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Load balancing for distributed interferometric image reconstruction
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ABSTRACT
We present a new algorithm to perform wide-field radio interferometric image reconstruc-
tion, with exact non-coplanar correction, that scales to big-data. This algorithm allows us to
image 2 billion visibilities on 50 nodes of a computing cluster for a 25 by 25 degree field
of view, in a little over an hour. We build on the recently developed distributed w-stacking
w-projection hybrid algorithm, extending it to include a new distributed degridding algorithm
that balances the computational load of the w-projection gridding kernels. The implementa-
tion of our algorithm is made publicly available in the PURIFY software package. Wide-field
image reconstruction for data sets of this size cannot be performed effectively using the allo-
cated computational resources without computational load balancing, demonstrating that our
algorithms are critical for next-generation wide-field radio interferometers.
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1 INTRODUCTION

Next-generation low frequency wide-field of view telescopes, such
as the Murchison Widefield Array (MWA; Tingay et al. 2013), have
non-coplanar baselines and other instrumental effects that need to
be modeled during image reconstruction. Furthermore, the large
volumes of visibilities and large image sizes increase the compu-
tational burden of imaging observations from next-generation tele-
scopes. However, there are major computational and instrumental
challenges that need to be overcome for these telescopes to reach
the high resolution and sensitivity required by science goals of
next-generation telescopes, such as detection of the epoch of reion-
ization (EoR) (Koopmans et al. 2015) and to probe Galactic and
extra-galactic magnetic fields.

Recent novel developments in fast construction of w-
projection kernels and the distributed w-stacking w-projection hy-
brid algorithm (Cornwell et al. 2008; Pratley et al. 2019a) has al-
lowed fast and accurate modeling of non-coplanar effects over ex-
tremely wide-fields of view from the MWA for over 100 million
measurements (Pratley et al. 2019b). The algorithm allows parallel
construction of w-projection kernels while also distributing their
storage for application, proving to be an effective method of tack-
ling the most computational and memory intensive components of
radio interferometric imaging (Wortmann 2016; Braam & Wort-
mann 2016; Hollitt et al. 2017; Pratley et al. 2019a). However,
while this distribution reduces the size and computational cost of
the w-projection kernel, it does not ensure that computational re-
sources are being used most effectively across the compute cluster.
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This makes it vulnerable to bottlenecks in computation without the
modifications presented in this work.

This work presents a new distributed gridding algorithm that
evenly balances the computational load across a computing clus-
ter, extending the distributed gridding methods developed in Pratley
et al. (2019c). Such an approach allows full memory and computa-
tional use across the nodes of the computing cluster when perform-
ing fast Fourier transforms (FFTs) of w-stacks and when degrid-
ding with w-projection kernels, which has not been possible previ-
ously, removing resource bottlenecks when imaging wide-fields of
view for large data sets. Such distributed degridding and gridding
algorithms will be vital for next-generation radio interferometers
with large data sets, such as the Square Kilometer Array (SKA).
In particular, such an algorithm is needed for effectively correcting
instrumental effects via the image and Fourier domain, while using
the full performance of a computing cluster.

The remaining sections of this article are as follows. Sec-
tion 2 introduces the wide-field interferometric measurement equa-
tion and the distributed w-stacking w-projection hybrid algorithm.
Section 3 discusses the computational and memory bottlenecks of
the distribution method. Section 4 presents the new algorithm that
evenly distributes the computational load across compute nodes.
Section 5 demonstrates the application of this algorithm that has
been implemented in the interferometric imaging software package
PURIFY1.

1 https://github.com/astro-informatics/purify
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2 WIDE-FIELD IMAGING MEASUREMENT EQUATION

The interferometric measurement equation is a result of the van
Cittert-Zernike theorem (Zernike 1938) and it can be extended to
include many aspects of the measurement process (Smirnov 2011).
One simplified variation is the non-coplanar wide-field interfero-
metric measurement equation, it reads

y(u, v, w′) =

∫
x(l,m)a(l,m)

e−2πiw′(
√

1−l2−m2−1)

√
1− l2 −m2

×e−2πi(lu+mv) dldm,

(1)

where (u, v, w′) are the baseline coordinates and (l,m, n) are di-
rectional cosines restricted to the unit sphere. In this work, we de-
fine w′ = w + w̄, where w̄ is the average value of w-terms, and w
is the effective w-component (with zero mean), x is the sky bright-
ness and a includes direction dependent effects such as the primary
beam. The measurement equation allows one to calculate model
measurements y when provided with a sky model x.

A number of methods make use of the measurement equation
to recover an image x given visibilities y. Two examples in radio
astronomy are CLEAN (Högbom 1974; Pratley & Johnston-Hollitt
2016) and Sparse Regularization algorithms (McEwen & Wiaux
2011; Onose et al. 2016; Pratley et al. 2018; Dabbech et al. 2018;
Pratley et al. 2019a,c).

To make use of the FFT the measurement equation is tradi-
tionally calculated and approximated using degridding (Thompson
et al. 2008). The measurement equation can be represented by the
following linear operations

y = W[GC]FZSx . (2)

S represents a gridding correction and correction of baseline inde-
pendent effects such as w̄, Z represents zero padding to increase
resolution of the Fourier grid, F is an FFT, G represents a sparse
circular convolution matrix that interpolates measurements off the
grid, while [GC] corrects baseline dependent effects and interpo-
lates measurements off the grid, and W are weights applied to the
measurements. This linear operator is typically called a measure-
ment operator Φ = WGCFZS with Φ ∈ CM×N . Furthermore,
xi = x(li) and yq = y(uq) are discrete vectors in RN×1 and
CM×1 in this setting. The dirty map can be calculated from the
adjoint operation Φ†y, and the residual map by Φ†(Φx− y).

2.1 Distributed wide-field measurement operator

In the distributed w-stacking w-projection algorithm (Pratley et al.
2019a), the measurement operator corrects for the average w-value
in each w-stack, then applies an extra correction to each visibil-
ity with the w-projection. Each w-stack yk has the measurement
operator of

Φk = Wk[GC]kFZS̃k . (3)

The gridding correction, S̃k, has been modified to correct for the
w-stack dependent effects, such as the averagew-value of the stack
w̄k

S̃kii =
ak(li,mi)e

−2πiw̄k(
√

1−l2i−m
2
i−1)

g(l2i +m2
i )
√

1− l2i −m2
i

. (4)

We leave the option of choosing different primary beam effects in a
stack ak(li,mi). The chirp shifts the relative w-value in the stack
indexed by k. The stacks can be clustered carefully to reduce the
effective w-value in the stack, especially when the stack is close to

the mean w̄k, i.e. to the value of wi − w̄k. This reduces the size
of the support needed in the w-projection gridding kernel for each
stack,

[GC]kip = [GC]
(√

(ui/∆u− qu,p)2 + (vi/∆u− qv,p)2

, wi − w̄k,∆u
)
.

(5)

(qu,p, qv,p) represents the nearest grid points, and we use adaptive
quadrature to calculate

[GC]
(√

u2
pix + v2

pix, w,∆u
)

=
2π

∆u2

∫ α/2

0

g(r)

×e−2πiw(
√

1−r2/∆u2−1)J0

(
2πr

√
u2

pix + v2
pix

)
rdr ,

(6)

where g(r) is the radial anti-aliasing filter in the image domain
(i.e. the Fourier transform of the Kaiser-Bessel function), ∆u is the
resolution of the Fourier grid as determined by the zero padded field
of view, and (upix, vpix) are the pixel coordinates on the Fourier
grid.

For each stack yk ∈ CMk we have the measurement equation
yk = Φkx. It is clear that each stack has an independent measure-
ment equation. However, the full measurement operator is related
to the stacks in the adjoint operators such that

xdirty = AllSumAllk
(

Φ†kyk
)

= Φ†y . (7)

We use an MPI all-sum-all to generate the same dirty map on
each node. The full operator MPI Φ is normalized using the power
method. For further details see Pratley et al. (2019a).

3 BOTTLENECK OF THE DISTRIBUTED STACKING
METHOD

To minimize the time taken to perform kernel calculation and in-
crease accuracy of the non-coplanar correction, the visibilities need
to be sorted into w-stacks using a cluster algorithm. We do this by
using the k-means clustering algorithm after using complex con-
jugation to reflect the visibilities to have positive w (Pratley et al.
2019b). Because the w-stacks are clustered to minimize error, the
memory and computational load of each [GC]k has previously been
ignored when assigning one stack k per compute node. When the
majority of visibilities lie in only a few stacks, the total available
memory and resources for construction and application of [GC]k is
bottlenecked. This is especially the case when there is one [GC]k
per MPI node. This problem is emphasized for extremely wide-
fields of view and large values of w, where the w-projection kernel
size scales as 2w

∆u
, with 1

∆u
∝ field of view, and for large num-

bers of visibilities. Hence, these factors have a large impact on the
required computational resources in kernel construction and appli-
cation, as we demonstrate in Section 5.

In the next section we describe an algorithm that solves this
bottleneck. We split the operator [GC]k into smaller operators
[GC]jk that can be spread across multiple nodes j for w-stacks in-
dexed by k. We remove the requirement that image domain correc-
tion and Fourier domain correction are applied on the same node.
We restrict the index j for nodes that apply Fourier domain cor-
rection and index k for nodes that apply image domain correction.
This allows even distribution of the memory load, kernel construc-
tion, and application of the operator [GC] to ensure scalability as
demonstrated in Section 5.

c© 2019 RAS, MNRAS 000, 1–4



Load balancing for interferometric image reconstruction 3

4 ALL-TO-ALL DISTRIBUTED MEASUREMENT
OPERATOR

In this section we introduce a new MPI distribution strategy for the
application of a wide-field measurement operator. This process al-
lows the FFTs of the w-stacks to be evenly distributed across all
nodes while allowing the sparse matrix operations to be distributed
evenly across all nodes. Communicating only the grid points that
are needed for degridding minimizes communication in an inter-
mediate all-to-all operation.

4.1 Distributing measurements for computational load

First the k-means algorithm is used to sort the visibilities into w-
stacks yk. The visibilities of each stack yk are distributed across
MPI nodes yjk, where 1 ≤ j ≤ nd, to evenly distribute the com-
putation of [GC]. The computational load of an individual visibility
yki is determined by the support size

support(wi − w̄k,∆u) = max{Jmin, 2(wi − w̄k)/∆u} , (8)

where Jmin is the 1d support size of the anti-aliasing kernel (Pratley
et al. 2019a). It is then straightforward to determine the total com-
putational load of [GC] and then distribute it evenly across nodes j.
This is done by calculating the average computational load across
all nodes from j = 1 to j = nd in order, filling each node j with
visibilities until it reaches the average computational load.

In practice, it is difficult to fill each node with the exact aver-
age computational load, because each visibility has its own integral
(indivisible) computational load. This can be accommodated by al-
lowing the last node to overfill slightly and keeping the rest of the
nodes under the average load. Testing has shown that the overfill
amount on the last node is insignificant.

4.2 All-to-all distribution of Fourier grid subsections

With the computational load of [GC] distributed across the nodes,
the measurement equation needs to map sections of the grid that
need to be sent to each node j from each stack k to minimize com-
munication. Without loss of generality, we let 1 ≤ k, j ≤ nd. The
MPI measurement equation reads

yjk = Wjk[GC]jkAllToAlljk
(

MjkFZS̃kx
)
, (9)

where the chirp multiplication and FFT are applied on node k
(assuming one S̃k per node for simplicity), the operator Mjk ∈
RKjk×K selects only the grid sections (of sizeKj) of the FFT grid
(of size K) of stack k that are needed for degridding on node j,
which are then sent to node j with the MPI all-to-all operation. This
is followed by degridding to the visibilities on node j that belong to
stack k using [GC]jk ∈ CMjk×Kjk . In practice, [GC]jk are com-
bined into one sparse matrix on each node that has

∑
kMjk rows

and
∑
j Kjk columns. This entire process is visualized in Figure 1.

The application of the adjoint operator reads

xdirty = AllSumAllk
(

S̃
†
kZ†F†×

nd∑
j=1

[
M†jkAllToAllkj

(
[GC]†jkW†jkyjk

)])
,

(10)

where node j grids visibilities from stack k, these grid sections are
sent from node j to stack k through an all-to-all operation. The
grid sections from each node j are added to the full FFT grid of
each stack k. An inverse FFT is applied followed by cropping of

the image. Multiplication of the conjugate chirp is applied on each
stack k followed by an all-sum-all of the images to produce the
same dirty map on each MPI node.

Extensive unit testing has shown that the distributed com-
putation is equivalent to the non distributed computation and the
standard w-stacking w-projection algorithm. It is worth noting that
when nd×K > 232−1, 64 bit integer types are specifically needed
for indexing across nd ×K FFT pixels without overflow.

5 IMPLEMENTATION AND APPLICATION

In this section we demonstrate the effectiveness of evenly distribut-
ing the computational load using the algorithm presented in Sec-
tion 4. This algorithm has been implemented in the interferometric
imaging software package PURIFY using C++ and MPI. PURIFY
is powered by distributed convex optimisation algorithms imple-
mented in the software package SOPT2.

To demonstrate the effectiveness of the algorithm, we simulate
reconstruction of a 25 by 25 deg field of view, using a Gaussian
variable sampling density in uvw following Pratley et al. (2018).
u and v are represented in radians, with a standard deviation of
π/3. w is represented in wavelengths, with a standard deviation
of 200 wavelengths, but was constrained to values between ±600
wavelengths. An 1024 by 1024 pixel image of M31 is considered,
where the pixel size is 90 by 90 arcseconds. We add Gaussian noise
to the measurements, so that the visibilities have an input signal to
noise ratio of 30 decibels Pratley et al. (2018). We then apply the
alternating direction method of multipliers (ADMM) algorithm as
performed in Pratley et al. (2018, 2019a,c). We used a minimal
gridding kernel support size of Jmin = 4 for the Kaiser-Bessel
kernel.

First we use conjugate symmetry to reflect the visibilities to
have w ≥ 0. Then we use the k-means clustering algorithm to as-
sign each visibility to a w-stack indexed by k and to calculate each
w̄k. Then we iterate through the visibilities to assign the computa-
tional load across the nodes, following Section 4. The visibilities
and w-stack indexes are redistributed using an all-to-all operation.
Then the w-projection kernels shown in Equation 6 are constructed
using adaptive quadrature to an accuracy of 10−6 in absolute and
relative error, which has shown to be accurate to 1% in the image
domain (Pratley et al. 2019a). This corrects each visibility for the
w offset determined by w̄k and the w-stack index k.

We perform reconstruction using 2 billion visibilities with 50
nodes of the Grace supercomputing cluster at University College
London (UCL). Each node has two 8 core Intel Xeon E5-2630v3
processors and 64 Gigabytes of RAM3. Note that this is exactly the
same configuration used in the recent work of Pratley et al. 2019b,
where an MWA Fornax A observation was reconstructed using 126
million visibilities.

The memory used to store [GC] is distributed across 50 com-
pute nodes. The memory needed to store [GC] was approximately
21 Gigabytes on each node (3 Tb across all nodes). However, for
efficient layout for memory access [GC]† was also stored, requir-
ing an additional 3 Tb across all nodes. The 2 billion visibilities
amounts to 32 Gigabytes spread evenly across the nodes. To store
the weights and uvw-coordinates during construction of [GC] re-
quires 64 Gigabytes of memory spread evenly over the cluster.

2 https://github.com/astro-informatics/sopt
3 More details can be found at https://wiki.rc.ucl.ac.uk/
wiki/RC_Systems#Grace_technical_specs
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Figure 1. Each node starts with a copy of x. The linear operation S̃k applies the gridding correction and multiplication of the chirp on node k. Each node
performs zero padding and an FFT with the operation FZ. The operation Mjk selects sections of the FFT grid on node k that are required on node j for
degridding (this is determined by the columns of [GC]jk). The colored squares show regions of the grid that are to be sent to each node, with each color
corresponding to a value of j. The sections of the FFT grid are distributed through a distributed MPI all-to-all communication step. This is followed by the
application of [GC]jk for the kth w-stack on node j, to interpolate the visibilities yjk off of the grid, with the w-projection kernel performing the correction
for the offset w − w̄k . The adjoint process corresponds to performing each step in reverse, followed by an all-sum-all operation over the w-stacks.

Sorting and distributing the visibilities took approximately 2
minutes. Kernel construction took 1 hour and 5 minutes. Applica-
tion of the combined gridding and degridding operation took ap-
proximately 25 seconds. The ADMM algorithm converged in ap-
proximately 20 minutes with 9 iterations. The signal to noise ratio
of the reconstruction was calculated as in Pratley et al. (2018) to be
31.49 decibels.

Applying the standard distribution method of the w-stacking
w-projection hybrid algorithm was not possible for the scenario
considered due to memory requirements, where each [GC]k re-
quires approximately 1 to 50 Gigabytes of memory. Additionally,
even if there was enough memory on each node, run time would in-
crease greatly due to lack of CPU cores on the heavily loaded nodes
acting as a bottleneck. It is clear that the distribution method pre-
sented in this work circumvents this bottleneck in resources and en-
ables accurate interferometric image reconstruction over extremely
wide-fields of view for very large data sets.
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