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ABSTRACT

Convergence maps of the integrated matter distribution are a key science result from weak
gravitational lensing surveys. To date, recovering convergence maps has been performed us-
ing a planar approximation of the celestial sphere. However, with the increasing area of sky
covered by dark energy experiments, such as Euclid, the Vera Rubin Observatory’s Legacy
Survey of Space and Time (LSST), and the Nancy Grace Roman Space Telescope, this as-
sumption will no longer be valid. We recover convergence fields on the celestial sphere using
an extension of the Kaiser-Squires estimator to the spherical setting. Through simulations we
study the error introduced by planar approximations. Moreover, we examine how best to re-
cover convergence maps in the planar setting, considering a variety of different projections
and defining the local rotations that are required when projecting spin fields such as cosmic
shear. For the sky coverages typical of future surveys, errors introduced by projection effects
can be of order tens of percent, exceeding 50% in some cases. The stereographic projection,
which is conformal and so preserves local angles, is the most effective planar projection. In
any case, these errors can be avoided entirely by recovering convergence fields directly on the
celestial sphere. We apply the spherical Kaiser-Squires mass-mapping method presented to
the public Dark Energy Survey science verification data to recover convergence maps directly
on the celestial sphere.
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1 INTRODUCTION tion function (e.g. Kilbinger 2015) or power spectrum (e.g. Alsing
et al. 2016) from observational data and compare to an expectation
from theory. However, such analyses are sensitive only to the Gaus-
sian component of the underlying field. To capture the entire infor-
mation content of the shear field higher order statistics (e.g. Munshi
et al. 2011) or phase information (e.g. Coles & Chiang 2000) must
be considered. Recovering mass-maps provides the basis for per-
forming a wide variety of complimentary higher order statistical
analyses that probe the non-Gaussian structure of the dark mat-
ter distribution. For example, properties of dark matter can then
be studied using analyses based on peak and void statistics (e.g.
Lin & Kilbinger 2015a; Lin & Kilbinger 2015b; Lin et al. 2016;
Peel et al. 2016), Minkowski functions (e.g. Munshi et al. 2012;
Kratochvil et al. 2012; Petri et al. 2013), or wavelets (cf. Hobson
et al. 1998; Aghanim et al. 2003; Vielva et al. 2004, McEwen et al.
2005), to name just a few.

Weak gravitational lensing distorts the shape and size of images of
distant galaxies due to the gravitational influence of matter pertur-
bations along the line of sight (see, e.g., Bartelmann & Schneider
2001; Schneider 2005; Munshi et al. 2008; Heavens 2009). The
amplitude of the distortion — a change in the ellipticity (third flat-
tening or third eccentricity) and apparent size of an object — con-
tains information on the integrated Newtonian potential and can be
used to estimate the integrated mass distribution. The lensing effect
is dependent on the total mass distribution and therefore, because
massive structures are dominated by dark matter, the mass distri-
butions recovered by weak lensing are colloquially referred to as
mass-maps of the dark matter of the Universe. The creation of such
maps constitutes one of the main empirical observations that un-
derpins the dark matter paradigm (Clowe et al. 2006).

The most common approach to extract cosmological informa-

tion from weak lensing surveys is to compute the two-point correla- Further to this, mass-mapping provides an efficient way to

cross-correlate weak lensing data with other cosmological data (e.g.
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with observations of the cosmic microwave background; Liu & Hill
2015). More directly, dark matter maps are of interest for galaxy
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evolution studies: it is known from simulations that the dark matter
structure should exhibit a filamentary or “cosmic web” structure in-
ference of which can then provide dark matter environmental infor-
mation that can then be used in galaxy evolution studies (Brouwer
et al. 2016). Finally, mass-mapping is a continuation of cartogra-
phy onto the cosmic scale — the making of such maps is therefore
laudable in its own right.

Recovering mass-maps requires solving an inverse problem
to recover the underlying mass distribution from the observable
cosmic shear. There are a number of approaches to estimating
mass-maps from weak lensing data. The method mostly commonly
used on large scales is colloquially known as “Kaiser-Squires”
and is named after the paper in which the method was first de-
scribed (Kaiser & Squires 1993). This approach is based on a di-
rect Fourier inversion of the equations relating the observed shear
field to the convergence field, which is a scaled version of the in-
tegrated mass distribution. Although it is widely known that such
an approach, based on a direct Fourier inversion, is not robust to
noise, the method remains in widespread use today (in practice,
the resultant mass-map is smoothed to mitigate noise). Indeed, the
Kaiser-Squires method has been used to recover mass-maps from
data from by a number of recent weak lensing surveys, includ-
ing data from the Cosmic Evolution Survey (COSMOS; Scoville
et al. 2007), the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS; Heymans et al. 2012) and the Dark Energy Survey
(DES; Flaugher et al. 2015) Science Verification (SV) data (re-
spectively, Massey et al. 2007; Van Waerbeke et al. 2013; Chang
et al. 2015). Alternative mass-mapping techniques to recover the
convergence field have also been developed, however these are not
typically in widespread use and in many cased are focused on the
galaxy cluster scale. On the galaxy cluster scale parametric models
(e.g. Jullo et al. 2007) and non-parametric methods (e.g. Massey
etal. 2015; Lanusse et al. 2016; Price et al. 2021) have been consid-
ered. Szepietowski et al. (2014) have investigated the use of phase
information from galaxy number counts to improve the reconstruc-
tion.

While the methods discussed above focus on recovering the
two-dimensional convergence field, which represents the integrated
mass distribution along the line of sight, it is also possible to re-
cover the full three-dimensional gravitational potential. Such an
approach involves an additional inverse problem and thus an ad-
ditional level of complexity. This has been considered by a number
of works (Bacon & Taylor 2003; Taylor et al. 2004; Massey et al.
2004; Simon et al. 2009; VanderPlas et al. 2011; Leonard et al.
2012; Simon 2013; Leonard et al. 2014)

In general mass-mapping techniques for weak lensing con-
sider a small field-of-view of the celestial sphere, which is approxi-
mated by a tangent plane. The mass-mapping formalism is then de-
veloped in a planar setting, where a planar two-dimensional Fourier
transform is adopted. Such an assumption will not be appropriate
for forthcoming surveys, which will observe significant fractions
of the celestial sphere, such as the Kilo Degree Survey (KiDS'; de
Jong et al. 2013), DES? (Flaugher et al. 2015), Euclid® (Laureijs
et al. 2011), LSST* (LSST Science Collaboration et al. 2009), and
the Nancy Grace Roman Space Telescope® (Spergel et al. 2015).

http://kids.strw.leidenuniv.nl
http://www.darkenergysurvey.org
http://euclid-ec.org
https://www.lsst.org
https://roman.gsfc.nasa.gov

(a) DES SV (b) DES full

(¢) Euclid (front and rear views)

Figure 1. Approximate coverage area of different weak lensing surveys il-
lustrated on the celestial sphere. In particular, the coverage area correspond-
ing to DES SV observations, DES full observations and Euclid observations
are shown. It is apparent that existing planar mass-mapping techniques will
not be appropriate for the large coverage areas of forthcoming surveys. We
extend the Kaiser-Squires technique for mass-mapping to the spherical set-
ting in this article, in order to recover mass-maps on the celestial sphere.

Fig. 1 illustrates the approximate sky coverage for DES SV data,
DES full data, and Euclid observations, from which it is apparent
that planar approximations will become increasingly inaccurate as
sky coverage areas grow over time. Existing mass-mapping tech-
niques that are based on planar approximations therefore cannot be
directly applied to forthcoming observations, without introducing
significant errors into subsequently inferred statistics (see e.g. Val-
lis et al. 2018, for an analysis of projection effects on peak statis-
tics and minkowski functionals). This work aims to highlight the
necessity of spherical methods, by demonstrating the inevitability
of errors introduced by planar projections, and does not attempt to
quantify the effect of such projection errors on global statistics.

In this article we consider the Kaiser-Squires approach for re-
covering mass-maps defined on the full celestial sphere. While the
harmonic space expressions in the spherical setting relating the ob-
served shear field to the convergence field, via the lensing potential,
have been presented already (e.g. Taylor 2001; Castro et al. 2005;
Pichon et al. 2010), to the best of our knowledge naive Fourier in-
version on the celesital sphere (i.e. spherical Kaiser-Squires) has
not been considered previously. We compare the spherical Kaiser-
Squires formalism with the planar case, considering several dif-
ferent spherical projections.® Spherical mass-mapping techniques
have also been considered by Pichon et al. (2010), where a max-

6 An alternative to recovering mass-maps directly on the sphere is to tile
the celestial sphere and perform mass-mapping on planar patches, as con-
sidered for the lensing of the cosmic microwave background by Plaszczyn-
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imum a posteriori (MAP) estimator was presented. In addition,
the authors consider using a Wiener filter to denoise the shear in
advance of attempting to recover convergence maps. However, as
far as we are aware these techniques have not been applied to ob-
servational data. The spherical Kaiser-Squires technique that we
present here is a first step towards more sophisticated spherical
mass-mapping techniques that will be the focus of future work.
In practice only partial-fields defined on the celestial sphere are
observed. The Kaiser-Squires estimator suffers due to leakage in-
duced by the masking of the observed region (it is well-known that
the decomposition of a spin field into scalar and pseudo-scalar com-
ponents, and consequently mass-mapping, is not unique on a man-
ifold with boundary; Bunn et al. 2003). Pure mode estimators on
the celestial sphere can be developed to remove this leakage (e.g.
Leistedt et al. 2017). Furthermore, the impact of noise can be miti-
gated by the use of regularisation methods adapted to the spherical
setting (e.g. Wallis et al. 2016).

The remainder of this article is structured as follows. In Sec-
tion 2 we briefly review the mathematical background of spin fields
on the sphere and weak gravitational lensing. Mass-mapping on the
celestial sphere is presented in Section 3. In Section 4 we use sim-
ulations to compare the spherical case to a variety of planar set-
tings for various spherical projections. In Section 5 we present an
application of the spherical Kaiser-Squires technique to DES SV
data in order to recover spherical mass-maps. Concluding remarks
are made in Section 6. Throughout we adopt the cubehelix (Green
2011) colour scheme.

2 BACKGROUND

Weak gravitational lensing gives rise to scalar and spin fields de-
fined on the celestial sphere. For example, the observed shear field
induced by weak gravitational lensing is a spin +2 field. We there-
fore review scalar and spin fields on the sphere and their harmonic
representation, before reviewing the mathematical details of rota-
tion and the Dirac delta function on the sphere, which we make use
of subsequently when considering mass-mapping on the celestial
sphere. Weak gravitational lensing in the three-dimensional spher-
ical setting is then reviewed concisely.

2.1 Spin fields on the sphere

Square integrable spin fields on the sphere ,f, with integer spin
s € Z, are defined by their behaviour under local rotations. By
definition, a spin field transforms as

f (@) =e™ f(w), (1

under a local rotation by y € [0, 27), where the prime denotes the
rotated field (Newman & Penrose 1966; Goldberg et al. 1967; Zal-
darriaga & Seljak 1997; Kamionkowski et al. 1997).” It is important
to note that the rotation considered here is not a global rotation on
the sphere but rather a rotation by y in the tangent plane centred on
the spherical coordinates w = (6, ¢) € S?, with co-latitude 6 € [0, ]

ski et al. (2012). An extension of this work to galaxy lensing, when shear is
observed, would be of great interest.

7 The sign convention adopted for the argument of the complex exponential
differs to the original definition (Newman & Penrose 1966) but is identical
to the convention used typically in astrophysics (Zaldarriaga & Seljak 1997;
Kamionkowski et al. 1997).
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and longitude ¢ € [0, 27). The case s = 0 reduces to the standard
scalar setting.

The canonical basis for scalar fields defined on the sphere are
given by the (scalar) spherical harmonics Y;,,. Basis functions for
spin fields can be defined by applying spin lowering and raising op-
erators to the scalar spherical harmonics. Spin raising and lowering
operators, 8 and 8 respectively, increment and decrement the spin
order of a spin-s field by unity and are defined by

0 i 0
=-sinf| -+ ——|sin"0 2
sin (60 + sin66<p) sin 2)
and
- 0 i 0
0=-sin'f|—- - ——]sin'0 3
- (ae sin@&p) S )

respectively (Newman & Penrose 1966; Goldberg et al. 1967; Zal-
darriaga & Seljak 1997; Kamionkowski et al. 1997). When applied
to spherical harmonics the spin raising and lowering operators take
the form:

1/2
8 Yon(@) = [(L = )€+ s+ D] g1 Vi) )
and
- 1/2
8, Yim(@) = [+ 9 =5+ D] " Y@, ()

respectively (see, e.g., Zaldarriaga & Seljak 1997). The spin-s
spherical harmonics can thus be expressed in terms of the scalar
(spin-zero) harmonics through the spin raising and lowering opera-
tors by

=9
i) = (“s),] 5 Yon(w) ©)
for 0 < s < ¢, and by
— s (€+s)‘ 1/2_—.r
Yinw) = D5 V@), )

for —¢ < s < 0, where Y;,, denote the scalar (spin-zero) spherical
harmonics.

Due to the orthogonality and completeness of the spin spher-
ical harmonics, a spin field on the sphere can be decomposed into
its harmonic representation by

0 l
@ =" fom Yon(w) . ®)

=0 m=-{

The harmonic coefficients of ;f, denoted by | f, are given by the
usual projection onto the basis functions:

xﬁm = <xf’ SYFm> = f dQ(w) Yf(w) vY;m(w) ) (9)
s2

where the rotation invariant measure on the sphere is given by
dQ(w) = sin@#dfdep, the inner product on the sphere is denoted
by (-, -) and -* denotes complex conjugation. In practice we con-
sider harmonic coefficients up to a maximum degree £y, i.e. sig-
nals on the sphere band-limited at £y, With sf,, = 0, V€ > fiax,
in which case summations over ¢ can be truncated at {,,. For no-
tational brevity, we sometimes do not explicitly show the limits of
summation where these can be inferred easily.

2.2 Rotation on the sphere

We subsequently consider the rotation of fields on the sphere, de-
fined by application of the rotation operator R, where the rotation
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is parameterised by the Euler angles p = (a,8,y) € SO(3). We
adopt the zyz Euler convention corresponding to the rotation of a
physical body in a fixed coordinate system about the z, y and z axes
by vy, B and a, respectively. Often we consider rotations with y = 0
and adopt the shorthand notation R,, = R,0,0).-

The spin spherical harmonic functions are rotated by (e.g.
McEwen et al. 2015)

4
Ry Yen)@) = D" Dh(p) Yen(w) , (10)

n=—L{

where D!, are the Wigner D-functions (Varshalovich et al. 1989),
which follows from the additive property of the Wigner D-
functions (Marinucci & Peccati 2011).

The Wigner D-functions may also be related to the spin spher-

ical harmonics by (Goldberg et al. 1967)

. 20+ 1
e Yim(By) = (1) | = Dl (@ By). (D)

2.3 Dirac delta on the sphere

We subsequently make use of the Dirac delta function on the sphere
6P, defined by

D - L 1Dy _ g\ sID¢,, 7
R 6")(w) = Sing §PO—-0)Y5"(p—¢") (12)
o 4
= Z Z Y;, (@) You(w) (13)
=0 m=—t

where 6'°(-) denotes the standard one-dimensional (Euclidean)
Dirac delta. The spherical harmonic coefficients of the Dirac delta
defined on the sphere are given by

A 20+ 1
Stm = Yiu(®) = \| == Ono (14)

2.4 Weak gravitational lensing

We now turn our attention to weak gravitational lensing, concisely
reviewing the related mathematical background, which is covered
in more depth in several review articles (e.g. Bartelmann & Schnei-
der 2001; Schneider 2005; Munshi et al. 2008; Heavens 2009).

The weak gravitational lensing effect is typically expressed in
terms of the lensing potential ¢, which depends on the integrated
deflection angle along the line of sight, sourced by the local New-
tonian potential ®:

— E " / fk(r - r’) J
)= fo Y et T )

where c is the speed of light in a vacuum, r and ' are comoving
distances, and w = (6, ¢) denote spherical coordinates, as defined
previously. The angular diameter distance factor reads

sin(r), ifK=1
fxk(r)y =1 r, if K=0 N (16)
sinh(r), if K=-1

for cosmologies with positive (K = 1), flat (K = 0) and nega-
tive (K = —1) global curvatures. This expression assumes the Born
approximation. The gravitational potential is related to the density
field by Poisson’s equation,

30MH;

2 —
VO(r,w) = a0

o(r,w), a7

where Qy is the current average matter density of the Universe as
a fraction of the critical density, H, is the current expansion rate
of the Universe, a(r) is the scale factor, and ¢ is the fractional mat-
ter over-density. Equation (15) and Equation (17) relate the matter
perturbations ¢ to the lensing potential ¢.

The lensing potential describes how light from a background
source (e.g. galaxy) at a position (r, w) is distorted by the lensing
effect. This deflection, to first order, affects the images of galaxies
in two ways. Firstly, images of background sources are magnified
by the convergence «, which is related to the lensing potential by

ok(r,w) = 3—1(65 + 35) 00(r,w), (18)

through the spin raising and lowering operators introduced in Equa-
tion (2) and Equation (3). The convergence is not measured directly
in weak lensing experiments because the intrinsic magnitude of
galaxy sizes is unknown. Here and subsequently we denote the spin
of each field explicit with a proceeding subscript, i.e. ;¢ = ¢ and
ok = K are both spin-zero (scalar) fields. Secondly, images of back-
ground sources are sheared by ,y, which is related to the lensing
potential by

2Y(rw) = 388 p(r,w) (19)

where we make it explicit that the shear is a spin-2 field. Upon
averaging the shapes of many galaxies one would expect the intrin-
sic shear to average to zero (i.e. there is no preferred orientation).
Hence, one can measure shear by averaging the shapes of many
galaxies. In the remainder of this article we do not consider “to-
mography” (the separation of a source galaxy sample into popu-
lations labelled by redshift or time) and so drop the radial depen-
dence shown in the above equations (for notational brevity, hence-
forth we typically do not show the angular dependence either). For
further information see the discussions in Kitching et al. (2016) on
spherical-radial and spherical-Bessel representations of the shear
field.

In general the potential ;¢ can be decomposed into its parity
even and parity odd components, namely the E-mode and B-mode
components respectively:

0 = 00" +i0°. (20)

However, the shear induced by gravitational lensing produces an
E-mode field only since density (scalar) perturbations cannot in-
duce a parity odd B-mode component. In the absence of systematic
effects, we have 0¢E = ¢ and 0@® = 0. The convergence can also
be decomposed into a parity even E-mode component and a parity
odd B-mode component:

oK = okE +1kB 1)

where the B-mode component is again zero in the absence of sys-
tematics effects. While the E-mode convergence field is of most in-
terest in the standard cosmological model, the B-mode convergence
field is important for testing for residual systematics. Moreover,
B-modes are also useful in studying exotic cosmological models
that exhibit parity violation (e.g. Kaufman et al. 2016). Theoreti-
cal models of intrinsic alignments of galaxies can create B-modes
(Hirata & Seljak 2004; Crittenden et al. 2001, 2002), although the
measured level is uncertain (Kirk et al. 2015).

The E-mode convergence field represents a scaled version of
the integrated mass distribution and thus mapping the intervening
matter distribution is often performed by estimating the conver-
gence field. Since the shear is related to the convergence via the
lensing potential through Equation (18) and Equation (19), conver-
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gence maps can be recovered from the observable shear field, which
amounts to solving an inverse problem.

3 MASS-MAPPING ON THE CELESTIAL SPHERE

In this section we describe the process of estimating a convergence
field from an observed shear field in the spherical setting. Recover-
ing mass-maps by estimating the convergence field involves solv-
ing a spherical inverse problem, as discussed above. First, we de-
fine the forward problem in spherical harmonic space and explicitly
define the spherical generalisation of the Kaiser-Squires estimator
for solving this inverse problem. Second, we present an equivalent
real space representation of the spherical mass-mapping inverse
problem, where it can be seen as a deconvolution problem with
a spin kernel. Third, we consider the planar approximation of the
full spherical setting, recovering the standard planar Kaiser-Squires
estimator. Finally, we consider iterative refinements to convergence
estimators that account for the fact that it is the reduced shear that
is observed, rather than the true underlying shear. A variety of such
spherical mass-mapping techniques have recently been applied and
contrasted on DES year 3 observational catalogues (see e.g. Jeffrey
et al. 2021).

3.1 Harmonic representation

Using the harmonic representations of the spin raising and lowering
operators it is straightforward to show that the harmonic represen-
tations of the convergence and cosmic shear of Equation (18) and
Equation (19) read, respectively,

()k[m = _%€(€+ 1) ()(isfm (22)

1 fesr
Vm =3 -2 oPem » (23)

where Oégm and kg, are the scalar spherical harmonic coefficients
of the lensing potential and the converge field respectively, and , ¥,
are the spin-2 spherical harmonic coefficients of the cosmic shear
ﬁeld, ie. 0(%[,,, = <0¢, Y[,n), Okfm = <0K, Yfm>, and 2’9(/,,, = <2’}/, 2Yf,,,>.
It follows that the spin-2 harmonic coefficients of the shear are re-
lated to the scalar harmonic coefficients of the convergence by

2Vem = DeoRom 5 (24)

where we define the kernel

o /(uz)z
Df_f(ul) -2 25

Recovering the convergence field from the observable shear
field therefore amounts to solving the inverse problem defined by
Equation (24). The simplest method to invert this problem is to
consider a direct inversion in harmonic space. In the planar set-
ting, such an approach gives rise to the Kaiser-Squires estimator
(Kaiser & Squires 1993). An analogous approach in the full-sky
setting leads to the spherical generalisation of the Kaiser-Squires
estimator, defined by

and

SKS -1 s
Rew” = i 2w » (26)
where $3° denotes the estimate of the shear harmonic coefficients
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computed from observational data and 0/??,‘:3 is the spherical Kaiser-
Squires (SKS) estimator of the harmonic coefficients of the conver-
gence field. A spherical convergence map ,«°*5(w) can then be re-
covered by an inverse scalar spherical harmonic transform, follow-
ing Equation (8), from which the E- and B-mode components can
be determined by considering the real and complex components,
following Equation (21).

It is well-known that a direct Fourier inversion approach to
solving inverse problems, on which the Kaiser-Squires estimator is
based, is susceptible to noise. On large scales one typically draws a
central limit theory argument for noise Gaussianity, in which case
a mutlivariate Gaussian noise model is adopted. In such settings
the Kaiser-Squires approach is straightforwardly given by the max-
imum likelihood estimator, which implicitly assumes a uninforma-
tive flat prior. This, combined with the fact that the Kaiser-Squires
inversion kernel defined by Equation (24) has a flat frequency re-
sponse, indicates that noise present in the observational dataset
propagates unchecked into the convergence estimate.

Typically one may wish to adopt more informative priors,
within a Bayesian setting, to regularise this noise contribution (see
e.g. Pichon et al. 2010; Price et al. 2021, where Gaussian and
wavelet sparsity priors are adopted respectively). However, for the
Kaiser-Squires approach the recovered convergence field is, some-
what naively, smoothed with a Gaussian kernel to mitigate the im-
pact of noise. In this paper we adopt this post-processing Gaussian
smoothing approach and leave more advanced alternatives to future
research.

3.2 Real space representation

It is insightful to express the forward problem connecting the ob-
servable cosmic shear and the convergence field in real space. The
differential form of this problem is readily apparent from Equa-
tion (18) and Equation (19), from which it follows that

,y =2806(58+80) " k. 27

An integral form can also be recovered, where the real space spin-2
shear field is related to the scalar convergence by a type of spherical
convolution with a spin-2 kernel ,K:

W) = f 149(0) Ry YKN(@) k(). 28)
52

where the rotation operator R, is defined in Section 2.2. From
comparison with Equation (27) is it apparent that the kernel is given
by

;K (w) =285 (55 +86) ' 6°(w), (29)

where 6P(w) is the Dirac delta function on the sphere defined in
Section 2.3. Noting the spherical harmonic representation of the
Dirac delta function of Equation (14) and the harmonic action of
the spin raising and lowering operators of Equation (4) and Equa-
tion (5), it is straightforward to show that the harmonic coefficients
of the kernel read

-1 €+2) [26+1
K,, = Omo - 30
R = gern\Ne-20 N ar (30)
An explicit expression for the kernel in real space can then be re-

covered from its harmonic representation, yielding

-1 20+1
—(l+1) 4n

L, K(w) = Pi(cos @), 31
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where P?(~) is the associated Legendre function of order two. The
equivalence of the harmonic and real space expressions of the for-
ward problem of Equation (24) and Equation (28), respectively,
can also be seen by the explicit harmonic representation of Equa-
tion (28), as shown in Appendix A.

3.3 Planar approximation

We now consider the planar approximation of the spherical mass-
mapping estimator presented in Section 3.1, recovering the stan-
dard planar Kaiser-Squires estimator (Kaiser & Squires 1993).
Firstly, we note the planar approximations of the spin raising and
lowering operators given by

0~ —(d, +1d,) (32)
and
3~ —(0, — idy) , 33)

respectively (see, e.g., Bunn et al. 2003). In the planar approxi-
mation the convergence and cosmic shear are then related to the
lensing potential by

ok = $(88 +30) o¢ ~ 1(8; + 8;) o6 (34)
and
Y = %66 o = %(5@ - iai) + i(’)xay 0d (35)

respectively. It is common to decompose the shear component into
its real and imaginary component by
Y=Yty (36)
The planar Fourier representations of Equation (34) and Equa-
tion (35) are then given by
oR(ky k) = =3(k2 + K7) o Pk, ky) 37
and
F1(ke ky) = =3 (k2 = k7) 08" (ks ky) + Ky o5 (ks ky)
?Z(km kv) = _kxky oéﬁE(kxa k)) - %(kf - k%) oé\bB(kx, k}) 5
respectively, where * denotes the Fourier transform and k, and k,
denote the Fourier coordinates, and we make use of the Fourier
derivative property 0, f = ik, f. It follows that under the planar ap-

proximation the shear can be related to the convergence in Fourier
space by

(3%

zj\/(kx, ky) = Skx,kv Ok(kxa kv) B (39)
where
12— K2 + 2k k,

40
K+ “0)

Skmky =

Analogous to the spherical setting considered in Section 3.1,

in the planar setting recovering the convergence field from the shear

amounts to solving the inverse problem defined by Equation (39).

Again, the simplest method to invert this problem is to perform a

direct inversion in harmonic space, which gives rises to the standard
planar Kaiser-Squires (KS) estimator (Kaiser & Squires 1993) of

RS (ks ky) = Ely 7 ks k) =y 7™M kisky),  (41)

where we have taken advantage of the fact that 8;{1 &, = S, since

|Ekk,| = 1. Recall that ,5*(k,, k) is the estimate of the'planar
Fourier coefficients of the shear computed from observational data.

Expanding the real and imaginary components, one recovers the
familiar KS estimators for the E- and B-mode component of the
convergence given by

(k3 = k) 275 ks ) + 2k 2957 (K, Ky )

RV (e, ky) = e 42)
and
Les| 2 2y _4es
S e ) = =2kcky 75 ks ky) + (K2 — K2) 295 (kv ) @)

K +k;

respectively. A planar convergence map OKKS (w) can then be recov-
ered by an inverse Fourier transform.

In the above derivation we have not considered the practicali-
ties of the projection of the fields considered, which are defined na-
tively on the celestial sphere, onto a planar region. In practice, one
must choose a specific projection, the choice of which can have
a large impact on the quality of the convergence map recovered
from the observed shear. We describe a variety of projections in
Appendix B and discuss their properties. Care must be taken when
projecting a spin-2 field such as the cosmic shear as local rotations
must be taken into account, as described in detail in Appendix B.

3.4 Reduced shear

In deriving the estimators presented in Section 3.1 and Section 3.3
we made the assumption that one could observe the pixelised shear
field directly. However, in practice one can only measure the pix-
elised reduced shear ,g, which is related to the true underlying
shear by

2Y

=T (44)

28
The problem of recovering the convergence field then becomes
non-linear. However, this non-linear problem can be solved itera-
tively (Seitz & Schneider 1995; Mediavilla et al. 2016, p.153), as
discussed below. These techniques and similar are in common use
in the literature (e.g. Jullo et al. 2014; Lanusse et al. 2016; Price
et al. 2021)

The first step is to denoise the map of reduced shear. In this
work we use a Gaussian smoothing. We make an initial estimate
of the shear by assuming it is simply the measured reduced shear.
Then an initial estimate of the pixelised convergence field is made.
The first step of the iterative algorithm is thus:

27(0) =28,

ok® =M [27«))] , @

where M denotes the mass-mapping estimator used to recover the
convergence from the shear (in this article we consider either the
spherical or planar Kaiser-Squires estimators described in Sec-
tion 3.1 and Section 3.3, respectively) and the superscript denotes
iteration number. We then use our estimate of the convergence to
update the estimate of the shear and repeat. The (i + 1)-th iteration
is thus:

Y = g(1 = k),

0K(i+1) -M [27(141)] ) (46)

Iterations are continued until the absolute difference of the con-
vergence between iterations is below some threshold value. In this
work we choose,

max [ — & 7V| < 107, @7
J
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where j runs over all pixels. Typically, for a convergence field in-
cluding ellipticity/shot noise, 4 to 5 iterations are required before
converging.

3.5 Implementation

We have written the python package massmappy® to implement
the algorithms presented. The package can perform standard mass-
mapping on the plane, with the option to perform iterations to ac-
count for reduced shear. We also implement the spherical Kaiser-
Squires estimator described above so that mass-mapping can be
performed on the celestial sphere. We support the use of two spher-
ical pixelisations schemes. Firstly, we support the use of HEALPix’
(Gorski et al. 2005), an equal area pixelisation with an accompa-
nying software package that can perform fast spherical harmonic
transforms. We also support the use of the standard equiangu-
lar sampling scheme implemented in SSHT'® (McEwen & Wiaux
2011). This sampling scheme supports fast spherical harmonic
transforms that are theoretically exact and achieve close to float-
ing point precision in practice. The most recent release of SSHT
includes fast routines to compute the projections of the sphere onto
the plane considered in this work.

4 EVALUATION ON SIMULATIONS

In this section we evaluate the mass-mapping algorithms presented
in Section 3 on simulations. We study the error introduced by the
planar approximation, for a variety of projections and for varying
survey coverage area, when compared to the spherical setting. We
also assess the ability of the iterative algorithm described in Sec-
tion 3.4 to deal with the reduced shear that is observed, rather than
the underlying true shear.

4.1 Comparison of planar and spherical mass-mapping

We study the impact of the flat-sky planar approximation in mass-
mapping, compared to the spherical setting, and determine the typ-
ical errors induced for the sky coverages of upcoming surveys. We
do this as an idealised situation to focus the study on the effect of
projecting the sphere on to the plane. To do so we need to under-
stand how best one can estimate mass-maps on the plane for large
coverage areas.

When creating convergence maps on the plane (i.e. mass-
maps), the exact projection used to map the celestial sphere to the
plane can have a large impact on the quality of the reconstructed
convergence map. In Appendix B we describe a variety of spherical
projections that can be considered, which we evaluate on simula-
tions here. One important aspect when projecting a non-zero spin
field, e.g. shear (or galaxy ellipticities), is to ensure that the correct
local rotations are performed, as described in Appendix B2. This is
typically neglected in existing mass-mapping works.

We now describe the simulations that we use to assess the ef-
fect each projection has on the quality of the reconstruction of con-
vergence maps. We simulate Gaussian convergence maps using a
convergence power spectrum generated by the software package
cosmosis'! (Zuntz et al. 2015). The power spectrum was generated

8 http://www.massmappy.org

9 http://healpix.jpl.nasa.gov

10 http://www.spinsht.org

Il nttps://bitbucket.org/joezuntz/cosmosis/wiki/Home
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with a standard ACDM cosmology with galaxies in high redshift
bin z > 1. We simulate the map up to a harmonic band-limit of
Cmax = 512 using the sampling of the sphere of SSHT (McEwen
& Wiaux 2011). We consider this spherical sampling scheme for
these numerical experiments since the resulting spherical harmonic
transforms are theoretically exact and the implementations in SSHT
achieve accuracy close to machine precision (which is not the case
for HEALPix; see Leistedt et al. (2013) for concise accuracy bench-
marks). Any errors will therefore be due to projection effects rather
than inaccuracies in harmonic transforms. We smooth the simu-
lated convergence maps with the Gaussian kernel G, = e 7 with
o = /256, to mitigate pixelisation issues. The shear field is sim-
ulated by transforming the scalar convergence field to harmonic
space and then applying Equation (24), before transforming back
to real space to recover a spin-2 shear field on the celestial sphere.
In these simulations we aim to understand the effect of the projec-
tions so we do not consider the effects of reduced shear or noise.

To evaluate the accuracy of planar mass-mapping we first
project the simulated shear field from the celestial sphere to the
plane, using a particular projection. We estimate the convergence
field from the planar shear field using the planar KS estimator of
Equation (41). We then compare this recovered planar convergence
to a planar projection of the convergence simulated initially on the
celestial sphere. A number of different projections are considered,
as defined in Appendix B. In general, we consider two classes of
spherical projection: namely, equatorial and polar projections.

In Fig. 2 we show example planar reconstructions and errors
for a variety of equatorial projections. These projections are highly
accurate on the equator, with distortion due to the projection typi-
cally increasing with distance from the equator. We consider, firstly,
a simple cylindrical projection, where the (6, ¢) angles are taken to
be Cartesian coordinates (x, y). We also consider the Mercator pro-
jection, which is often used for geographical maps. The Mercator
projection is a conformal projection, in that it preserves local an-
gles. The poles in this projection would be at infinity, so we limit
the projection to 7x/16 radians above and below the equator. Fi-
nally, Fig. 2 shows results using the sinusoidal projection, a simple
equal area projection used by the DES collaboration for the conver-
gence map generated from DES SV data (Vikram et al. 2015).

In Fig. 3 we show example planar reconstructions and errors
for a variety of polar projections. These projections are highly ac-
curate around the pole defining the centre of the projection, with
distortion increasing as one moves away from this point. For these
projections we project one hemisphere around a pole defined by the
x-axis only; hence, two projections (one for each hemisphere) are
required to cover the entire sphere.'> We consider the orthographic
projection, which is a simple vertical projection, the stereographic
projection, which is another conformal projection, and finally the
Gnomonic projection, which has the special property that the local
rotations required for the projection of spin fields are zero (if no co-
ordinate rotation is performed). The edge of the hemisphere for the
Gnomonic projection lies at infinity so we only project the sphere
onto the square where the distance from the centre of the square
and its edge represents an angle of 7/4 radians.

For all projections, we show in Fig. 2 and Fig. 3 the projected

12 For the stereographic projection, a single projection can be applied to
map the sphere to the plane. However, the opposite pole is mapped to the
point at infinity. Moreover, the size of the planar regions grows considerably
as the full coverage of the celestial sphere is approached. Consequently, for
practical purposes the two hemispheres are projected separately.
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Cylindrical
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®) 72 (c) kEXS (d) kEKS error

-0.016 -0.012 -0.008 -0.004 0.000 0.004 0.008 0.012 0.016

Figure 2. Simulated reconstructions of the convergence field (mass-maps) on large regions of the celestial sphere when using equatorial projections, in order to
assess the impact of different planar projections. The shear field is shown in the first and second columns (the first showing y; and the second showing y>). The
third column shows the reconstructed convergence field (E-mode), while the forth and fifth columns shows the error on the £-mode and B-mode convergence,
respectively. Each row shows a different projection: the first row shows the simple cylindrical projection; the second shows the Mercator projection; and the
final row shows the sinusoidal projection. The entire sphere is projected onto the plane, except for the Mercator projection where only 77/16 radians above
and below the equator are considered (as explained in the main text).

Orthographic

Stereographic

Gnomonic

(b) v2 (c) KEKS (d) kEKS error (e) kBKS error

-0.016 -0.012 -0.008 -0.004 0.000 0.004 0.008 0.012 0.016

Figure 3. Same as Fig. 2 for the polar projections. The first row shows the orthographic projection, the middle row shows the stereographic projection, and
the third row shows the Gnomonic projection. For these projections we only project one hemisphere onto the sphere, with the pole defined by the x-axis. The
entire hemisphere is shown except for the Gnomonic projection where we project the sphere onto a square where distance from the centre of the square and the
edge represents an angle of /4 radians (as explained in the main text). Of course, planar approaches are typically restricted to a field of view of ~ 20 degrees,
these figures simply illustrate why this consensus is adhered to.
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shear, the recovered E-mode convergence and the error in the £ and
B-mode convergence. As expected the convergence reconstruction
is best where the planar approximation is most accurate and worse
as one moves away from this region. We can also see by eye that the
conformal projections (the Mercator and stereographic projections)
perform the best. This is due to fact that local angles are preserved
by the projection. What is also clear is that for many of the projec-
tions the B-mode convergence error can be large in certain regions
even in the absence of noise or systematic errors.

We can use these simulations to examine the error in the recon-
structed convergence field as a function of angular size. In Fig. 4 we
show how the accuracy of the recovered convergence field changes
with patch size. We consider a similar simulation setup as the low
resolution experiments described above but now simulate the con-
vergence field up to a band limit £, = 4000, using the same
power spectrum and smoothing kernel as before. We set a higher
band-limit to eliminate all pixelisation effects (a lower band-limit
was sufficient for the previous numerical experiments which were
used for visualisation purposes only). We over-sample on the plane
too, again to eliminate all pixelisation effects. For the polar pro-
jections we use a square map of 2000 x 2000 pixels, capturing
the same hemisphere as before. For the equatorial projections we
use maps of size (2€nx — 1) X €max pixels for the cylindrical pro-
jection, (26 — 1) X 5901 pixels for the Mercator projection and
(2€max — 1) X Cimax pixels for the sinusoidal projection. The number
of pixels is different of the Mercator projection as it stretches the 6
direction in projection. The equatorial projections, as before, have
the entire sphere projected onto the plane except for the Mercator
projection where we project to 7rr/16 radians above and below the
equator only as the poles are at infinity in this projection. The exact
planar sampling resolutions are not important as we are intention-
ally over-sampling to eliminate pixelisation effects.

In a similar way to the other simulations we simulate the con-
vergence and shear on the sphere, project the shear on the plane,
and recover the convergence on the plane to compare this to the
projected simulated convergence. We then calculate the root-mean-
square (RMS) error of & YN (kXS — ki"™")? at different angular dis-
tances from the most accurate region of each projection, where N
is the number of pixels in the region and ™" is the input conver-
gence. The exact angular distances considered for each projection
are defined in Appendix B. We calculate the error in annuli of con-
stant angular distances away from the centre, defined by the angular
metric. The error in the recovered convergence will be a result of
not only the projection distortion but also a sub-dominant contribu-
tion from the leakage due to the boundary created by the projection.
The leakage due to boundary effects will be minimal for small and
intermediate scales but will become more significant for the largest
scales considered — i.e. as the annuli approach the boundary region.
Both projection and boundary effects are intrinsic to the projection
when using KS inversion and are therefore included here. To min-
imise the contribution of such boundary effects we zero-pad planar
projections to 4 times their original dimensions, and restrict any
analysis to annuli separated by at least 20 degrees from any bound-
aries.

Fig. 4 shows the RMS error, averaged over 10 realisations, at
different angular distances for the various projections considered.
We normalise the RMS error with the RMS of the fluctuations in
that region to give a relative error. Relative error for both the E-
and B-modes fields are shown. Approximate opening angles for
the coverages of existing and upcoming surveys are overlaid on
Fig. 4. For future surveys, such as Euclid and LSST, projection er-
rors can be of order tens of percent, exceeding 50% in some cases.
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The conformal projections (i.e. the Mercator and stereographic pro-
jections), which preserve local angles, are typically superior to the
other projections. In any case, these errors can be avoided entirely
by recovering convergence fields directly on the celestial sphere.

5 APPLICATION TO DES SV DATA

In this section we apply the mass-mapping techniques presented
in Section 3 to the DES science verification (SV) data, which
are publicly available.'* We use the galaxy shapes estimated by
the M3sHaPE method that lie in the range 60° < RA < 95" and
—70° < dec < —40°, where RA and dec are the right ascension and
declination in degrees. We apply the sval_flag = 0O selection to
the DES SV catalog in order to select galaxies that have a shape that
is measured and calibrated ready to be used for weak lensing stud-
ies. These cuts leave 793, 743 galaxies, with a density of 1.4 galax-
ies per square arcmin. We pixelise the data by binning into pixels in
various settings. We always pixelise the galaxy in the space that the
convergence map is generated; for example, when a map is made
on the sphere the galaxies are pixelated on the sphere directly. In
all cases we apply the recommended weights and corrections to ac-
count for multiplicative and additive biases, as described by Becker
et al. (2016).

We create two spherical maps of the reduced shear using
the SSHT and HEALPix sampling schemes, considering resolutions
to best match the 66 = 5 arcmin pixels considered by Vikram
et al. (2015), which corresponds to setting an appropriate ban-
dlimit £,,,, for the SSHT sampling scheme and an appropriate Nqe
resolution parameter for HEALPix. Explicitly, for SSHT, we find
Cmax = /66 = 2160. For HEALPix, we set N4 such that the area
of a pixel is as close as possible to that of a 5 arcmin pixel, i.e.
A = 4r/12N3%,. ~ (80)%, yielding Nyqe = 512 (with the restriction
that Ny is a power of two). The resulting SSHT map has pixels
of size 5 arcmin at the equator, while the resulting HEALPix map
has pixels of size 7 arcmin. For the HEALPix sampled data we use
a maximum multipole {.x = 4Ngge. The exact choice of i i
not critical as smoothing removes the power on small scales. We
smooth the reduced shear before reconstructing the mass-map with
a Gaussian Kernel G, = e‘[z”z, with o such that the half width
at half maxima is 20 arcmin, to best match that of Vikram et al.
(2015).

It is academic to note that interpolation errors are effectively
unavoidable when mapping observations continuous in position
onto a finite grid. Furthermore, gridding onto different sampling
schemes inherently introduces different interpolation error. One
may wonder, quite reasonably, which sampling (or corrective mea-
sure) minimizes this interpolation error, however this is beyond the
scope of this paper. To normalise for this effect within this analysis
we first grid onto HEALPix map which we then convert into a SSHT
sampled map with the aforementioned dimensions. In this way both
maps begin with the same information contaminated with the same
interpolation error.

Further one should note that the noise properties of inter-
polated spherical maps depend fundamentally on the sampling
scheme adopted. When one considers HEALPix equal area sam-
pling each pixel contains roughly the same number of observa-
tions, whereas for SSHT equiangular sampling pixels have signif-
icant variation in the number of observations (due to variability in

13 https://des.ncsa.illinois.edu/releases/sval/doc/shear
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Figure 4. Relative RMS error of recovered convergence fields (mass-maps) when using various planar projections in the standard planar Kaiser-Squires (KS)
estimator, as a function of angular distance from the centre of the projection. Note that all planar projections were significantly zero-padded (to 4 times their
original dimension) to minimise any contribution to this error from mode mixing at boundaries. Further we note that residual boundary effects inevitably
exist, thus we clip the figure 20 degrees from any boundary, thus restricting the figure to ® domains over which it is expected the primary error contribution
comes from projection effects. RMS errors are averaged over 10 realisations. Approximate opening angles for the coverages of existing and upcoming surveys
are overlaid. For future surveys, such as Euclid and LSST, projection errors can be of order tens of percent, exceeding 50% in some cases. The conformal
projections (i.e. the Mercator and stereographic projections), which preserve local angles, are typically superior to the other projections. In any case, these
errors can be avoided entirely by recovering convergence fields directly on the celestial sphere.

pixel size). As such, the assumption of noise Gaussianity is more
easily justified for HEALPix maps.

Fig. 5 shows the E- and B-mode convergence maps recov-
ered from the DES SV data using the spherical Kaiser-Squires
(SKS) estimators. We apply the iterative algorithm described
in Section 3.4 to estimate the underlying shear from the ob-
served reduced shear. The recovered convergence maps show
near perfect agreement with each other and reasonable agreement
with the maps recovered by the DES collaboration for a sim-
ilar choice of galaxies (Vikram et al. 2015, Fig. 2). It should
be noted that the galaxies used here are not the exact same
galaxies used in estimating the convergence maps recovered by
Vikram et al. (2015) due to small differences between the private
and public DES catalogs (C. Chang & J. Zuntz, private commu-
nication). Therefore, exact equivalence is not excepted, however,
through private communication C. Chang has provided conver-
gence maps recovered by the DES map making pipeline when using
the public catalog and in this case there is good agreement between
the two convergence maps.

For comparison purposes, in Fig. 6 we show the results when
we bin galaxies onto two planar maps. The top row show the re-
sults when using a sinusoidal projection, as also used by the DES
collaboration (Vikram et al. 2015). We rotate the projection such
that the central line of the projection corresponds to RA = 70°, as
also done by Vikram et al. (2015). No other rotation is applied to
fully centre the region of interest. In the second row we show re-
sults using a stereographic projection that has been rotated by the
Euler angles @ = 159°, 8 = =37  and y = 90°, to fully centre the
area of interest to the South pole about which the projection is then
performed. We choose to also show results using the stereographic
projection as the results from Fig. 4 suggest that this is the best pro-
jection to use. In both cases we use 5 arcmin pixels and apply a 20
arcmin smoothing as they do in Vikram et al. (2015). We apply the

required local rotations as described in Appendix B (in Appendix B
we also examine the effect of not applying such rotations). For these
planar results we also use the reduced shear algorithm described in
Section 3.4. Fig. 7 shows the difference between the convergence
recovered on the plane for these projections and the projected con-
vergence recovered on the sphere using the SSHT sampling shown
in Fig. 5. As is common with the KS estimator, both the planar
and the spherical mass-maps suffer from leakage between the E-
and B-mode due to both the effects of the boundary and, perhaps
primarily, the significant complex noise contribution.

6 CONCLUSIONS

We have described how one can recover convergence fields, or
mass-maps, directly on the celestial sphere, adopting the spheri-
cal equivalent of Kaiser-Squires inversion. We demonstrate that the
spherical formulation reduces to the usual flat-sky Kaiser-Squires
approach in the planar approximation. We study the accuracy of
the planar approximation for mass-mapping and address the im-
portant question of whether one needs to recover the convergence
field on the sphere for forthcoming surveys or whether recovery on
the plane would be sufficient. The comparison between the planar
and spherical settings depends largely on the projection used. In
Appendix B we describe a number of projections that are used in
this work and show how to account for the local rotations required
when projecting spin fields, such as shear, onto the plane. In Fig. 4
the relative error introduced by the planar approximation, for a va-
riety of projections, is presented. Conformal projections, for which
local angles are conserved, are found to be the most effective. Nev-
ertheless, errors in the planar setting are typically tens of percent
and can exceed 50% in some cases. These projection errors can
be entirely eliminated by recovering mass-maps directly on the ce-
lestial sphere by the spherical Kaiser-Squires technique presented
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0.015
|
-45 0.010
0.005
2
g -50
o
£ 0.000
(9]
[
o
. ll. N
-0.010
-60 .
-0.015
55 60 65 70 75 80 85 95 100
RA (degrees)
(a) kSKS E-mode (SSHT)
0.015
0.010
0.005
m
[)
o
o
$ 0.000
[9]
[
[a]
-0.005
-0.010
-0.015
55 60 65 70 75 80 85 95 100

RA (degrees)
(c) k5KS E-mode (HEALPix)

Dec (degrees)

Mapping dark matter on the celestial sphere

Dec (degrees)

11

0.015
A
-45 0.010
0.005
-50
0.000
-55 ll' —0.005
—-0.010
-60
—-0.015
55 60 65 70 75 80 85 95 100
RA (degrees)
(b) %S B-mode (SSHT)
0.015
-45 0.010
0.005
-50
0.000
-55 —0.005
—-0.010
-60
-0.015

70 75 100

RA (degrees)
(d) %S B-mode (HEALPix)

80 85 95

55

60 65

Figure 5. Spherical convergence maps recovered by the spherical Kaiser-Squires (SKS) estimator applied to spherical maps of the reduced shear created
using galaxies from DES SV data. The top two plots show stereographic projections of the convergence map recovered on the celestial sphere using the SSHT
sampling, while the bottom two plots show Stereographic projections of the convergence maps recovered on the celestial sphere using HEALPix sampling.
The left column shows the recovered E-mode convergence, while the right shows the recovered B-mode convergence. To generate these maps from the
DES observation catalogue we first grid onto a HEALPix sampling scheme, then convert this to a SSHT sampling scheme through harmonic space, thus both
reconstructions are working with the same information which mitigates any discrepancies due to the initial catalogue projection.

in this article. This analysis of projection errors has broader im-
plications for the analysis of signals over the sphere, e.g. cosmic
microwave background analysis efc.

We apply the spherical Kaiser-Squires estimator to the pub-
licly available DES SV data. We present maps of the convergence
field recovered on the celestial sphere using both the SSHT and
HEALPix sampling schemes (see Fig. 5), accounting for the fact
that one measures reduced shear, rather than the true underlying
shear, by applying the iterative algorithm discussed above. We
compare the results to those recovered on the plane, using the si-
nusoidal projection adopted by the DES collaboration and also the
stereographic projection since it was found to be most effective pro-
jection for mass-mapping, particularly for large scales (see Fig. 4).
In this setting we demonstrate reasonable agreement between the

© 2017 RAS, MNRAS 000, 1-18

spherical and planar reconstructions. While the coverage area of
DES SV data is not sufficiently large for the planar approximation
to induce significant errors (see Fig. 4), recovering spherical mass-
maps for DES SV data is nevertheless a useful demonstration of the
spherical Kaiser-Squires estimator on real observational data.

In this article we consider the most naive estimator of the con-
vergence field on the celestial sphere, namely a direct spherical har-
monic inversion of the equations relating the observed shear field
to the underlying convergence field, i.e. the generalisation of the
Kaiser-Squires estimator from the plane to the sphere. In practice,
the shear field is not observed over the entire celestial sphere, which
induces leakage in the recovered convergence field for the simple
harmonic estimator considered. In future work we will apply the
pure mode wavelet estimators developed by Leistedt et al. (2017)
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Figure 6. Planar convergence maps recovered by the planar Kaiser-Squires (KS) estimator applied to planar maps of the reduced shear created using galaxies
from the DES SV data. The top row of plots show the results where the sinusoidal projection is used, while the bottom row shows the results when the
stereographic projection is used. These projections were chosen since the the sinusoidal projection is used by the DES collaboration (Vikram et al. 2015),
while the stereographic projection was shown in Fig. 4 to minimise RMS error. The left column shows the recovered E-mode convergence, while the right

shows the recovered B-mode convergence.

to remove leakage when recovering spherical mass-maps. In addi-
tion, in future work we also intend to develop methods to better
mitigate the impact of noise and to estimate the statistical uncer-
tainties associated with recovered mass-maps (see e.g. Price et al.
2020). In all of these extensions, however, it is clear that for future
surveys like Euclid and LSST it will be essential to recover mass-
maps on the celestial sphere, to avoid the significant errors than are
otherwise induced by planar approximations.
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Figure 7. Similar to Fig. 6, where here we plot the difference between the convergence recovered on the plane by the planar Kaiser-Squires (KS) estimator and
the convergence recovered on the sphere by the spherical Kaiser-Squires (SKS) estimator. The purpose of this figure is to compare the planar and spherical
results. For the spherical case we consider the SSHT sampling only, i.e. differences are relative to Fig. 5(a) and Fig. 5(b).

vated by the results from this work (see e.g. Chang et al. 2018; Price
etal. 2021; Jeffrey et al. 2021).

7 DATA AVAILABILITY

All data, both observational and simulated, utilized throughout this
paper is publicly available and can be found alongside the open-
source code-base massmappy'* developed during this work.

14 https://github.com/astro-informatics/massmappy
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APPENDIX A: EQUIVALENCE OF DIFFERENT
REPRESENTATIONS OF SPHERICAL MASS-MAPPING
INVERSE PROBLEM

The equivalence of the harmonic and integral expressions, Equa-
tion (24) and Equation (28) respectively, connecting the observable
cosmic shear field to the convergence field can also be shown by
considering the harmonic representation of the integral expression.
Consider the integral representation, decomposing the kernel and
convergence field into their harmonic expansions:

V(W) = f dQ(w") Ry ;K (W) ok(w’) (AD
s2

= fz dQ(w") Z 2Ky Rar 2V im)(w) Z okem oY (@) .
S tm om’
(A2)
The rotation of the spin spherical harmonic in the above expression
is given by

(R 2Y o)) = Z Do) Y (@) (A3)

4
B \/ZZ oY (W) Ye(w),  (Ad)

where it is necessary to only consider m = 0 due to the Kronecker
delta term §,,9 appearing in ,%,,, as shown in Equation (30), and
noting Equation (10) and Equation (11). Equation (A2) can then be
written as

&+2)

-1
(W) = Z s Yu(w),  (AS5)

where we have noted the orthogonality of the spherical harmonics,
i.e. Yem, Ypur) = O¢p O . The resulting harmonic representation
of Equation (28) is thus identical to Equation (24), as expected.

APPENDIX B: PROJECTIONS

In this appendix we outline the details of each projection con-
sidered. We firstly define each projection and describe its proper-
ties. Each projection has different beneficial properties, for example

© 2017 RAS, MNRAS 000, 1-18
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Figure B1. Diagram to describe graphically the equatorial projections, in-
cluding the sinusoidal, Mercator and the simple cylindrical projections.
These can all be seen as types of cylindrical projections since the sphere
is projected onto a cylinder wrapped round the sphere. The u variable sim-
ply describes how far round the cylinder a point is and is therefore give
by ¢ (up to some arbitrary shift), except in the sinusoidal case where the
u variable is contracted away from the equator to ensure the projection is
equal-area. The v variable can vary between projections and can be spec-
ified by various functions d(6). In the Mercator projection this function is
chosen to ensure the projection is conformal. In the sinusoidal and simple
cylindrical projections this function is simply d(6) = 8 = 7/2 - 6.

whether the projection is equal-area, has appropriate boundary con-
ditions or conformal. Conformal projections conserve local angles
and are often used for geographical maps. We also describe the dis-
tance metric we use for each projection to define the opening angle
of the patch of sky seen by an experiment, i.e. the angle considered
in Fig. 4. We then detail how to calculate the local rotation angles
required when projecting spin fields, such as shear (without this ro-
tation E- and B-modes will be misinterpreted) and finally illustrate
the impact of neglecting this local rotation on DES SV data.

B1 Projection definitions

We consider two general types of projection: equatorial and polar
projections. Equatorial projections are defined relative to the equa-
tor, while polar projections are defined relative to a pole. The pre-
cise definitions of the different equatorial and polar projections are
given in the following subsections. The equatorial projections con-
sidered include: the sinusoidal projection, which is a simple equal
area projection that was used by the DES collaboration; the Mer-
cator projection that is a conformal projection, often used in ge-
ographical maps as it preserves local angles; and a simple cylin-
drical projection. The polar projections considered include: the or-
thographic projection, which is a simple vertical projection from
the sphere to a tangent plane; the Gnomonic projection that has the
useful property that the local rotations are trivial to calculate; and
the stereographic projection that is another conformal projection.

Bl.1 Equatorial projections

Fig. B1 shows graphically how the equatorial projections can be
viewed as a projection onto a cylinder wrapped round the sphere.
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Each projection is defined by the relation between the spherical
coordinates (0, ¢) and the planar coordinates (u, v).

The sinusoidal projection (used by the DES collaboration) is
defined by

1= (¢ - msin(@) ,

v=_6. ®BD

This projection results in minimal distortion in the central region
(@ = n/2, ¢ = m). Moving away from this point in any direc-
tion increases the distortion but particularly in a diagonal direction
(specifically along the lines y = x or y = —x). We define the dis-
tance metric for this projection by

O = VO -7/272+(p—n). (B2)

The sinusoidal projection has the useful property of being equal-
area. It is simpler to define than the Mollweide projection, also an
equal-area projection, which is commonly used for plotting in the
cosmological community.

The Mercator projection is commonly used for geographical
maps and is defined by

u=¢-m,

(B3)
v = In [tan(zr/2 — 6/2)] .

This projection has the useful property of being conformal, mean-
ing that local angles on the sphere will not be distorted. The pro-
jection introduces minimal distortion at the equator, while the pro-
jected image is stretched and distorted as one moves towards the
pole. Since the poles themselves are at infinity the projection can-
not completely cover the full sky in practice. The projection is a
cylindrical projection and therefore has the correct boundary con-
ditions in the u direction. The metric used to define the angular
distance from the undistorted region is simply given by

O=10-n/2|. (B4)

The final equatorial projection we consider is the simple cylin-
drical projection defined by

u=¢-m,

v=0-m/2. (BS)

There are no particular properties to inspire us to propose this pro-
jection over the more sophisticated cylindrical projection of the
Mercator projection. Its attractiveness is in its simplicity and the
ability to map the entire sphere on one plane. The distortions in-
crease away from the equator leading to the same distance metric
as the Mercator projection, i.e. Equation (B4).

B1.2  Polar projections

Fig. B2 shows a graphical representation of the polar projections,
where again the spherical coordinates (6, ¢) are projected onto the
planar coordinates (u, v). It is most straightforward to define these
projections using polar coordinates on the plane (o, ¢), which are

related to the Cartesian coordinates by
u =pcos(p),
9.@) (B6)
v = psin(yp) .

In each of the polar projections we simply have that ¢ = ¢. The pro-
jections differ in the way 6 is mapped to o, where each projection
has its own mapping function f, i.e.

o=fO. (B7)

Figure B2. Diagram to describe graphically the polar projections, including
the orthographic, stereographic and gnomic projections. In these projections
a point on the sphere is projected to the tangent plane at a pole (here chosen
to be the South pole). For projections around the North or South pole the
angle ¢ is simply taken as the polar coordinate ¢ in the planar space. The
radial coordinate g is a function of the angle between the point and the pole
whos tangent plane is considered (7—6 for the South pole). The orthographic
projection is a vertical projection, giving o = sin(xr—6) for the tangent plane
at the South pole. The gnomic projection casts a ray from the origin to the
point on the sphere and through to the tangent plane, giving o = tan(r — 6)
for the tangent plane at the South pole. Finally, the stereographic projection
casts a ray from the opposite pole to the point on the sphere and through to
the tangent plane, giving o = 2tan[(w — 6)/2] for the tangent plane at the
South pole. In the diagram, the point P is projected to PO, PS, and PG by
the orthographic, stereographic and gnomic projections, respectively.

It is a common feature of these projections that the entire sphere
cannot be projected to a single plane in practice (since in many
cases the opposite pole is mapped to the point at infinity). In that
case we often project around the South pole as well as the North
pole and consider o = f( — 6). We define the distance metric for
these projections to be

0=0. (BY)
The orthographic projection is defined by
o = sin(6) . (B9)

For this projection a point on the sphere is mapped vertically from
the sphere to the tangent plane at the North pole. As a result the
whole sphere cannot be projected onto one plane in practice and
one must project each hemisphere onto a different plane.

We also consider the Gnomonic projection defined by casting
aray from the centre of the sphere to the point considered and then
though to the tangent plane at the North pole. The Gnomonic pro-
jection is therefore defined by

o0 = tan(d). (B10)

For this projection the whole sphere again cannot be projected onto
one plane in practice since the equator is projected to infinity. One
must again project the sphere into a number of regions, for example
considering each hemisphere separately.

The final projection we consider is the stereographic projec-
tion. This is defined by casting a ray from the South pole to the
point considered on the sphere and then through to the tangent
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plane at the North pole. The resulting projection is defined by
o =2tan(6/2). (B11)

We can project almost all of the sphere with this projection, except
near the South pole, as the South pole is mapped to infinity. This
projection is conformal, preserving local angles.

B2 Rotation angles

Spin fields on the sphere have local directions defined relative to
the North pole, whereas on the plane the spin fields have their spin
defined relative to some universal direction (usually the “top” of
the planar map). We define this direction on the plane by ¥, the
unit vector in the v direction. On projection, the spin field must be
rotated from its original coordinate frame on the sphere to the new
coordinate frame on the plane. Here we describe how to calculate
this local rotation angle.

When we project from the sphere to the plane it is common
to rotate our coordinate system before we project. This is done in
order to centre the region of interest so that distortions due to the
projection are minimised at this point. We therefore need to define
a number of coordinate systems, including the original sphere, the
rotated sphere and the plane. Firstly, consider a field defined on the
original sphere with spherical coordinates (6’, ¢") and correspond-
ing Cartesian coordinates (x’,y’,z’). Consider then the rotated field,
where the spherical coordinates of the rotated sphere are (6, ¢), with
corresponding Cartesian coordinates (x, y, 7). We define the rotation
relating the primed frame to the unprimed frame by R, with cor-
responding 3D rotation matrix R. From the rotated sphere the field
is then projected onto the plane defined by Cartesian coordinates
(u, v) and polar coordinates (o, ¢).

We need to find the angle between ¥ and the projected direc-
tion of the North pole of the original sphere. To do this we consider
an infinitesimal step North on the sphere and then find the infinites-
imal step this makes on the plane (du, dv). The rotation angle y
required is then the angle between the ¥ direction and the projected
North direction.

B2.1 Equatorial projections

The first step is to construct a vector that is an infinitesimal step
North in the original space. This vector is given by

0
dx' =| 0 |de, (B12)
1

where de is an infinitesimal element of the real line. When this
infinitesimal element is projected onto the sphere at any point it
always points North (with the exception of the poles). Moving in
this direction thus yields a vector that is further North but is not
normalised to lie on the unit sphere. The normalisation of the vector
is unimportant as later on in this proof we require the direction
of this vector only and not its length. In the unprimed frame this
infinitesimal step is given by

dx = Rdx’,
dx Ris (B13)
dy = R2,3 de.
dz Rs3

Now we apply the chain rule twice to calculate the projected in-
finitesimal step in the plane (du, dv). Firstly we note the relation
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between (x,y,z) and (0, ¢) of

0= arctan(

VX2 + yz]
< (B14)
= rcan(;)
¢ = arctan(= | ,
X
where the normalisation of the vector is unimportant, ensuring the
definition of dx’ is acceptable. Applying the chain rule we have

df = cos(0)[cos(¢)dx + sin(¢p)dy — tan(f)dz] , B1S
d¢ = csc(f)[— sin(¢)dx + cos(¢p)dy] , ( )

where a unit vector is assumed without loss of generality. We now
generalise the equatorial projections as

u=g6,9),
80, ¢) (B16)
v="h9¢).
We then apply the chain rule again to give
du = Z—‘gd@ + Z—gdqﬁ s
0 (B17)
dv = a—hdﬁ + 6—hd¢
T 0 op "’
from which the rotation angle s can be calculated by
d
Y= —arctan(—u) . (B18)
dv

After substituting all the terms from the above expressions into
Equation (B18), de cancels out and the limit de — 0 follows triv-
ially.

B2.2  Polar projections

For polar projections the calculation begins in the same way as for
equatorial projections, up until Equation (B15). Then we apply the
chain rule giving

do = ﬂde,
dé (B19)
dep =d¢.

Applying the chain rule again to the relation between (u,v) and
(0, ¢) of Equation (B6) we have

du = cos(p)do — osin(p)de ,

‘ (B20)
dv = sin(p)do + o cos(p)dyp .

We then compute the local rotation angle ¢ in the same manner
as above, i.e. by Equation (B18). It is possible to show from this
result the special property of the Gnomonic projection: when there
is no rotation and f(6) = tan(6), as is the case for the Gnomonic
projection, the rotation angle is zero everywhere.

B3 Application to DES SV data

Here we demonstrate the importance of applying this rotation in
practice, using DES SV data. As far as we are aware applying these
local rotations is not standard practise. We consider the sinusoidal
projection also used by the DES collaboration. However, here we
do not apply the necessary rotations to the galaxy shapes (as we did
in the main body of the article). Fig. B3(a) and Fig. B3(b) show the
results when no rotation is applied and Fig. B3(c) and Fig. B3(d)
show the error introduced by not applying the local rotations, i.e.
the differences with the maps shown in Fig. 6(a) and Fig. 6(b).
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(a) k%S E-mode with no local rotations
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Figure B3. Plot to show the importance of applying the local rotations to real data when performing projections. We project the DES SV data using the
sinusoidal projection considered by the DES collaboration. However, in this case we do not apply the necessary rotations to the galaxy shapes. Panel (a) and
(b) show the results when no rotation is applied, while panels (c) and (d) show the error introduced by not applying the local rotations, i.e. the differences with

the maps shown in Fig. 6(a) and Fig. 6(b).

While the effect is not large for DES SV data, it is not insignifi-
cant. Furthermore, if considering planar mass-mapping techniques
for larger survey coverages this effect becomes increasingly impor-

tant.
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