology:) dark matter – (cosmology:) cosmological parameters

1 INTRODUCTION

In an empty universe the null geodesics along which photons travel
correspond directly to straight lines. However, in the presence of a
non-uniform distribution of matter the null geodesics are perturbed
via gravitational interaction with the local matter over or under
density i.e. the photons are gravitationally lensed (Grimm & Yoo
2018; Schneider 2005; Munshi et al. 2008; Heavens 2009). As
this gravitational interaction is sensitive only to the total matter
distribution, and the overwhelming majority of matter is typically
dark, gravitational lensing provides a natural probe of dark matter
itself (Clowe et al. 2006).

Collections of associated photons emitted from a distant object
travel along separate geodesicswhich are perturbed in differentways
by the intervening matter distribution, e.g. photons traveling closer
to matter over densities will interact more strongly and therefore
be perturbed more than those farther away. As such the geometry
of a distant object is warped (Bartelmann & Schneider 2001) – i.e.
colloquially the object is lensed.

Provided the propagating photons at no time come closer than
one Einstein radius to the intervening matter over and under den-
sities, the object is weakly lensed. Weak gravitational lensing of
distant galaxies manifests itself at first order into two quantities; the
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spin-0 convergence κ which is a magnification, and the spin-2 shear
γ which is a perturbation to the galaxy ellipticity (third-flattening).

Both the shear γ and the convergence κ have dominant intrin-
sic (i.e. in the absence of lensing effects) underlying values which
makes measurements of the lensing effect difficult. In fact, there is
no a priori way to know the intrinsic brightness of a galaxy (result-
ing in an inherent degeneracy – the mass-sheet degeneracy) and so
the convergence is not an observable quantity. In fact, the standard
convergence is not gauge invariant and is therefore fundamentally
unobservable (Grimm & Yoo 2018). However, as the intrinsic el-
lipticity distribution of galaxies has zero mean one can average to
recover the shearing contribution, hence the shear is an observable
quantity. As such, measurements of the shear field are taken and in-
verted to form estimators of the convergence. Typically this inverse
problem is seriously ill-posed and so substantial uncertainty on the
reconstructed convergence map is introduced.

A wealth of information may be calculated directly from the
shear field (often in the form of second order statistics (Kilbinger
2015) – such as the power spectrum as in Alsing et al. 2016; Taylor
et al. 2018) though recently there is increasing interested in extract-
ing Non-Gaussian information from the convergence field, e.g. peak
statistics, Minkowski functionals, extreme value statistics (Munshi
& Coles 2017; Coles & Chiang 2000; Fluri et al. 2018; Peel et al.
2018, 2017a).

Primarily, the interest has arisen as higher-order statistics of the
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convergence field have been shown to provide complementary con-
straints on dark matter cosmological parameters which are typically
poorly constrained by second-order statistics (Pires et al. 2010).

However, to make principled statistical inferences from the
convergence field, the inversion from γ to κ must be treated in a
principled statistical manner – something which until recently was
missing from convergence reconstruction algorithms which were
either not framed in a statistical framework (e.g. VanderPlas et al.
2011; Kaiser & Squires 1993; Lanusse et al. 2016; Wallis et al.
2017; Jeffrey et al. 2018) or made assumptions of Gaussianity (e.g.
Corless et al. 2009; Alsing et al. 2016; Schneider et al. 2015). As the
information of interest in higher-order convergence statistics is non-
Gaussian, assumptions of Gaussianity in the reconstruction process
severely degrade the quality of the cosmological information.

Recently, amass-mapping frameworkwas developed (see Price
et al. 2018a) which addressed precisely this issue. This new sparse
hierarchical Bayesianmass-mapping formalism can be rapidly com-
puted, can be extended to big data, and provides a principled statis-
tical framework for quantifying uncertainties on reconstructed con-
vergence maps. Notably, it has been shown to accurately reconstruct
very high dimensional Bayesian estimators many orders of magni-
tude faster than state-of-the-art proximal MCMC algorithms – it
was specifically benchmarked against Px-MALA (Pereyra 2013;
Durmus et al. 2018) in Price et al. (2018b).

In this paper, we propose two novel uncertainty quantifica-
tion techniques, aimed to answer two frequently asked questions of
the recovered convergence map. The first of these questions asks
where a feature of interest in the reconstructed convergence map
could have been observed – typically this has been addressed by
bootstrapping; however we can now infer it directly in a Bayesian
manner. The second question asks given amagnitude thresholdwhat
is the maximum and minimum number of peaks which could have
been observed, within some well defined confidence.

The structure of this article is as follows. To begin, in section
2 we provide cursory introduction to weak lensing from a math-
ematical perspective, with emphasis on the weak lensing planar
forward model in subsection 2.2. Following this we provide a brief
overview of Bayesian inference and the previously developed (Price
et al. 2018a) sparse hierarchical Bayesian mass-mapping algorithm
in section 3. An introduction to Bayesian credible regions, specif-
ically the highest posterior density credible region is provided in
section 3.1. In section 4 we develop a novel Bayesian inference
approach to quantifying the uncertainty in reconstructed feature
location, which we then showcase on illustrative N-body cluster
simulation data in section 5. We then introduce a novel Bayesian
inference approach for recovery of principled uncertainties on the
aggregate peak count statistic in section 6. Following this we show-
case this Bayesian inference approach to quantify uncertainty in the
aggregate peak statistic in section 7 on N-body large scale structure
(LSS) illustrative simulation data. Finally we draw conclusions in
section 8.

2 WEAK GRAVITATIONAL LENSING

In this section we provide a brief introduction to weak gravitational
lensing, with emphasis on how this effect manifests itself into ob-
servable quantities. For a detailed background review of the field
see Bartelmann & Schneider (2001); Schneider (2005). For a more
mathematical background of the field, with emphasis on statistical
methods see Grimm & Yoo (2018); Munshi et al. (2008); Heavens

(2009). For a background of specifically the peak statistics see Lin
(2016).

2.1 Mathematical Background

In a non-uniform distribution of matter the null geodesics along
which photons travel are no longer straight lines, instead they are
now sensitive to the local matter distribution. When many photons
are propagating from a distant object to us here and now, the local
matter distribution adjusts the geometry of the object we observe
– the object is gravitationally lensed.

Provided the trajectory of the propagating photons at no time
comes closer than one Einstein radius θE to the intervening matter
over densities then the lens equation,

β = θ − θ2
E

θ

|θ |2
, (1)

remains effectively singular and we are in the weak lensing regime.
Equivalently one can define the weak lensing regime to be con-
vergence fields for which κ � 1 – ensuring that the shear signal
remains linear. Here the Einstein radius is given by,

θE =

√
4GMlens

c2
fK (r − r ′)

fK (r) fK (r ′)
, (2)

where G is the gravitational constant, Mlens is lensing mass, c is the
speed of light in vacuo and fK (r) is the angular diameter distance
defined as:

fK (r) =


sin(r) if K = 1,
r if K = 0,
sinh(r) if K = −1,

(3)

where r is the comoving distance and K is the curvature of the
universe, which has been observed to be consistent with 0 by Planck
Collaboration et al. (2018).

As galaxies are naturally sparsely distributed across the sky,
most observations fall within the weak lensing regime. The weak
gravitational lensing effect can be described by a lensing potential
φ(r, ω) which is the integrated Newtonian potential Φ(r, ω) along
the line of sight

φ(r, ω) =
2
c2

∫ r

0
dr ′

fK (r − r ′)
fK (r) fK (r ′)

Φ(r ′, ω), (4)

where ω = (θ, ψ) are angular spherical co-ordinates. A further
constraint exists, such that the local Newtonian potential Φ(r, ω)
must satisfy the Poisson equation:

∇2
Φ(r, ω) =

3ΩMH2
0

2a(r)
δ(r, ω), (5)

for matter density parameter ΩM , Hubble constant H0 and scale
parameter a(r). Combined, equations (4) and (5) allow one to make
inferences of cosmological parameters from observations of the
lensing potential φ(r, ω).

At linear order, gravitational lensing manifests itself as two
quantities: the spin-0 convergence field κ (magnification) and the
spin-2 shear field γ (perturbation to ellipticity). It can be shown that
(Bartelmann & Schneider 2001; Schneider 2005) these quantities
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can be related to the lensing potential φ(r, ω) by,

κ(r, ω) =
1
4
(ðð̄ + ð̄ð) φ(r, ω), (6)

γ(r, ω) =
1
2
ðð φ(r, ω), (7)

where ð and ð̄ are the spin raising and lowering operators respec-
tively and are in general defined to be:

ð ≡ − sins θ
( ∂
∂θ
+

i∂
sin θ∂ψ

)
sin−s θ, (8)

ð̄ ≡ − sin−s θ
( ∂
∂θ
−

i∂
sin θ∂ψ

)
sins θ. (9)

2.2 Lensing Planar Forward Model

Often second order statistics (Kilbinger 2015) related to the shear
γ are computed (e.g. the shear power spectrum as in Taylor et al.
2018; Alsing et al. 2016), though increasingly there is interest in
extracting weak lensing information from the convergence directly
– typically higher-order non-Gaussian information.

Unfortunately, due to an inherent degeneracy the convergence
is not an observable quantity (Bartelmann & Schneider 2001;
Schneider 2005; Grimm & Yoo 2018) – this effect is colloquially
referred to as the mass-sheet degeneracy. However, as the intrinsic
ellipticity distribution of galaxies has zeromean, averagingmany el-
lipticity observations within a given pixel provides a good estimate
of the shear field.

In fact, there exists a further degeneracy between κ and γ such
that the true observable is the reduced shear g but for the context of
the paper we will assume γ ≈ g � 1 – see Mediavilla et al. pg.153,
Price et al. (2018a), or Wallis et al. (2017) for details on how to
account for the non-linear reduced shear.

As both κ and γ are related to φ a relation between κ and γ can
be formed. Therefore, typically measurements of the shear field are
taken and inverted to form estimates of the underlying convergence
field. For small fields of view the flat sky approximation can be
made, which reduces the spin-raising ð and lowering ð̄ operators to
(Bunn et al. 2003):

ð ≈ −(∂x + i∂y) and ð̄ ≈ −(∂x − i∂y). (10)

From equations (6) and (7) it is clear that the forward model in
Fourier space between κ and γ is given by

γ̂(kx, ky) = Dkx,ky κ̂(kx, ky), (11)

with the mapping operator being

Dkx,ky =
k2
x − k2

y + 2ikx ky

k2
x + k2

y

, (12)

where we have dropped the spin subscripts for clarity. To recover an
estimator of the convergence one must invert this forward model.

The most naive inversion technique is that of Kaiser-Squires
(KS) inversion (Kaiser & Squires 1993), which is direct inversion
in Fourier space, i.e.

κ̂KS = D−1γ̂, (13)

where we have again dropped function arguments and subscripts
for clarity. This approach attempts to mitigate the effect of noise
by convolving the recovered convergence estimate with a broad
Gaussian smoothing kernel, which severely degrades the quality
of non-Gaussian information. This poses a somewhat serious issue

as non-Gaussian information is precisely the information that is to
be extracted from the convergence field. Therefore for higher-order
convergence statistics the KS estimator is patently sub-optimal.

Moreover, decomposition of spin fields on bounded manifolds
is well known to be degenerate (Bunn et al. 2003) and so inversion
of shear to convergence for masked fields is inherently ill-defined
– in particular the KS estimator is known to break down for non-
trivial masking. In fact the lensing inverse problem is often seriously
ill-posed, therefore motivating methods regularized by prior infor-
mation.

3 SPARSE BAYESIAN MASS-MAPPING

Manymass-mapping algorithms have been considered (e.g.Vander-
Plas et al. 2011; Kaiser & Squires 1993; Lanusse et al. 2016; Wallis
et al. 2017; Jeffrey et al. 2018; Jee et al. 2016; Chang et al. 2018),
however in the context of this paper we wish to conduct principled
statistical analysis of the reconstructed convergence map, and so
we opt for the sparse hierarchical Bayesian algorithm presented in
Price et al. (2018a) and benchmarked against MCMC algorithms in
Price et al. (2018b).

Recently a sparse hierarchical Bayesian framework for conver-
gence reconstruction was presented (Price et al. 2018a) which is
not limited to Gaussian priors – in fact the prior need not even be
differentiable. In this work we adopt this mass-mapping algorithm,
which we briefly describe below.

First, by Bayes’ theorem the posterior distribution of the con-
vergence κ reads

p(κ |γ) =
p(γ |κ)p(κ)∫

CN p(γ |κ)p(κ)dκ
, (14)

which shows how one should infer the posterior p(κ |γ) from the
likelihood function (data fidelity term) p(γ |κ) and the prior (regu-
larization term) p(κ) (see e.g. Trotta 2017, for a clear introduction
to Bayesian inference in a cosmological setting). In the scope of this
paper we do not consider the Bayesian evidence

∫
CN p(γ |κ)p(κ)dκ

as it acts as a normalization term and so does not effect the recov-
ered solution. Typically the Bayesian evidence is used for model
comparison which is an avenue of study in of itself.

In aBayesian inference problemone oftenwishes to find the so-
lution κ which maximizes the posterior given data and some model.
From the monotonicity of the logarithm function, maximization of
the posterior is equivalent to minimization of the log-posterior such
that

argmax
κ

{
p(κ |γ)

}
≡ argmin

κ

{
− log( p(κ |γ) )

}
, (15)

where the convergence κ which maximizes the posterior is given by
κmap, where MAP stands for maximum a posteriori. Provided the
posterior is log-concave the minimization of the log-posterior takes
the form of a convex optimization problem, which can be rapidly
computed even in high dimensional settings.

Let κ ∈ CN be the discretized complex convergence field and
γ ∈ CM be the discretized complex shear field, where M is the
number of binned shear measurements and N is the dimensionality
of the recovered convergence field. Suppose we can define a mea-
surement operator Φ ∈ CM×N : κ 7→ γ which maps κ onto γ. On
the plane, the measurement operator is given by (e.g. Price et al.
2018a)

Φ = F−1DF, (16)
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where D is the planar forward model in Fourier space as defined
in equation (12), and F (F−1) is the forward (inverse) fast Fourier
transform.

Now suppose that some noise n is contaminating our measure-
ments, then measurements are obtained through the measurement
equation

γ = Φκ + n. (17)

Within this article we will consider the typical case in which the
noise n ∼ N(0, σ2

n) ∈ C
M , i.e. i.i.d. (independent and identically

distributed) zeromeanGaussian noise of varianceσ2
n . In this setting

the likelihood function is given by a multivariate Gaussian, which
for diagonal covariance Σ = σ2

nI is given compactly as

p(γ |κ) ∝ exp

(
−‖Φκ − γ‖22

2σ2
n

)
, (18)

which (as in Price et al. 2018a) is regularized by a sparsity promoting
Laplace-type l1-norm wavelet prior

p(κ) ∝ exp
(
− µ‖Ψ†κ‖1

)
, (19)

where µ ∈ R+ is the jointly inferred MAP regularization parameter
(Pereyra et al. 2015) – the derivation and implementation of which
may be found in Price et al. (2018a). Sparsity promoting priors in
wavelet dictionaries have explicitly been shown to be effective in
the weak lensing setting (Jeffrey et al. 2018; Lanusse et al. 2016;
Peel et al. 2017b; Price et al. 2018a).

Using these terms, the minimization of the log-posterior be-
comes

κmap = argmin
κ

{
µ‖Ψ†κ‖1 +

‖Φκ − γ‖22
2σ2

n

}
, (20)

which is then solved iteratively by implementing a proximal
forward-backward splitting algorithm (e.g. Combettes & Pesquet
2009).

Note that one can choose any convex log-priors e.g. an `2-
norm prior from which one essentially recovers Weiner filtering
(see Padmanabhan et al. 2003; Horowitz et al. 2018, for alternate
iterative Weiner filtering approaches).

3.1 Bayesian credible regions

In Bayesian analysis a posterior credible region Cα ∈ CN at confi-
dence 100(1 − α)% is a set which satisfies:

p(κ ∈ Cα |γ) =
∫
κ∈CN

p(κ |γ)ICα dκ = 1 − α, (21)

where ICα is an indicator function defined such that,

ICα =

{
1 if κ ∈ Cα,
0 if κ < Cα .

(22)

There are in general a large number of posterior regions (hyper-
volumes) which satisfy this integral. The decision-theoretically op-
timal region – in the sense ofminimum enclosed volume – is called
the highest posterior density (HPD) credible region (Robert 2001)
and is defined to be:

Cα := {κ : f (κ) + g(κ) ≤ εα}, (23)

where f (κ) = µ‖Ψ†κ‖1 is the log-prior term and g(κ) = ‖Φκ −

γ‖22/2σ
2
n is our data fidelity term (log-likelihood function). Here

εα defines a level-set (i.e. isocontour) of the log-posterior set such

that equation (21) is satisfied. In practice the true HPD credible
region is difficult to compute due to the high dimensional integral
in equation (21), motivating computationally efficient approximate
techniques.

Recently a conservative approximation of the HPD credible
set was proposed by Pereyra (2017) which exploits developments
in probability concentration theory. The approximate HPD credible
set C′α is given by:

C′α := {κ : f (κ) + g(κ) ≤ ε ′α}, (24)

with approximate level-set threshold

ε ′α = f (κmap) + g(κmap) + τα
√

N + N, (25)

where the bounding term τα =
√

16 log(3/α) which in turn is con-
strained to confidence α ∈

(
4 exp(−N/3) , 1

)
. The error of this

approximation is bounded above by

0 ≤ ε ′α − εα ≤ ηα
√

N + N, (26)

where ηα =
√

16 log(3/α) +
√

1/α. This upper-bound is typically
conservative, meaning the isocontour is at all times larger than the
true isocontour (i.e. this estimator will never produce an underes-
timate). In Price et al. (2018b) the bound on recovered local error
bars was found to be ±10 to 15% larger than the true MCMC – yet
could be computed O(106) times faster. A similar comparison was
done by Cai et al. (2017a) in a radio interferometric setting.

The concept of approximate HPD credible regions is particu-
larly useful as it allows us to explore high dimensional posteriors
– many orders of magnitude larger than state-of-the-art MCMC
techniques are currently able to accomodate – in a computationally
efficient manner.

4 BAYESIAN PEAK LOCATIONS

Often one wishes to know the location of a feature of interest within
the reconstructed convergence κmap. Typically, this uncertainty is
assessed via bootstrapping of the recovered image for a large number
of simulated noise fields (as in e.g. Peel et al. 2017b).

With the concept of approximate HPD credible regions in
mind, we propose a novel Bayesian approach to quantifying uncer-
tainty in the peak location which we will refer to as the ‘Bayesian
location’.

In essence the Bayesian location is computed as follows: A
feature of interest is removed from the recovered convergence map,
this feature is then inserted back into the convergence map at a new
position to create a surrogate convergencemap, if this surrogatemap
is within the approximate credible set then the position at which the
feature was inserted cannot be rejected, if the surrogate is not in
the approximate credible set then the position can be rejected. This
process is computed for a sample of the total posible insertion posi-
tions, eventually providing an isocontour of ‘acceptable’ positions.
This isocontour, at a well-defined confidence level, is the Bayesian
location.

4.1 Bayesian Location

Suppose we recover a (MAP) convergence field κmap via optimiza-
tion of the objective function defined in equation (20)which contains
a feature of interest (e.g. a large peak). Let us define the sub-set of
pixels which contain this feature to be ΩZ ⊂ Ω, where Ω is the
entire image domain.
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Calculate MAP so-
lution: κmap (20)

Remove feature Z
by equation (27).

Extract feature Z = κmapIΩZ

Insert: feature Z at
xt , get surrogate κsgt

Is: κsgt ∈ C′α ?

Reject pixel: xtAccept pixel: xt

t → t + 1 t → t + 1

Yes

Select next nearest pixel. Select next nearest pixel.

No

Figure 1. Schematic representation of the inverse nested iterations to determine the Bayesian location (see section 4). The Bayesian location is a positional
uncertainty on a feature of interest Z within a recovered convergence field. Once a complete ring of pixels have been rejected the algorithm returns a binary
map of accepted pixels which we call the Bayesian location. Any pixel outside of this location is rejected at 100(1−α)% confidence. Alternately the probability
isocontour bounding the set of acceptable pixels can be located by N-splitting circular bisection as described in section 4.2 and Appendix A.

To begin with, extract the feature Z = κmapIΩZ , i.e. a con-
vergence field which contains only the feature of interest. Now we
adopt the process of segmentation inpainting (Cai et al. 2017b,a;
Price et al. 2018a) to create a convergence field realization without
the feature of interestZ but with background signal replaced.

Mathematically segmentation inpainting is represented by the
iterations

κ(t+1),sgt = κmapIΩ\ΩZ + Λsoftλ(Λ
†κ(t),sgt)IΩZ , (27)

where Λ is an appropriately selected dictionary – for this purpose
we simply use the Daubechies 8 (DB8) wavelet dictionary with
8-levels and λ is the soft-thresholding parameter.

Following the wavelet inpainting, in order to separate the true
feature from the background residual convergence the signal which
was inpainted into the region ΩZ is subtracted from the extracted
featureZ – effectively accounting for the residual background sig-
nal which would likely have been present even in the absence of
the featureZ. At this junction the surrogate convergence κsgt is hy-
pothesis tested for physicality (Cai et al. 2017a; Price et al. 2018a).

If a feature is not found to be physical, the algorithm termi-
nates at this point as, fundamentally, it is illogical to evaluate the
uncertainty in position of an object of which you cannot statistically
determine the existence.

Now that we have successfully isolated Z we can insert it
back into the surrogate field κsgt at a perturbed position. It is then
sufficient to check if

f (κsgt′) + g(κsgt′) ≤ ε ′α, (28)

where κsgt′ represents the surrogate with the feature Z inserted at
a perturbed location.

If the inequality does hold, then the conclusion is that at 100(1−
α)% confidence we cannot say that the feature could not be found
at this location. If the equality does not hold thenZ in its observed
form could not have been found at the new location at 100(1− α)%
confidence. The question then becomes, which perturbed positions
are acceptable and which are not.

With the above in mind, we propose a typical inverse nested
iterative scheme to determines the pixel-space isocontour for a given
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Bayesian Location of Bolshoi-3 Sub-halos

Figure 2. Combined plot of the 99% confidence Bayesian locations at SNR
= 12, 15, 17, 20 dB. The outer rings represent the noiser position isocontours
whereas as the data becomes cleaner the isocontour ring becomes smaller
(therefore the rings represent isocontours at SNR = 12, 15, 17, 20 dB, from
the outer rings inwards respectively). N-splitting Circular Bisection (see
section 4.2) was used to efficiently compute each isocontour. For input
SNR’s below ≈ 10 the smaller local features cannot be determined physical
via the initial hypothesis test, and so we truncate our analysis at SNR = 12.

feature in the reconstructed convergence field. Schematically this
iterative process is outlined in Figure 1. Essentially, inverse nesting
is: start in a ring 1-pixel from the MAP peak location in the first
iteration, moving the ring one pixel outwards after each iteration.

4.2 N-splitting Circular Bisection

Inverse nested iterations are sufficiently fast for low-dimensional
reconstructions (256 × 256), however as the dimensionality of the
reconstructed domain grows it becomes increasingly beneficial to
adopt more advanced algorithms to compute the Bayesian location
in an efficient manner.

We propose a novel iterative algorithm for computing the pixel-
space position isocontour which we call N-splitting Circular Bisec-
tion (N-splitting), the full details of which can be found in appendix
A. A brief outline of N-splitting is given below.

Supposewewish to compute positions on theBayesian location
isocontour at equiangular intervals∆Θ (defined clockwise about the
peak location) relative to the y-axis. Then we require n = 2π/∆Θ
sampling angles which are trivially given by,

Θi = i∆Θ, (29)

where i is an iterative factorwhich sets the angle for a given direction
Θi .

OnceΘi is defined for a single direction, the distance d′α along
direction Θi such that the objective function saturates the level-set
threshold ε ′α is found by bisection. Mathematically, this is formally

defined to be,

diα = min
d

{
d ∈ Γi | f (κsgt

d
) + g(κ

sgt
d
) > ε ′α

}
, (30)

Γi =
{
q1 sin(Θi), q2 cos(Θi) | q1, q2 ∈ R+

}
, (31)

d =
√

q2
1 + q2

2, (32)

where Γi is the sub-set of the real domain which lie on the line
of infinite extent along a given direction Θi sourced at the peak
location, and κ

sgt
d

is the surrogate convergence map constructed
by inserting the feature of interest Z into a perturbed location
[q1 sin(Θi), q2 cos(Θi)].

Once a representative set of positions on the location isocon-
tour are computed, the convex hull is taken – the convex hull is
simply the smallest convex set which contains all samples of the
location isocontour. The boundary of this closed convex set of ac-
ceptable pixels is taken as the Bayesian location.

5 ILLUSTRATIVE EXAMPLE OF THE BAYESIAN
LOCATION

In this sectionwe perform sparse Bayesian reconstructions of a large
cluster extracted from the Bolshoi N-body simulation (Klypin et al.
2011; Lanusse et al. 2016), upon which we construct and assess
the performance of Bayesian locations for each of the four largest
sub-halos. In line with previous work of Price et al. (2018a) and in
the related article of Lanusse et al. (2016) we refer to this extracted
cluster as Bolshoi-3.

We grid the Bolshoi convergence field onto a discretized com-
plex map of dimension (1024 × 1024) so as to demonstrate that
the sparse Bayesian approach can construct Bayesian estimators
efficiently even when the dimension of the problem is of O(106)
or larger – dimensions at which MCMC techniques can become
highly computationally challenging.

5.1 Methodology

First, we construct a complex discretized set of artificial shear mea-
surements γ̃ ∈ CM by,

γ̃ = Φκ, (33)

where κ is the input Bolshoi-3 convergence map. We then contam-
inate these mock measurements with noise n, which for simplicity
we select to be i.i.d. Gaussian noise n ∼ N(0, σ2

n) of zero mean
and variance σ2

n . The variance is selected such that the SNR of the
noisy artificial shear maps can be varied, and is therefore set to be,

σn =

√
‖Φκ‖22

N
× 10−

SNR
20 . (34)

The MAP convergence field κmap is recovered via the sparse
Bayesian mass-mapping algorithm using DB10 wavelets (10-
levels), and the Bayesian location for the set of 4 peaks is con-
structed. For a detailed discussion of how noise levels in dB trans-
late to physical quantities such as galaxy number density see Price
et al. (2018a).

5.2 Analysis and computational efficiency

To demonstrate this uncertainty quantification technique we con-
struct 99% confidence Bayesian locations for the 4 largest sub-
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Figure 3. Left to right: Sparse Bayesian reconstructions of Bolshoi-3 peaks 1 to 4 (top to bottom respectively) followed by Bayesian locations (see section 4)
at 99% confidence for input SNR of 20.0 to 12.0 dB– which are overlaid on the sparse Bayesian MAP recovered convergence maps κmap at the corresponding
SNR level. As the input artificial shear becomes more contaminated with noise, the relative information content decreases, and so inferred uncertainty of the
reconstructed peak positions increases, as one would logically expect. Note the asymmetry in the 99% isocontour, which motivates the N-splitting searching
algorithm (see section 4.2 and Appendix A) rather than a naive circular inference (e.g. finding the maximal x and y displacements and assuming a circular
isocontour). Finally, observe that the 99% isocontour for Peaks 3 and 4 are proportionally more tightly constrained than Peaks 1 and 2. This is due to the
local information density typically being higher in more signal dense regions – perturbations to pixels in more information dense regions are more tightly
constrained and can therefore move less distance before saturating the approximate level-set threshold ε ′α . This effect has been observed in the context of local
credible intervals as presented in Cai et al. (2017a) and introduced to the weak lensing setting in Price et al. (2018b).

halos in the Bolshoi-3 cluster, for input SNR in decibels (dB) of
∈ {12, 15, 17, 20}.

In Figures 2 and 3 it is apparent that, as expected, the positional
uncertainty isocontour at 99% confidence is smaller for less noisy
data, growing in proportion to the noise. In our analysis 32 N-
splitting directions (pointings) were used, though as can be seen
in Figures 2 and 3 as few as 16 directions would easily have been
sufficient given the smoothness of the isocontour.

Computationally, reconstruction of theMAP convergence field
and computation of the Bayesian location for the complete set of

peaks took ∼ 5 minutes on a standard 2016 MacBook Air. No-
tably, this is a conservative (Pereyra 2017) and tight (Price et al.
2018b) approximate Bayesian inference in an over 106-dimensional
space on a personal laptop in minutes. Further to this, the sparse
Bayesian algorithmic structure can be easily parallelizable and so
this computational efficiency can be optimizerd further.

MNRAS 000, 1–15 (2018)
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6 AGGREGATE UNCERTAINTY IN PEAK COUNTS

Building on the notion of an approximate HPD credible region pre-
sented in section 3.1 we now ask the question: given a reconstructed
convergence field κmap, and at a given SNR threshold K , what is the
maximum and minimum peak count at 100(1 − α)% confidence.

In this article we choose to define a peak in κmap by a pixel
κmap(x) which is larger than the 8 pixels which surround it (Lin
2016). A point of the peak statistic is computed as follows: A thresh-
old K is taken on κmap, and the peak count (number of peaks which
have intensity larger than K) is taken on the sub-set of pixels larger
than the threshold.

Formally we define the excursion set Ω+ ⊂ Ω as,

Ω
+ =

{
x | κmap(x) > K

}
, (35)

where Ω is the complete set of recovered pixels. Define a further
sub-set Π ⊂ Ω+ as the set of peaks in Ω+:

Π(κmap) =
{
x | κmap(x) > κmap(x′), ∀ x′ ∈ N(x)

}
, (36)

where N(x) represents the set of immediately surrounding pixels.
Note that this definition is not valid for pixels on the boundary

of the field, and so these pixels are necessarily not considered.
This not only excludes the outer edge of κmap but also any pixels
surrounding masked regions (of which there are typically many).

Conceptually, we would then like to know at a given threshold
K what is the maximum and minimum number of peaks which
could exist such that the surrogate solution κsgt still belongs to the
approximate HPD credible set C′α.

Let ηmax
α be the upper bound on the number of peaks, and ηmin

α
be the lower bound on the number of peaks, for a given threshold
K , at 100(1−α)% confidence. Further let η be the number of peaks
calculated from the MAP solution κmap at threshold K . Formally
these quantities are given by,

η ≡ |Π(κmap)|, (37)

ηmax
α ≡ max

κsgt

{
|Π(κsgt)| ∈ R+ | f (κsgt) + g(κsgt) ≤ ε ′α

}
, (38)

ηmin
α ≡ min

κsgt

{
|Π(κsgt)| ∈ R+ | f (κsgt) + g(κsgt) ≤ ε ′α

}
, (39)

where |Π(κ)| is the cardinality of the peak set of a convergence field
κ.

It is not all obvious how to locate the extremum of optimization
problems given in equations (38) and (39) as they are inherently non-
linear, non-convex problems. We can, however, propose a logical
iterative approach to calculate well motivated approximations to the
upper and lower peak count limits ηmax

α and ηmin
α .

6.1 Approximate Bayesian Lower Bound on Peak Counts

It is perhaps conceptually more straightforward to minimize the
cardinality of the peak set and so we will first describe this process.

To calculate an approximate bound on ηmin
α we begin by cre-

ating the initial peak set Π from the recovered convergence κmap.
The peak in Π(κmap) with lowest magnitude is located. The short-
est distance rmin from the pixel location x to a pixel x′ such that
κmap(x′) = y (where y is some magnitude at which it is assumed
the peaks influence is sufficiently small) is computed in Euclidean
space as rmin = |x − x′ | – within this paper we simply set y = 0.

Let us define the region of interest ΩA ⊂ Ω to be a circular
aperture centered on the peak pixel location x with radius rmin.

Initial surrogate: κsgt = κmap

Calculate excursion peak set: Π(κsgt)

Find lowest peak: (x)

Define aperture
around peak: ΩA

Remove peak from excursion
peak set: κsgt = SK,ΩA

(
κsgt

)

In credible set?: κsgt ∈ C′α ?

Repeat steps.

Min number of peaks:
ηmin
α = |Π(κsgt) |

Yes

No

Figure 4. Schematic representation of the iteration steps in finding the
Bayesian lower bound ηmin

α at confidence 100(1 − α)% of the peak count
|Π | for a given MAP reconstruction κmap.

Conceptually, this acts as a proxy for the area effected by a large
over-density sourced at the location of the peak.

Now, define a down-scaling kernel SK,ΩA ∈ C
N×N which

has the action of scaling the magnitude of the sub-set κmapIΩA of
pixels belonging to the region of interest ΩA onto [0,K]. Applica-
tion of the down-scaling operator returns a surrogate solution κsgt.
Mathematically this is,

κsgt = SK,ΩA
(
κmap) = κmapIΩ\ΩA +

K
max

(
κmapIΩA

) (κmapIΩA ).

(40)

Application of SK,ΩA to an isolated region ΩA conserves
the local topology of the field – which is precisely what we want
as it means we are making no assumptions about the halo profile
around a peak. Removing a peak by application of SK,ΩA creates
a surrogate solution κsgt which is likely to minimize the increase in
the objective function.

As such SK,ΩA is a good strategy for excluding peaks from
Π(κmap) as it will likely maximize the number of peaks which
can be removed from Π(κmap) before the level-set threshold ε ′α is
saturated. Thus, it will likely be near decision-theoretically optimal
at minimizing equation (39), which is precisely what we want.

A schematic of the iterative process proposed to find the
Bayesian lower bound on the peak statistic can be seen in Fig-
ure 4. In words, the process is as follows. Within each iteration, the
lowest intensity peak within the peak set is removed forming a new
surrogate convergence field κsgt, the objective function is recalcu-
lated and if the objective function is below the approximate level-set
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threshold ε ′α then the lowest peak within κsgt is now removed, so
on and so forth until the objective function rises above ε ′α, at which
the iterations are terminated and the minimum number of peaks is
recovered.

6.2 Approximate Bayesian Upper Bound on Peak Counts

Nowwe invert our perspective in order to approximate themaximum
number of peaks which could be observed at a given threshold K at
100(1−α)% confidence. Here we will be considering the non-linear
maximization problem constructed in equation (38).

First, we introduce the notion of the inclusion setΩ−, conjugate
to Ω+ such that Ω− ∪Ω+ ≡ Ω and Ω− ∩Ω+ = ∅,

Ω
− =

{
x | κmap(x) ≤ K

}
, (41)

With this in mind, we can now cast the maximization problem into
a minimization problem analogous to that used before.

We now wish to minimize the number of peaks that belong to
the inclusion setΩ− which is by definition equivalent tomaximizing
the number of peaks which belong to the excursion set Ω+ – which
is precisely what we want.

Analogously to section 6.1 to construct our approximate bound
we calculate the further sub-setΠ− ⊂ Ω− which is defined similarly
to the relation in equation (36) such that,

Π
−(κmap) =

{
x | κmap(x) > κmap(x′), ∀ x′ ∈ N(x)

}
, (42)

i.e. the sub-set of peaks below a threshold K .
In contrast to section 6.1 we now locate the largest peak in

Π−. Suppose that this peak is found at Π−(x), we now construct a
circular aperture about x with radius rmin as defined before. Let this
circular aperture set of pixels be ΩA ⊂ Ω.

Now we define an up-scaling kernel S†
K,ΩA

∈ CN×N which
has action,

S
†

K,ΩA

(
κmap) = κmapIΩ\ΩA +

K + ∆
max

(
κmapIΩA

) (κmapIΩA ) (43)

which is very slightly different to the down-scaling operator in the
numerator of the second term. Here ∆ is an infinitesimal quantity
added such that the re-scaled peak within ΩA falls infinitesimally
above the threshold K and is therefore counted as a peak. In practice
we set∆ to be∼ 10−5 and find that adjusting this quantity by O(102)
has negligible effect on the recovered uncertainties.

With these conceptual adjustments we then follow the same
iterations discussed in section 6.1 to find the approximate Bayesian
upper bound on the peak count ηmax

α . Schematically this is given in
Figure 5.

Finally we return the tuple
(
ηmin
α , η, ηmax

α

)
which is in the form(

minimum, most likely, maximum
)
at 100(1 − α)% confidence.

6.3 Limitations of Re-scaling

Suppose the SNR threshold K is large enough such that during iter-
ations in schematic of Figure 4 the cardinality of the excursion peak
set |Π(κsgt)| → 0. In this situation even though the approximate
level-set threshold ε ′α is not saturated, the algorithm is forced to
stop as there are simply no more peaks to exclude (push down).
At this point the strategy for removing peaks becomes locally ill-
defined. Effectively this is a clipping artifact. To avoid this effect
entirely, if |Π(κsgt)| = 0 at any point within the iterations at a given

Initial surrogate: κsgt = κmap

Calculate inclusion peak set: Π−(κsgt)

Find highest peak: (x)

Define aperture
around peak: ΩA

Add peak to excursion peak
set: κsgt = S†

K,ΩA

(
κsgt

)

In credible set?: κsgt ∈ C′α ?

Repeat steps.

Calculate excursion peak set: Π(κsgt)

Max number of peaks:
ηmax
α = |Π(κsgt) |

Yes

No

Figure 5. Schematic representation of the iteration steps in finding the
Bayesian upper bound ηmax

α at confidence 100(1 − α)% of the peak count
|Π | for a given MAP reconstruction κmap.

threshold, the lower bound ηmin
α at threshold K is set to 0, i.e. we

are infinitely uncertain by construction.
Analogously, consider the case when K is small enough that

during the iterations in schematic 5 the cardinality of the inclusion
peak set |Π−(κsgt)| → 0. In this situation there are simply no more
peaks to include (pull up). Again we remove this clipping effect by
setting ηmax

α at threshold K is set to |Π(κsgt)|.
Typically these clipping effects only occur for very smallK ≤ 2

or very large K ≥ 8 thresholds, and so a wealth of information can
be extracted from the intervening scales. Low thresholds clip the
upper limit ηmax

α as the cardinality of the peak set drops to 0 quickly,
but the objective function rises comparatively slowly, as this SNR
range is statistically dominated by noise. High threshold clip the
lower limit ηmin

α simply due to the inherently low count of peaks at
high SNR thresholds.

Further to this, the decision-theory approach adopted here for
locating the maximal and minimal values of the cumulative peak
statistic is based on several assumption: removing lower peaks in-
creases the objective function by less than larger peaks; the extent
of a peak (dark matter over-density) is approximated by a circular
aperture; and removal of a peak has little to no effect on locations
in the image domain which are outside of this aperture. All three of
these assumptions are very reasonable.

Although further computational optimizations are not an im-
mediate concern since our approach is already highly computa-
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Ground Truth Buzzard 2048 × 2048 Convergence κ

Figure 6. Input 2048 × 2048 convergence map extracted from the Buzzard
N-body simulation.

tionally efficient, we acknowledge that this iterative approach for
removing peaks can easily be formulated as a bisection style prob-
lem which is likely to drastically reduce the computation time fur-
ther – particularly for low thresholds, as it mitigates the number
of trivial noise peak removal recalculations which are done in the
brute force approach presented above. In future, should computa-
tional efficiency become of primary interest this speed up will be
considered.

7 ILLUSTRATIVE EXAMPLE OF PEAK
UNCERTAINTIES

In this sectionwe apply the sparse Bayesianmass-mapping pipe-line
to high resolution (2048 × 2048) convergence maps extracted from
the Buzzard V-1.6 N-body1 simulation, upon which we construct
the cumulative peak statistic (number of peaks above a threshold as
a function of the threshold). Additionally, we recover the 99% ap-
proximate Bayesian constraints on the peak count at each threshold,
from which we infer the 68% constraint so as to aid the reader in
comparison to typical 1σ error-bars quoted in related literature.

7.1 Simulated Data-sets

The Buzzard V-1.6 N-body simulation convergence catalog
(DeRose et al. 2018; Wechsler 2018) has a quarter sky coverage
and is extracted by full ray-tracing. For wide-fields the flat sky ap-
proximation breaks down (Wallis et al. 2017) and so this quarter
sky coverage was reduced to smaller planar patches.

The complete quarter sky convergence catalog was projected
into a coarseHEALPix2(Gorski et al. 2005) pixelisation (Nside = 4).
Inside of each pixel, we further tessellated the largest square region

1 Obtained due to our affiliation with the LSST-DESC collaboration.
2 http://healpix.sourceforge.net/documentation.php

which we then project into a 2048 × 2048 grid. These gridded
convergencemaps formed our ground truth, discretized convergence
fields.

As HEALPix samples in such a way as to provide equal area
pixels, and the Buzzard simulation galaxy density is fairly uniform,
each extracted square region contained ∼ 2 × 107 galaxies leading
to ∼ 5 galaxies per pixel.

Due to a comparatively low density of samples, Poisson noise
is prevalent, and thus extracted planar regions were passed through
a multi-scale Poisson denoising algorithm. This consisted of a for-
ward Anscombe transform (in order to Gaussianise the Poisson
noise), several TV-norm (total-variation) denoising optimizations
of differing scale, followed by an inverse Anscombe transform (as
in Price et al. 2018b; Lanusse et al. 2016). A more involved treat-
ment could be applied, but this approach is sufficient to demonstrate
our peak reconstructions.

7.2 Application to Buzzard V-1.6

Weselect at randomone ofmany planar patches produced for the fol-
lowing application. Following themethodology presented in section
5.1 we generate an artificial shear catalog which we then contam-
inate with independent and identically distributed (i.i.d.) Gaussian
noise such that the SNR of mock shear measurements is 30 dB –
i.e. an idealized noise-level simply for illustrative purposes.

The MAP convergence estimator κmap is recovered from these
noisy mock shear measurements via our sparse Bayesian mass-
mapping framework. From κmap we then calculate σ2 = 〈(κmap)2〉
which we then use as a measure of the noise-level in the recon-
structed convergence field. Implementing the uncertainty quantifi-
cation technique presented in section 6 we then construct the cumu-
lative peak statistic for SNR thresholds K ∈ [2σ, 8σ) at increments
of 0.25σ with upper and lower 99% approximate Bayesian confi-
dence limits.

Figure 7 displays the recovered cumulative peak statistic in
both a linear and logarithmic scale. Typically, similar figures in the
literature will quote 1σ error-bars, and so for comparisons sake we
convert the Bayesian 99% confidence limits into the 68% confidence
limits which are comparable to 1σ constraints ( in Figure 7 we
provide both confidence limits for clarity).

Complete reconstruction of the peak statistics for 24 threshold
bins, each with approximate Bayesian upper and lower bounds, for
a 2048 × 2048 resolution convergence map, with DB11 (11-level)
wavelets, took ∼ 2 hours on a 2016 MacBook Air. This is a non-
trivial Bayesian inference in over 4×106 dimensions, and so 2 hours
is a very reasonable computation time – though further speedups
are possible, e.g. we can trivially parallelize the calculations for
each threshold leading to an increase in computational efficiency by
a factor of the number of thresholds taken (in our case 24).

Additionally, the computational bottleneck is for lower thresh-
olds as many low-intensity peaks must be removed, and thus an
adaptive scheme could be implemented as discussed previously to
avoid unnecessary sampling of these thresholds. With the afore-
mentioned speed-ups, computation of the complete peak statistic is
likely to take O(minutes) on a personal laptop.

Following this initial analysis we reduce the SNR to inves-
tigate the effect of increased noise on shear measurements to the
cumulative peak statistics within our Bayesian framework. We first
decrease the SNR to 25 dB, seen in Figure 8. Following which,
we then reduce the input SNR futher to 20 dB, the corresponding
results being plotting in Figure 9. This higher noise level of 20 dB
is still a very optimistic (somewhat unrealistic) estimate of what
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Bayesian Uncertainty in 2048 × 2048 Buzzard Peak statistic: SNR = 30 dB

Figure 7. Cumulative peak statistic for a 2048 × 2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see section 7.1) contaminated
with i.i.d. Gaussian noise such that the discretized simulated shear (see section 5.1) are of SNR 30 dB. The purple outer contours are the computed upper
and lower bounds at 99% confidence, with the inner red contours representing the 68% (∼ 1σ) bounds, included to aid comparison to similar literature which
typically quote 1σ errors. Note that the information content drops for higher σ thresholds as fewer peaks are present, leading to larger relative uncertainty as
fewer samples are recovered. Further note that this example is computed in a highly idealized low-noise setting.

Bayesian Uncertainty in 2048 × 2048 Buzzard Peak statistic: SNR = 25 dB

Figure 8. Cumulative peak statistic for a 2048 × 2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see section 7.1) contaminated
with i.i.d. Gaussian noise such that the discretized simulated shear (see section 5.1) are of SNR 25 dB. The red inner contours represent the upper and lower
bounds at 68% (∼ 1σ) confidence, with the outer purple contours representing the computed bounds at 99% confidence.
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upcoming surveys may reach; however in this paper we are primar-
ily focused on demonstrating the methodology and leave detailed
realistic simulations and forecasting for future work. A detailed de-
scription of how these noise levels in dB translate into observation
contraints (e.g. galaxy number density e.t.c.) can be found in (Price
et al. 2018a).

7.3 Analysis of Peak statistic

Figures 7, 8 and 9 clearly show that as the noise level in the dis-
cretized complex shear field increases the isocontours of the cumu-
lative peak statistic at 99% and 68% loosen noticeably. Therefore
this, unsurprisingly, indicates that cleaner measurements are likely
to give tighter constraints on cosmological parameters – though
it should be noted that increasing the number of data-points (i.e.
pixels) would have a similar effect to reducing the noise level per
pixel.

For an SNR of 20 dB (Figure 9) the first feature of note is
the shaded blue region which indicates that for high thresholds the
lower bound on the number of peaks at 99% confidence is consistent
(and clipped) at 0 – this is saying that at 99% confidence the true
number of peaks at a threshold in the blue shaded region could be
0. Note that in the blue region the Bayesian upper bound is still
entirely valid, it is only the Bayesian lower bound which within our
novel approach is no longer well defined.

Clearly the upper and lower bounds on the peak count statistic
is dependent on the threshold one is considering and the total area
over which observations are made – for wide-field surveys, more
data is collectedwhich is likely to reduce the variance of the statistic.
In a general sense we summarize the mean (over all considered
thresholds K) order of magnitude percentage spread on the peak
statistic for the considered SNR thresholds below.

At input SNR of 20 dB, for thresholds ∈ [2σ, 6σ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(48%) at 99% confidence and of O(13%) at 68%.

At input SNR of 25 dB, for thresholds ∈ [2σ, 8σ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(25%) at 99% confidence and of O(7%) at 68%.

At input SNR of 30 dB, for thresholds ∈ [2σ, 8σ) on a single
2048 × 2048 planar patch the upper and lower bounds exist and are
of O(15%) at 99% confidence and of O(3%) at 68%.

These illustrative examples imply that for the Bayesian peak
statistic to tightly constrain the cumulative peak statistic compari-
tively larger and or cleaner data-sets may be required – or, of course,
a more informative prior (though this must be well justified). How-
ever, to reduce the shot noise introduced via intrinsic ellipticities
more galaxies must be observed within a given pixel.

One way to increase this is to simply increase the observed
number density of galaxy observations, however to do so one must
observe galaxies at lower magnitude (for a fixed redshift), which
inherently leads tomore bright distant galaxies being detectedwhich
results in galaxy blending. Hence, increasing the number density
significantly above ∼ 30 gals/arcmin2 is typically quite difficult in
practice.

Alternatively, the pixelisation can be adjusted to ensure that the
mean galaxy count per pixel is above a given threshold – though for
weak lensing the majority of non-Gaussian information is stored at
fine-scales, which require small pixels, and so using larger pixels to
reduce the noise level is sub-optimal for information extraction.

Within the definition of the up and down-scaling kernels (see
sections 6.1 and 6.2) we define a circular aperture around a selected
peak which we define to be the extent of the peak. These regions are

roughly equivalent to super-pixel regions as described in Cai et al.
(2017a). In previous work it was shown (Price et al. 2018b) that
for local credible intervals (c.f. pixel level error bars) the typical
error in the approximate HPD credible region is of O(12.5%), and
is conservative – note that the quoted 25% mean RMSE error is
split approximately equally between the upper and lower bounds,
therefore this roughly corresponds to an mean error of 12.5% on
both. Therefore the bounds drawn on the peak static here are likely
to be ∼ 12.5% less tight than the true Bayesian bounds – which
could be formed if one were to reconstruct the 4× 106 dimensional
posterior viaMCMC.

In this paper (particularly the second half) we are primarily
concerned with demonstrating how one may recover principled un-
certainties on aggregate statistics of the convergence map – such
as, but not limited to, the peak statistics. Hence we do not provide
detailed analysis of how these Bayesian uncertainties may effect
cosmological constraints derived from such statistics – this is saved
for future work. However it is worth mentioning that one could ei-
ther; leverage these uncertainties to define the data covariance in a
Bayesian manner (as opposed to MC which is fast but may not nec-
essarily be fully principled, orMCMCwhich isO(106) times slower
than our MAP approach) before then running a standard likelihood
analysis ; or perform a grid search in parameter space using these
uncertainties again as the data covariance. Correctly accounting the
uncertainties introduced during mass-mapping has been shown to
be an important consideration for the future prospects of statistics
such as this (Lin & Kilbinger 2018).

8 CONCLUSIONS

Using the sparse Bayesian mass-mapping framework previously de-
veloped (Price et al. 2018a,b) we have presented two novel Bayesian
uncertainty quantification techniques which can be performed di-
rectly on weak lensing convergence maps.

The first of these techniques recovers the uncertainty in the
location of a feature of interest within a reconstructed convergence
map – e.g. a large peak – at some well defined confidence. We call
this locational uncertainty the ‘Bayesian location’.

Additionally, for computational efficiency we develop a novel
sampling scheme of the position isocontour of a given feature which
we call ‘N-splitting circular bisection’. We find that sampling the
position isocontour in this way could be many orders of magnitude
faster in high dimensions than typical inverse nesting approaches.

To evaluate this technique, we perform sparse Bayesian recon-
structions of 1024×1024 convergence maps extracted from Bolshoi
N-body simulation datasets upon which we compute the Bayesian
location of the four largest sub-halos for a range of noise-levels.

The second of theses techniques quantifies the uncertainty in
the cumulative peak statistic of a recovered convergence map. With
this technique we can for the first time provide principled Bayesian
lower and upper bounds on the number of observed peaks at a given
signal to noise threshold, for a single observation, at well defined
confidence.

We extract 2048 × 2048 convergence maps from the Buzzard
V-1.6 N-body simulation, upon which we calculate the cumulative
peak statistic with Bayesian upper and lower bounds at 99% for a
range of input noise-levels. We also provide the 68% confidence
bounds which we infer from the 99% bounds to aid comparison to
typical bootstrapping (MC) approaches.

For upcoming wide-field surveys convergence reconstruction
will likely be done natively on the sphere (a single collective sam-
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Bayesian Uncertainty in 2048 × 2048 Buzzard Peak statistic: SNR = 20 dB

Figure 9. Cumulative peak statistic for a 2048×2048 planar convergence map extracted from the Buzzard V-1.6 simulation (see section 7.1) contaminated with
i.i.d. Gaussian noise such that the discretized simulated shear (see section 5.1) are of SNR 20 dB. The red inner contours represent the upper and lower bounds
at 68% (∼ 1σ) confidence, with the outer purple contours representing the computed bounds at 99% confidence. The shaded blue region indicates threshold
values for which at 99% confidence the data cannot rule out the possibility that no peaks exist above this threshold (note that in these regions the lower bound
is technically 0 and there still exists a well defined upper bound which is given). Comparing this plot to Figure 7 we see that as the noise level increases the
68% and 99% confidence isocontours expand (as one would expect) and that in all cases the MAP peak statistics do not disagree at 99% confidence.

ple) to avoid projection effects, making bootstrapping approaches
difficult and at worst infeasible due to the fact that they are only
asymptotically exact.

Bayesian approaches require only a single set of observations
to make exact inferences, and so extend trivially to the more com-
plex spherical setting.Moreover the novel uncertainty quantification
techniques presented in this paper and those presented previously
in Price et al. (2018a,b); Cai et al. (2017a) can be rapidly computed
and support algorithmic structure which can be highly parallelized,
making them the ideal tools for principled analysis of convergence
maps.
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APPENDIX A: N-SPLITTING CIRCULAR BISECTION
DETAILS

In this appendix we consider the N-splitting Circular Bisec-
tion (N-splitting) algorithm for iteratively sampling the Bayesian
100(1 − α)% confidence isocontour of the position of a feature in
a reconstructed convergence map – or the Bayesian Location at
100(1 − α)% confidence.

As in the text, we begin by defining the number of directions
to sample nT from which we then form the angular increment ∆Θ =
2π/nT . Starting from a vector n0 oriented along the positive y-axis
define the (i + 1)th pointing to be the vector,

ni+1 = R∆Θni, where i ∈ (1, nT ), (A1)

and where R∆Θ is rotation by angle ∆Θ clockwise on 2D Euclidean
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space – a irreducible representation of which is the standard clock-
wise rotation matrix,

Rθ =

[
cos(∆Θ) sin(∆Θ)
− sin(∆Θ) cos(∆Θ)

]
. (A2)

Now we know the direction along which we wish to sample we
construct the (i + 1)th bisection problem which is

di+1
α = min

d

{
d ∈ Γi+1 | f (κsgt

d
) + g(κ

sgt
d
) > ε ′α

}
, (A3)

where κsgt
d

is a surrogate convergencemapwith the feature of interest
inserted into perturbed location dni+1 and Γi+1 is sub-set of the real
domainwhich lie on the directional line centered at the original peak
location with unit vector ni+1 i.e.

Γi+1 =
{
ani+1 | a ∈ R+

}
. (A4)

A pictoral representation of how the problem is set up is provided
in Figure 10.

For bisection we must first make an initial guess d0 which we
define to be square root of the number of pixels contained within the
mask, as this is a typical measure of the length of a masked region.
This choice is particularly logical as, if a feature of interest can be
removed entirely from its masked location without saturating the
level-set threshold ε ′α then it by definition must be inconclusive, i.e.
the data is insufficient evidence to say that the peak is physical.

To optimize the convergence of this algorithm further (for
high sampling rates, low angular increments ∆Θ ≤ π/4) we also
propagate information between pointing’s. For bisection problems
associated with pointing i > 1 the initial guess is now set to be twice
the previous optimal value d′,iα . This increases the computational
efficiency by ∼ 20%, in most cases.

Propagating information in this way relies on the assumption
that the isocontour we are searching for is somewhat smooth and
continuous, which is the case for most convergence reconstructions.
If there is uncertainty as to the smoothness of the isocontour it is
recommended that information is not propagated and the number of
pointings is increased to correctly map the isocontour structure.

A1 Convergence Properties

Standard inverse nesting algorithms iteratively sample the entire
sub-space of the reconstructed domain bounded by the isocontour
at 100(1 − α)% confidence, making them inefficient when one is
only interested in the boundary.

Consider the case where the isocontour of a reconstructed
512 × 512 convergence map is a circular region of radius R. Here
inverse nesting will have to sample a square region out to R, which
is to say the total number of samples Tnest will at least be R2 − 1,
where 1 is removed for the central location.

For our N-splitting algorithm we define nT pointings, and
assume that the isocontour is relatively smooth. As the first bisection
problem n0 makes a large first guess it typically takes 4−5 iterations
to converge with a single pixel accuracy. The subsequent nT − 1
bisection problems converge within 3 − 4 iterations. Therefore the
total number of calculations TN-split is conservatively,

TN-split = 5 + 4(nT − 1), (A5)

which is essentially independent from R. There is in fact a small
inverse dependence which is incorporated in the number of itera-
tions needed for convergence, though this dependence is found to
be small.

Comparing the computational efficiency of the two algorithms
E512 where,

E512 ≡
TN-split
Tnest

=
5 + 4(nT − 1)

R2 . (A6)

Typically, we find an angular separation between pointings of π/4
(i.e. 16 pointings) is sufficient to accurately recover the isocontour.
Additionally, the circular radius is typically 15 − 30 pixels which
indicates that,
5 + 4 × 15

302 = 0.072 ≤ E512 ≤
5 + 4 × 15

152 = 0.289, (A7)

i.e. N-splitting circular bisection on 512 × 512 dimensional recon-
structions is ∼ 4 − 14 times faster than inverse nesting.

However, in the future we will be interested in recovering
high dimensional 2048 × 2048 convergence maps. In this setting
the number of iterations for N-splitting to converge is assumed to
change by 1-2, and the number of pointings to faithfully recover
the isocontour will be increase by a factor of ∼ 2. Additionally, the
radius of the circle R increases by a factor of 4. Thus,

5 + 4 × 31
1202 = 0.009 ≤ E2048 ≤

5 + 4 × 31
602 = 0.0360, (A8)

i.e. the conservative increase in computational efficiency of N-
splitting over inverse nesting for 2048 × 2048 becomes a factor
of ≈ 30 − 112.

Further optimizations are possible, such as trivially paralleliz-
ing the bisection problems of each pointing. Doing so removes the
scaling with the number of pointings, but now information about
starting positions cannot be propagated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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