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ABSTRACT

We present the learned harmonic mean estimator with normalizing flows – a robust, scalable and
flexible estimator of the Bayesian evidence for model comparison. Since the estimator is agnostic to
sampling strategy and simply requires posterior samples, it can be applied to compute the evidence
using any Markov chain Monte Carlo (MCMC) sampling technique, including saved down MCMC
chains, or any variational inference approach. The learned harmonic mean estimator was recently
introduced, where machine learning techniques were developed to learn a suitable internal importance
sampling target distribution to solve the issue of exploding variance of the original harmonic mean
estimator. In this article we present the use of normalizing flows as the internal machine learning
technique within the learned harmonic mean estimator. Normalizing flows can be elegantly coupled
with the learned harmonic mean to provide an approach that is more robust, flexible and scalable than
the machine learning models considered previously. We perform a series of numerical experiments,
applying our method to benchmark problems and to a cosmological example in up to 21 dimensions.
We find the learned harmonic mean estimator is in agreement with ground truth values and nested
sampling estimates. The open-source harmonic Python package implementing the learned harmonic
mean, now with normalizing flows included, is publicly available. §

1. INTRODUCTION

Model selection plays a crucial role in understanding
the complexities of the Universe. It involves the task
of identifying the underlying model that best describes
observations, for instance of astrophysical phenomena.
The field of Bayesian statistics provides a framework for
statistical inference and decision-making that incorpo-
rates prior knowledge to update probabilities based on
observed data. This approach is well-suited for cosmol-
ogy, for example, as experiments in the field tend to
consist of single observations of events, as opposed to
repeatable experiments which are at the core of the fre-
quentist framework. As a consequence, Bayesian infer-
ence and model comparison are widespread in the field
(Trotta 2008). In the Bayesian formalism, an essential
tool in this process is the estimation of the Bayesian evi-
dence, also called the marginal likelihood, which quanti-
fies the probability of observed data given a model. The
Bayesian evidence allows us to evaluate the relative plau-
sibility of models and assess which hypotheses are best
supported by the available data, which is of course not
only useful in cosmology but in many other fields.
As a topical illustration of the importance of model

selection in cosmology, recent baryon acoustic oscilla-
tions measurements from the Dark Energy Spectroscopic
Instrument (DESI Collaboration et al. 2016), combined
with observations of the cosmic microwave background
(Aghanim et al. 2020; Carron et al. 2022; Madhavacheril
et al. 2024) and with supernovae Ia measurements from
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PantheonPlus (Brout et al. 2022), Union3 (Rubin et al.
2023) or DESY5 (DES Collaboration et al. 2024), pro-
vide a tantalizing suggestion of the existence of a time-
varying dark energy equation-of-state. Whether dark en-
ergy can be described by Einstein’s cosmological constant
or whether an equation-of-state with w ̸= −1 is required
is a fundamental question of modern cosmology that we
hope to answer definitively in the near future through the
application of Bayesian model selection techniques to up-
coming observational data. We showcase the application
of the methodology presented in this article to precisely
this question through a simulated Dark Energy Survey
(DES) galaxy clustering and weak lensing analysis (cf.
Abbott et al. 2018b).
In practice, the computation of Bayesian evidence

is very challenging as it involves evaluating a multi-
dimensional integral over a potentially highly varied
function. The most widespread method for estimating
the Bayesian evidence, particularly in astrophysics, is
nested sampling (Skilling 2006; Ashton et al. 2022; Buch-
ner 2021). While nested sampling has been highly suc-
cessful and many effective nested sampling algorithms
and codes have been developed (Feroz & Hobson 2008;
Feroz et al. 2009a; Feroz et al. 2009b; Brewer et al. 2011;
Handley et al. 2015a,b; Feroz et al. 2019; Speagle 2020;
Buchner 2021; Williams et al. 2021; Cai et al. 2022),
it imposes constraints on the method used to sample.
By sampling in a nested manner it is possible to repa-
rameterize the likelihood in terms of the enclosed prior
volume such that the evidence can be computed by a
one-dimensional integral. The computational challenge
then shifts to how to effectively sample in a nested man-
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ner, i.e. how to sample from the prior subject to like-
lihood level-sets or isocontours. The need to sample in
this nested manner severely reduces flexibility (hence the
need to design custom nested sampling algorithms), typi-
cally restricting application to relatively low dimensional
settings.1

The harmonic mean estimator of the Bayesian evi-
dence, introduced by Newton & Raftery (1994), pro-
vides much greater flexibility since it only requires sam-
ples from the posterior, available from any Markov chain
Monte Carlo (MCMC) method, for example. However, it
was immediately realized by Neal (1994) that the method
can easily fail catastrophically due to the estimator’s
variance becoming very large. To solve this issue the
learned harmonic mean estimator was recently proposed
by McEwen et al. (2021), where machine learning tech-
niques were developed to learn a suitable internal impor-
tance sampling target distribution. Since the estimator
requires only samples from the posterior and so is ag-
nostic to the method used to generate samples, in con-
trast to nested sampling, it can be easily applied with
any MCMC sampling technique, including saved down
MCMC chains, or any variational inference approach.
This property also allows the estimator to be adapted
to address Bayesian model selection for simulation-based
inference (SBI) (Spurio Mancini et al. 2023), where an
explicit likelihood is unavailable or infeasible.
In this article we present the use of normalizing flows

as the internal machine learning technique within the
learned harmonic mean estimator. Normalizing flows can
be elegantly coupled with the learned harmonic mean to
provide an approach that is more robust, flexible and
scalable than the machine learning models considered
previously. In Polanska et al. (2023) we presented pre-
liminary work introducing normalizing flow as the ma-
chine learning technique within the learned harmonic
mean. We fully develop the methodology in the cur-
rent article, introduce the use of additional, more ex-
pressive flows, and perform more extensive numerical ex-
periments validating and showcasing the method. The
harmonic2 Python package implementing the learned
harmonic mean estimator, including with normalizing
flows, is publicly available.
While normalizing flows can learn a normalized pos-

terior density by definition, the normalization constant
itself, i.e. the Bayesian evidence, is not directly acces-
sible. Nevertheless, the Bayesian evidence can be com-
puted by backing out the normalization constant, as dis-
cussed in Spurio Mancini et al. (2023), by taking the
ratio of the unnormalized posterior (given by the prod-
uct of the likelihood and prior) with the normalizing
flow representing a surrogate for the posterior. This ap-
proach, which we call the näıve normalizing flow esti-
mator in Spurio Mancini et al. (2023), is highly depen-
dent on the accuracy of the approximating normalizing
flow and suffers a large variance, as discussed in Spu-
rio Mancini et al. (2023). For comparison, we compute
this näıve estimator in the current article and demon-
strate its large variance. Very recently, Srinivasan et al.

1 A notable exception that is applicable to high-dimensional set-
tings is proximal nested sampling (Cai et al. 2022), although it is
only applicable for log-convex likelihoods.
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(2024) adopt this näıve estimator and attempt to reduce
its variance by introducing an additional term in the loss
that penalizes variability when training the flow. While
this reduces the variability of the estimator, the estima-
tor nevertheless remains highly dependent on the accu-
racy of the approximating flow and there is no guarantee
that resulting evidence estimates are unbiased. Train-
ing flows using the forward Kullback-Leibler (KL) diver-
gence when given samples from the target distribution
is known to suffer from mode seeking behaviour, where
the learned flow has narrower tails than the target (e.g.
Murphy 2022). While the approach presented in Srini-
vasan et al. (2024) suffers from this problem as it directly
impacts the accuracy of estimated evidence values, our
learned harmonic mean estimator does not. Firstly, in
the learned harmonic mean approach the internal impor-
tance sampling target distribution that is learned should
in any case have narrower tails than the posterior. Sec-
ondly, the distribution that is learned in our approach is
not used as a surrogate for the posterior so it need not
be an accurate approximation. For further details see
Section 2.3 or McEwen et al. 2021.
The remainder of this article is structured as follows.

In Section 2 we briefly review Bayesian model compar-
ison, the original harmonic mean estimator, elucidating
its catastrophic failure arising from its large variance,
and the learned harmonic mean estimator, which solves
this large variance problem. In Section 3 we describe
normalizing flows and how they can be integrated el-
egantly into the learned harmonic mean framework to
provide a more robust, flexible and scalable approach
than the simple machine learning models considered pre-
viously. In Section 4 we present numerical experiments
that validate the effectiveness of our method. This in-
cludes low-dimensional benchmark examples where the
ground truth value is accessible and a higher-dimensional
practical cosmological example on DES-like simulations,
as discussed above, where we validate against the evi-
dence value computed by nested sampling. Finally, in
Section 5 we present concluding remarks.

2. THE HARMONIC MEAN ESTIMATOR

In this section we briefly review Bayesian model com-
parison, the original harmonic mean estimator, and the
learned harmonic mean estimator. We discuss the ex-
ploding variance problem of the original harmonic mean
and describe how the learned harmonic mean solves this
problem.

2.1. Bayesian model comparison

Using empirical data to test theoretical models lies at
the heart of the scientific method, the foundation of re-
search progress and innovation. Bayesian model compar-
ison is a powerful approach for evaluating the relative
plausibility of competing models in the light of data. In
the Bayesian framework probability distributions provide
a quantification of uncertainty.
Bayes’ theorem is a fundamental principle in Bayesian

statistics that allows us to update our beliefs about mod-
els in light of observed data. Consider observed data y
described through a model M parametrised by θ. Bayes’
theorem gives us the posterior p(θ | y,M), the probabil-
ity density of a model’s parameter θ given observed data
y and model M . It is expressed in terms of the prior
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probability density of the model, the likelihood of the
data under that model, and the Bayesian evidence for
the data:

p(θ | y,M) =
p(y | θ,M)p(θ |M)

p(y |M)
=

L(θ)π(θ)
z

. (1)

The likelihood p(y | θ,M) = L(θ) expresses how probable
the observed data y is for different values of the param-
eter θ. The prior p(θ |M) = π(θ) quantifies pre-existing
knowledge or assumptions about θ. The Bayesian evi-
dence, also called the marginal likelihood, p(y |M) = z
is a normalizing factor for the posterior distribution.
The Bayesian evidence is often omitted when estimat-

ing parameters, for instance using MCMC methods, as
only the relative values of the posterior probability are
of interest. However, it is a crucial quantity in Bayesian
model comparison. It quantifies the probability of ob-
serving the data under a particular model, integrating
over the model’s parameter space:

z = p(y |M) =

∫
dθ p(y | θ,M)p(θ |M) =

∫
dθ L(θ)π(θ).

(2)
The Bayesian evidence can be used to compute Bayes’
factors to provide a direct measure of the relative support
for one model over another. The Bayes’ factor between
two models M1, M2 is defined as

BF12 =
p(y |M1)

p(y |M2)
. (3)

Given prior model probabilities, Bayes’ factors offer a
straightforward way to compare models and help make
informed decisions about model selection.
In practice, the Bayesian evidence can be very chal-

lenging to calculate as θ is often high-dimensional.
As a result, computing z involves evaluating a multi-
dimensional integral over a potentially highly varied
function. In principle, this could be done through a
standard MCMC integration of the posterior, but this
approach is not accurate in practice, even in relative
low dimensions. Many alternative methods have been
proposed; for reviews see Friel & Wyse (2012); Clyde
et al. (2007). The most popular method for comput-
ing the evidence, particularly in the astrophysics commu-
nity, is nested sampling Skilling (2006). As discussed al-
ready, many highly effective nested sampling algorithms
have been developed. However, nested sampling imposes
strong constraints on the method used to generate sam-
ples, significantly reducing its flexibility. Consequently,
custom nested sampling algorithms must be designed and
are typically restricted to relatively low dimensional set-
tings.

2.2. The original harmonic mean estimator

The original harmonic mean estimator of the Bayesian
evidence was introduced by Newton & Raftery (1994),
providing an expression for the reciprocal Bayesian evi-
dence ρ = z−1 given by

ρ = Ep(θ | y)

[
1

L(θ)

]
. (4)

This motivates the harmonic mean estimator ρ̂ of the
reciprocal Bayesian evidence, which can be written as an

expectation of the reciprocal of the likelihood under the
posterior,

ρ̂ =
1

N

N∑
i=1

1

L(θi)
, θi ∼ p(θ | y). (5)

The Bayesian evidence can then be straightforwardly ob-
tained as the inverse ẑ = ρ̂−1 (although a more accurate
estimator of the evidence from its reciprocal can also
be considered; McEwen et al. 2021). In principle, this
estimator provides a simple and flexible method of eval-
uating the Bayesian evidence.
However, it was quickly realised that the harmonic

mean estimator can be highly inaccurate due to its vari-
ance growing very large (Neal 1994; Clyde et al. 2007;
Friel &Wyse 2012). The reason for this can be seen when
interpreting the harmonic mean estimator through the
lens of importance sampling (e.g. McEwen et al. 2021).
Equation (4) can be rewritten as

ρ =

∫
dθ

1

z

π(θ)

p(θ | y)
p(θ | y). (6)

It is clear that this expectation is equivalent to impor-
tance sampling, where the target density is the prior π(θ)
and the sampling density is the posterior p(θ | y). This is
in contrast to the typical importance sampling use case,
where the posterior is the target distribution. For im-
portance sampling to be effective, the sampling density
must have fatter tails than the target in order for the
target parameter space to be explored efficiently. If this
condition is not fulfilled, the variance of the expectation
becomes large. In the case of the harmonic mean estima-
tor, the target density (prior) will normally have fatter
tails than the sampling density (posterior). This is be-
cause the posterior gets updated with new information
about the model encoded in the data, and as a result
becomes narrower. Thus, the original harmonic mean
estimator suffers from an exploding variance issue and is
often inaccurate.

2.3. Learned harmonic mean estimator

One strategy to remedy the exploding variance prob-
lem of the harmonic mean estimator was proposed by
Gelfand & Dey (1994), where an arbitrary normalized
density φ(θ) is introduced to rewrite the expectation in
Equation (4) as

ρ = Ep(θ|y)

[
φ(θ)

L(θ)π(θ)

]
, (7)

which naturally results in the estimator

ρ̂ =
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ|y). (8)

The density φ(θ) now takes the role of the importance
sampling target. This estimator can therefore remedy
the exploding variance problem provided that the tar-
get density φ(θ) is selected so that it is contained within
the posterior. However, this condition is not trivial to
enforce, especially in high dimensions since there is a
trade-off between accuracy and efficiency. The contri-
bution to the estimator from each posterior sample θi is
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weighted by the target density φ(θi). Low weights reduce
the contribution of the posterior sample to the estima-
tor, reducing its effective sample size and thus efficiency.
However, the alternative of avoiding low weights can re-
sult in a target φ(θ) that is not contained within the pos-
terior, giving rise to the exploding variance problem. In
prior work, a multivariate Gaussian has been considered
Gelfand & Dey (1994), although this often fails to contain
φ(θ) within the posterior (Chib 1995; Clyde et al. 2007).
Indicator functions have also been considered (Robert
& Wraith 2009; van Haasteren 2014), although typically
result in low efficiency. Other solutions to this problem
have been proposed but they can be inaccurate, ineffi-
cient or limited in their use cases (Chib 1995; Lenk 2009;
Raftery et al. 2006).
The learned harmonic mean estimator was proposed

recently by some of the authors of the current article
(McEwen et al. 2021), where machine learning methods
are used to solve the exploding variance problem of the
original harmonic mean. It was realized by McEwen et al.
(2021) that the optimal target density is the normalized
posterior, i.e.

φoptimal(θ) =
L(θ)π(θ)

z
. (9)

By definition of the problem, however, the normalized
posterior is not accessible as the normalization factor is
the Bayesian evidence itself. However, the target does
not need to be a close approximation of the posterior
for the estimate to be correct. It is more important for
the target’s probability mass to be contained within the
posterior to avoid the variance becoming large. McEwen
et al. (2021) develop a bespoke optimization approach
that learns the posterior density from its samples while
ensuring that the resulting model satisfies this condition.
They also derive an unbiased estimator of the variance of
the estimator and the variance of the variance, which are
empirically shown to be accurate. The estimate of the
Bayesian evidence computed with the learned harmonic
mean thus comes with an error estimate, which can give
an indication of how confident one should be in the result,
and a number of additional sanity checks (McEwen et al.
2021).
The learned harmonic mean results in an accurate

estimator of the Bayesian evidence that is agnostic to
the sampling strategy, just like the original harmonic
mean. This property ensures flexibility of the method,
meaning it can be used in conjunction with efficient
MCMC sampling techniques and variational inference
approaches. The learned harmonic mean has been shown
to be highly accurate on numerous example problems, in-
cluding several cases where the original harmonic mean
had been shown to fail catastrophically (Clyde et al.
2007; Friel & Wyse 2012). However, the bespoke train-
ing approach requires an appropriate model to be cho-
sen carefully and the hyperparameters to be fine-tuned
through cross validation. Moreover, the simple machine
learning models considered previously do not scale well
to high-dimensional settings.

3. LEARNED HARMONIC MEAN ESTIMATOR WITH
NORMALIZING FLOWS

In this section we describe the learned harmonic mean
with normalizing flow for estimation of the Bayesian ev-

idence. Normalizing flows can be elegantly coupled with
the learned harmonic mean to provide an approach that
is more robust, flexible and scalable than the machine
learning models considered previously.

3.1. Normalizing flows

Normalizing flows meet the core requirements of the
learned target distribution of the learned harmonic mean
estimator: namely, they provide a normalized probabil-
ity distribution for which one can evaluate probability
densities. Flows are a class of machine learning model,
where an underlying probability distribution is learned,
e.g., from training data. The learned distribution can
then be sampled from, generating new data instances
similar to those in the training set. The learned approx-
imation of the probability density is also accessible, and
it is normalized, which is crucial for our use.
Normalizing flow models work by transforming a sim-

ple base distribution into a more complex distribution
through a series of bijections (invertible transforma-
tions). For a comprehensive review of normalizing flows
we refer the reader to Papamakarios et al. (2021). The
base distribution is chosen so that it is easy to sample
from and to evaluate its probability density, typically a
Gaussian with unit variance. A vector θ of an unknown
distribution p(θ), can be expressed through a transfor-
mation B of a latent vector u sampled from the base
distribution q(u):

θ = B(u), where u ∼ q(u). (10)

B must be invertible and B and its inverse B−1 must be
differentiable. When these conditions are satisfied, we
can simply calculate the density of the distribution of θ
through the change of variables formula by

p(θ) = q(u)|det JB(u)|−1, (11)

where JB(u) is the Jacobian corresponding to B. Such
transformations are composable: p(θ) can be trans-
formed again, and the resulting normalized density can
be obtained analogously. In practice B consists of a se-
ries of transformations. These are often defined in such
a way that the determinant of JB(u) can be computed
efficiently. This is where the power of normalizing flows
lies – a simple base distribution, when taken through a
series of simple transformations can become much more
expressive and is able to approximate complex targets. In
reality, the resulting distribution is an imperfect approx-
imation of p(θ) that we call pNF(θ, β), where β denotes
the trainable parameters of the transformations.
A multitude of flow architectures with different

strengths have been proposed. In this work (and in the
harmonic code), we use real-valued non-volume preserv-
ing (Dinh et al. 2017) and rational quadratic spline flows
(Durkan et al. 2019). However, any flow model can be in-
tegrated into the method, offering greater computational
scalability.

3.1.1. Real non-volume preserving flows

Real-valued non-volume preserving (real NVP) flows
were introduced by Dinh et al. (2017). Their architec-
ture is relatively simple, consisting of a series of affine
coupling layers. Consider the D dimensional input x,
split into elements up to and following d, respectively,
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Fig. 1.— Diagram illustrating how reducing the temperature
parameter concentrates the probability density of a normalizing
flow. The trained flow at T = 1 is a normalized approximation of
the posterior distribution. The variance of the base distribution,
which we call the temperature parameter T ∈ (0, 1), is reduced,
concentrating the probability density of the transformed distribu-
tion. This ensures that it is contained within the posterior, which
is a necessary condition for the internal learned importance target
distribution of the learned harmonic mean estimator.
x1:d and xd+1:D, for d < D. Given input x, the output y
of an affine couple layer is calculated by

y1:d =x1:d; (12)

yd+1:D =xd+1:D ⊙ exp
(
s(x1:d)

)
+ t(x1:d), (13)

where ⊙ denotes Hadamard (elementwise) multiplica-
tion, and the scale s and translation t are neural net-
works with trainable parameters. The Jacobian of such
a transformation is a lower-triangular matrix, making its
determinant efficient to calculate.

3.1.2. Rational quadratic spline flows

A more complex and expressive class of flows are ra-
tional quadratic spline flows introduced by Durkan et al.
(2019). The architecture is similar to real NVP flows, but
the layers include monotonic splines. These are piecewise
functions consisting of multiple segments of monotonic
rational quadratics with learned parameters. Given in-
put x, the output y of a rational quadratic coupling layer
has the form:

α1:d =Trainable parameters; (14)

αd+1:D =n(x1:d); (15)

yi =gαi
(xi), (16)

where n is a neural network and gαi
is a spline

parametrised by αi, with each bin defined by
a monotonically-increasing rational-quadratic function.
Such layers are combined with alternating affine transfor-
mations to create the normalizing flow. Thanks to their
more expressive and sophisticated architecture, rational
quadratic spline flows are well-suited to higher dimen-
sional and more complex problems than real NVP flows
(Durkan et al. 2019).

3.2. The learned harmonic mean estimator with
normalizing flows

In this work we address the limitations of the simple
machine learning methods considered in the learned har-
monic mean framework previously. Recall, the aim is

to learn an approximation of the posterior from sam-
ples but with the critical constraint that the tails of the
learned distribution are contained within the posterior.
To learn appropriate models a bespoke optimization al-
gorithm was considered in McEwen et al. (2021). Nor-
malizing flows afford an elegant alternative solution for
keeping the learned target density contained within the
posterior, rendering the bespoke training approach un-
necessary. The importance sampling target density is
first learned using a normalizing flow model and then
concentrated by reducing the variance of the base dis-
tribution, i.e. reducing its “temperature”. The resulting
method provides an improved estimator of the Bayesian
evidence that retains the flexibility and accuracy of its
predecessor, while improving its robustness and scalabil-
ity.

3.2.1. Training the flow

Before we estimate the evidence we need to train a
normalizing flow on samples from the posterior. When
training normalizing flows, the forward KL divergence is
well-suited as the loss function L when we have samples
of the target distribution. Consider an unknown poste-
rior distribution of interest p(θ) and its approximating
flow pNF(θ, β), where β are the trainable flow parame-
ters. The KL divergence can be interpreted as a measure
of the dissimilarity between p(θ) and pNF(θ, β) and is
therefore a natural quantity to minimize when training
a normalizing flow. The forward KL divergence between
the two distributions can be expressed as

L(β) =DKL [ p(θ) || pNF(θ, β) ]

=− Ep(θ)

[
log ( pNF(θ, β) )

]
+ const. (17)

Given N samples θi from the posterior, where i =
{1, . . . , N}, the expectation in Equation (17) can be ap-
proximated by Monte Carlo as

L(β) ≈ − 1

N

N∑
i=1

log ( pNF(θi, β) ) + const. (18)

Minimizing this approximation is equivalent to fitting the
normalizing flow to the samples by maximum likelihood
(Papamakarios et al. 2021). We take this approach to
trainining our flow, and minimize the loss given by Equa-
tion (18) using the Adam optimizer (Kingma & Ba 2017;
Dozat 2016). We use a portion of the samples for train-
ing the flow and reserve the rest to be used for inference,
to be substituted when estimating the evidence.
It is worth stressing that this is the standard training

approach for normalizing flows. By replacing the simple
machine learning methods considered in McEwen et al.
(2021) with flows, we render their bespoke training ap-
proach unnecessary, making the method more robust and
flexible.
As discussed in Section 1, training a flow by forward

KL divergence, or equivalently maximum likelihood, can
suffer from mode seeking behaviour, where the learned
flow has narrower tails than the target (e.g. Murphy
2022). Nevertheless, this is not a problem for use of
the flow in the learned harmonic estimator since we seek
a learned distribution that has narrower tails than the
posterior. Moreover, the learned distribution is not used
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as a surrogate for the posterior but rather as the im-
portance sampling target. The learned distribution need
not be a highly accurate approximation of the posterior
but it critically must be concentrated within the poste-
rior. Consequently, the mode seeking behaviour of train-
ing normalizing flows by forward KL divergence does not
compromise the learned harmonic mean estimator.

3.2.2. Concentrating the probability density

Once the flow is trained on samples from the poste-
rior, we concentrate its probability density by reducing
what we call the flow temperature parameter T . This
is a factor T ∈ (0, 1) by which the variance of the base
Gaussian distribution is multiplied. Reducing the base
distribution’s variance has the effect of concentrating its
probability density in parameter space, or reducing its
“temperature” in a statistical mechanics interpretation.
This has the effect of also concentrating the probability
density of the transformed distribution due to the con-
tinuity and differentiability of the flow, as illustrated in
Figure 1. Hence, the concentrated flow is the perfect
candidate for the importance sampling target in the har-
monic mean estimator, as it is normalized and close to
the posterior but contained within it. After a flow is
trained, it can be used in the learned harmonic mean
estimator with different temperature values without the
need to retrain for each T .

3.2.3. Standardization

We standardize the training and inference data. We
calculate the mean and variance of the input training
data represented in a matrix Θtrain and remove that be-
fore fitting the model. This means that each entry of the
data matrix is transformed as

Θtrain
ij 7→ (Θtrain

ij −Θ
train

j )/σtrain
j , (19)

where Θ
train

j is the mean and σtrain
j is the standard devia-

tion of the training data parameter column j (calculated
over the data points). This training data consists of sam-
ples from the parameter space so j ∈ 1, . . . , D, where D
is the dimension of θ. We then apply this same transfor-

mation, with Θ
train

and σtrain vectors kept the same, to
the data points for which we are predicting the probabil-
ity density, namely the inference data. For the density
to still be normalized, we need to then also multiply the
flow density by the Jacobian of this transformation, so
the predicted density for a standardized model pSNF(θ) is

pSNF(θ) = pNF(θ)

D∏
j=1

(σtrain
j )−1. (20)

3.2.4. Evidence error estimate

In addition to an estimate of the evidence itself, we
also require an estimate of its error. In McEwen et al.
(2021) approaches are proposed to estimate the variance
of the learned harmonic mean estimator and also its vari-
ance. Specifically, the Bayesian evidence estimate and
its error are considered ρ̂± σ̂. While quoting these terms
is sufficient for many toy problems, to ensure numerical
stability for practical problems in higher dimensions it is
necessary to always work in log space to avoid numerical

overflow. Converting the error estimate σ̂ to log space
is non-trivial as log(var(x)) ̸= var(log(x)) in general. To
remain in log space we are interested in the log-space

error ζ̂± defined by

log(ρ̂± σ̂) = log(ρ̂) + ζ̂±. (21)

The log-space error estimate can be computed by

ζ̂± = log(ρ̂± σ̂)− log(ρ̂) = log(1± σ̂/ρ̂), (22)

where
σ̂/ρ̂ = exp

(
log(σ̂)− log(ρ̂)

)
. (23)

This way we can avoid computing ρ̂ ± σ̂ directly. We
only compute log(σ̂) − log(ρ̂), which we expect to be
much smaller and less susceptible to overflow. When
quoting the result with log-space errors we use the nota-

tion log(ρ̂)
ζ̂+

ζ̂−
. The log evidence errors can be straightfor-

wardly obtained by swapping the negative and positive
errors of the reciprocal log evidence.

3.2.5. Code

The learned harmonic mean estimator with normaliz-
ing flows is implemented in the harmonic package3, from
version 1.2.0 onwards. The methodology described in
this section, with real NVP and rational quadratic spline
flows, has been implemented in JAX and is available in
recent releases of harmonic on PyPi and GitHub. Fur-
thermore, other parts of the harmonic code have been
updated to run on JAX, which is a Python package offer-
ing acceleration, just-in-time compilation and automatic
differentiation functionality (Bradbury et al. 2018). Con-
sequently, harmonic can now be run on hardware ac-
celerators such as GPUs, potentially reducing computa-
tion times and allowing the user to tackle more complex,
computationally demanding problems. Additionally, the
automatic differentiation functionality opens up the pos-
sibility of optimizing based on evidence (e.g. for exper-
imental design), as gradients are now accessible all the
way down to evidence level, which provides an intriguing
avenue for further research. The normalizing flow por-
tion of the code is implemented using the flax (Heek
et al. 2023), TensorFlow Probability (Dillon et al. 2017),
optax and distrax (DeepMind et al. 2020) packages.

3.2.6. Näıve Bayesian evidence estimation using
normalizing flows

As discussed in Section 1, and first described in Spu-
rio Mancini et al. (2023), since flows are normalized it is
possible to back out their normalizing constant to pro-
vide an estimate of the Bayesian evidence. We recall this
approach here for reference.
Given samples θi an estimate of the evidence can be

computed for each sample by

zi =
L(θi)π(θi)
pNF(θi)

. (24)

While posterior samples are typically available and hence
used, in principle the samples θi do not necessarily need
to be drawn from the posterior. An overall estimate of
the evidence and its spread can then simply be computed

3 https://github.com/astro-informatics/harmonic

https://github.com/astro-informatics/harmonic
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from the mean of these evidence estimates and their stan-
dard deviation. However, the resulting evidence estima-
tor is likely to be biased and will have a large variance.
This is because it is highly dependent on the accuracy
of the learned normalizing flow, which is used as a sur-
rogate for the posterior, as discussed in Section 1. The
learned harmonic mean does not suffer from these issues.

4. NUMERICAL EXPERIMENTS

To validate the effectiveness of the method presented
in this paper, we perform a series of numerical experi-
ments. Firstly, in Section 4.2 we repeat a series of low-
dimensional benchmark problems performed by McEwen
et al. (2021) but using normalizing flows to learn the
importance sampling target. The underlying examples
are described in more detail by McEwen et al. (2021).
The original harmonic mean estimator has been shown
to fail catastrophically for many of these examples (Friel
& Wyse 2012), while our learned harmonic mean remains
accurate. In Section 4.3 we study the impact of vary-
ing the temperature parameter on the evidence estimate,
showing the robustness of our method. Then in Section
4.4 we present a practical application of our method in a
cosmological context for the DES (Dark Energy Survey).
We perform a joint lensing-clustering analysis (“3x2pt”)
on a DES Y1-like configuration. We compare our re-
sults with the values obtained through the conventional
method of nested sampling.

4.1. Architectures, sampling and training

In the experiments where a real NVP flow is used,
translation networks of the affine coupling layers are
given by two-layer dense neural networks with a leaky
ReLU activation function in between. For the scaling
layers this is scaled by another dense layer with a soft-
plus activation. We permute the inputs between coupling
layers to ensure the flow transforms all elements. In the
low dimensional benchmark experiments we consider a
real NVP flow, unless otherwise stated, with six cou-
pling layers, where typically only the first two include
scaling. When we use a rational quadratic spline flow,
it has a range −10 to 10 (outside of this range it de-
faults to a linear transformation). The conditioner for
the spline hyperparameters is a multi-layer perceptron
with a tanh activation. We use a Gaussian base distri-
bution with zero mean and an identity covariance matrix
for all flows.
For the low-dimensional benchmark examples, we gen-

erate samples from the posterior using MCMC meth-
ods implemented in the emcee package (Foreman-Mackey
et al. 2013). In the practical cosmological exam-
ple, we use the Metropolis-Hastings sampling approach
(Metropolis et al. 1953; Hastings 1970) implemented in
the cobaya package (Torrado & Lewis 2019). We then
train the flow on half of the samples by maximum likeli-
hood and use the remaining samples for inference.

4.2. Benchmark examples

4.2.1. Rosenbrock

The Rosenbrock problem is a common benchmark
example considered when estimating the Bayesian ev-
idence. The Rosenbrock distribution’s narrow curving
degeneracy presents a challenge in sufficiently exploring

Fig. 2.— Corner plot of the sampled posterior (solid red) and
a real NVP flow with temperature T = 0.9 (dashed blue) for the
Rosenbrock benchmark problem. The internal importance target
distribution of the estimator given by the concentrated flow is con-
tained within the posterior, as required for the learned harmonic
mean estimator.

the resulting posterior distribution to accurately evalu-
ate the Bayesian evidence. The Rosenbrock function is
given by

f(x) =

d−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
, (25)

where d denotes the number of dimensions. In our ex-
ample we consider a 2-dimensional problem with the log-
likelihood given by logL(x) = −f(x) and a uniform prior
x0 ∈ [−10, 10] and x1 ∈ [−5, 15].
We draw 1, 500 samples for 200 chains, with burn-in of

500 samples, yielding 1, 000 posterior samples per chain.
Figure 2 shows the corner plot of samples from the pos-
terior (solid red line) and a real NVP flow with 2 scaled
and 4 unscaled layers at temperature T = 0.9 (dashed
blue line). It can be seen that the flow approximates the
posterior quite well while remaining contained within it.
This is exactly what we want in a target distribution for
the harmonic mean estimator.
Figure 3a shows a violin plot of the results of this ex-

periment repeated 100 times with posterior samples gen-
erated from different seeds. The ground truth obtained
through numerical integration is shown in red. It can be
seen that the evidence values estimated using our method
are accurate, agreeing with the ground truth value. It
can also be seen that the estimator of the population
variance agrees with the variance measured across the
repeats. Figure 3b shows a violin plot of the variance
estimator across runs alongside the standard deviation
calculated from the variance-of-variance estimator. It
can be seen they are also in agreement. The Bayesian
evidence estimates obtained using the learned harmonic
mean and their error estimates are highly accurate.
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(a) Reciprocal evidence

(b) Variance of reciprocal evidence

Fig. 3.— Violin plots of the reciprocal Bayesian evidence com-
puted by the learned harmonic mean estimator for the Rosenbrock
benchmark problem repeated 100 times. (a) Reciprocal Bayesian
evidence estimates across runs (measured) along with the estimate
of the standard deviation computed by the error estimator (esti-
mated). The ground truth is shown in red. (b) Sample variance of
the estimator across runs (measured) alongside the standard devi-
ation computed by the variance-of-variance estimator (estimated).
The evidence estimates and their error estimators are highly accu-
rate.

4.2.2. Normal-Gamma

We also consider the Normal-Gamma model (Bernardo
& Smith 1994) where data are distributed normally

yi ∼ N(µ, τ−1), (26)

for i ∈ {1, . . . , n}, with mean µ and precision τ . A nor-
mal prior is assumed for µ and a Gamma prior for τ :

µ ∼ N
(
µ0, (τ0τ)

−1
)
, (27)

τ ∼ Ga(a0, b0), (28)

with mean µ0 = 0, shape a0 = 10−3 and rate b0 = 10−3.
The precision scale factor τ0 controls how diffuse the
prior is. Friel & Wyse (2012) apply the original har-
monic mean for this example and show that the evi-
dence estimate does not vary with τ0, unlike the analytic
ground truth value. We repeat this experiment, draw-
ing 1, 500 samples for 200 chains, with burn in of 500

(a) Corner plot for the Normal-Gamma example with τ0 = 0.001
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(b) Estimate accuracy for varying prior sizes

Fig. 4.— (a) Corner plot of the sampled posterior (solid red)
and real NVP flow with temperature T = 0.9 (dashed blue) for
the Normal-Gamma example with τ0 = 0.001. The internal im-
portance target distribution given by the concentrated flow is con-
tained within the posterior, as required for the learned harmonic
mean estimator. (b) Ratio of Bayesian evidence values computed
by the learned harmonic mean estimator with a concentrated flow
to those computed analytically for the Normal-Gamma problem
with error bars corresponding to the estimated standard deviation.
Bayesian evidence estimated with a flow at temperature T = 0.9
(blue) and T = 0.95 (green) are shown, with slight offsets for ease
of visualization. Unlike the original harmonic mean, our method
produces accurate estimates which are sensitive to prior size.

samples, yielding 1, 000 posterior samples per chain. We
use a real NVP flow with 2 scaled and 4 unscaled layers
at temperatures T = 0.9 and T = 0.95 to estimate the
evidence.
Figure 4a shows an example corner plot of the train-

ing samples from the posterior for τ = 0.001 (red) and
from the normalizing flow (blue) at temperature T = 0.9.
Again, it can be seen that the concentrated learned tar-
get is close to the posterior but with thinner tails, as is
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required.
Figure 4b shows the relative accuracy of the evidence

estimate computed using our method for a range of prior
sizes. It can be seen that, unlike the original harmonic
mean estimator, our method is accurate for a range of
τ0. Results are computed with the trained flow at tem-
perature T = 0.9 (blue) and T = 0.95 (green). They are
accurate in both cases, showing that the temperature
parameter does not require fine-tuning.

4.2.3. Logistic regression models: Pima Indian example

We consider an example involving the comparison of
two logistic regression models used to describe the Pima
Indians data (Smith et al. 1988), originally from the Na-
tional Institute of Diabetes and Digestive and Kidney
Diseases.
This analysis was originally performed to study indi-

cators of diabetes in n = 532 Pima Indian women. The
predictors of diabetes considered included the number
of prior pregnancies (NP), plasma glucose concentration
(PGC), body mass index (BMI), diabetes pedigree func-
tion (DP) and age (AGE). The probability of diabetes
pi for person i ∈ {1, . . . , n} is modelled by the logistic
function

pi =
1

1 + exp
(
−θTxi

) , (29)

with covariates xi = (1, xi,1, . . . xi,d)
T and parameters

θ = (θ0, . . . , θd)
T, where d is the total number of covari-

ates considered. The likelihood is given by

L(y | θ) =
n∏

i=1

pyi

i (1− pi)
1−yi , (30)

where y = (y1, . . . , yn)
T is the diabetes incidence with yi

equal to one if patient i has diabetes and zero otherwise.
The prior distribution on θ is a Gaussian with precision
τ = 0.01.
Two such logistic regression models are considered:

Model M1 : covariates = {NP, PGC, BMI, DP};
Model M2 : covariates = {NP, PGC, BMI, DP, AGE},

where both additionally include a bias. We estimate the
Bayes factor of these models BF12 with our method and
compare it to a benchmark value computed by Friel &
Wyse (2012) using a reversible jump algorithm (Green
1995). They obtain a value of BF12 = 13.96 (log BF12 =
2.636), which we treat as ground truth. We draw 5, 000
samples for 200 chains, with burn in of 1, 000 samples,
yielding 4, 000 posterior samples per chain. We use a
real NVP flow with 2 scaled and 4 unscaled layers at
temperature T = 0.9, applying standardization.
Figure 5 shows the corner plots for this example for

both models. The training samples from the posterior
are shown in red and from the normalizing flow at tem-
perature T = 0.9 in blue. Once again, we see that the
concentrated flow is contained within the posterior as
expected. The log evidence found for Model 1 and 2 is
−257.2300.003−0.003 and −259.8570.002−0.002 respectively, result-
ing in the estimate log BF12 = 2.6270.004−0.004, indicating a
slight preference for Model 1. The Bayes factor value
is in close agreement with the benchmark, whereas the

(a) Model 1

(b) Model 2

Fig. 5.— Corner plots of the sampled posterior (solid red) and
real NVP flow trained on the posterior samples with temperature
T = 0.9 (dashed blue) for the Pima Indian benchmark problem
for τ = 0.01. The dimensions correspond to parameters θi asso-
ciated with the covariates included in the analysis. The internal
importance target distribution given by the concentrated flow is
contained within the posterior and has thinner tails, as required
for the learned harmonic mean estimator.

original harmonic mean estimator was not accurate (Friel
& Wyse 2012).

4.2.4. Non-nested linear regression models: Radiata pine
example

In the last benchmark example we compare two non-
nested linear regression models describing the Radiata
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pine data (Williams 1959). The dataset consists of mea-
surements of the maximum compression strength parallel
to the grain yi, density xi and resin-adjusted density zi,
for specimen i ∈ {1, . . . , n}. Two Gaussian linear mod-
els are compared, one with density and one with resin-
adjusted density as variables:

Model M1 : yi = α+ β(xi − x̄) + ϵi, ϵi ∼ N(0, τ−1);
(31)

Model M2 : yi = γ + δ(zi − z̄) + ηi, ηi ∼ N(0, λ−1),
(32)

where x̄, z̄ denote the mean values of xi and zi respec-
tively, and τ and λ denote the precision of the noise for
the respective models. For both models, Gaussian pri-
ors with means µα = 3000 and µβ = 185, and precision
scales r0 = 0.06 and s0 = 6 are chosen. A gamma prior
is assumed for the noise precision with shape a0 = 3
and rate b0 = 2 × 3002. The evidence can be computed
analytically for this example (McEwen et al. 2021).
Using emcee, we draw 10, 000 samples for 200 chains,

with burn in of 2, 000 samples, yielding 8, 000 posterior
samples per chain. We train a rational quadratic flow
consisting of 2 layers, with 50 spline bins. Standard-
ization is applied to the data as detailed in Section 3.2,
which is necessary due to the vast difference in scale of
the parameter dimensions.
Figure 6 shows a corner plot of the training sam-

ples from the posterior (red) and from the normaliz-
ing flow (blue) at temperature T = 0.9 for both mod-
els. Again, it can be seen that the concentrated learned
target is contained within the posterior. The log evi-
dence found for Model 1 and 2 is −310.12840.0007−0.0007 and
−301.70440.0008−0.0008 respectively, resulting in the estimate
log BF12 = 8.4240.001−0.001. The analytic values of the log
evidence are −310.1283 and −301.7046 for Models 1 and
2 respectively, resulting in the estimate log BF12 = 8.424.
The value obtained using our estimator is in close agree-
ment with the ground truth. The learned harmonic mean
gives an accurate estimate of the evidence, whereas the
original harmonic mean estimator fails catastrophically
for this example (Friel & Wyse 2012).

4.3. Robustness of the temperature parameter

Many methods of estimating the evidence require care-
ful fine-tuning of hyperparameters. As explained in Sec-
tion 2.3, this was also the case for the learned harmonic
mean estimator when using the classical machine learn-
ing models as considered previously. The target distribu-
tion was learned using simple machine learning models
and a bespoke optimization approach designed to ensure
the target distribution is contained within the posterior.
The models had to be carefully chosen and their hyper-
parameters had to be fine-tuned for the estimator to be
accurate and validated by cross-validation. In this work,
through the introduction of a more sophisticated machine
learning model, normalizing flows, we are able to avoid
this drawback and create a more robust estimator.
Our learned harmonic mean estimator with normaliz-

ing flows contains essentially just a single hyperparam-
eter: the temperature T of the concentrated flow. We
perform numerical experiments to study the influence of
the temperature parameter T on the evidence estimate.

(a) Model 1

(b) Model 2

Fig. 6.— Corner plot of the the sampled posterior (solid red) and
rational quadratic spline flow trained on the posterior samples with
temperature T = 0.9 (dashed blue) for the Radiata pine benchmark
problem. The internal importance target distribution given by the
concentrated flow is contained within the posterior and has thinner
tails, as required for the learned harmonic mean estimator.

The Rosenbrock benchmark problem is considered again,
as described in Section 4.2.1. The experimental process
is performed for a range of temperatures T ∈ [0.7, 0.95],
repeating it 100 times for each value. For each repeat, a
new seed is used to generate a new dataset of posterior
samples, and to initialize the optimizer.
Figure 7 shows violin plots of the log evidence esti-

mates obtained in this experiment plotted for each tem-
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TABLE 1
Evidence and Bayes factors computed for DES Y1-like 3x2pt analysis

Method log(zΛCDM) log(zwCDM) log BFΛCDM-wCDM Computation time (64 CPU cores)

Learned harmonic mean −65.262+0.011
−0.011 −67.4070.009−0.009 2.1450.014−0.014 16 hours (sampling) + 16 minutes (evidence)

Nested sampling −65.21± 0.32 −67.44± 0.32 2.23± 0.45 94 hours (sampling and evidence)
Näıve flow estimator −64.9± 0.8 −67.0± 1.1 2.1± 1.4 Similar to learned harmonic mean

Fig. 7.— Impact of the temperature parameter value on the ev-
idence estimate. The figure contains violin plots of the evidence
estimates across runs for the Rosenbrock problem for a range of
temperature values. The ground truth is shown in red. It can be
seen that the Bayesian evidence estimates are accurate for a range
of temperatures. This shows that the learned harmonic mean is a
robust method and does not require careful parameter fine-tuning.
The outlier value for T = 0.95 illustrates the fact that even though
the corresponding concentrated flow better approximates the opti-
mal importance target given by the posterior, a flow temperature
closer to unity does not necessarily lead to a better estimate since
as T → 1 it is possible the flow may not contain the posterior (as it
does not represent the true underlying posterior but only a learned
approximation).

perature value. The ground truth, obtained through di-
rect numerical integration is shown in red. It can be
seen that the evidence estimates remain accurate and
unbiased for the range of temperature values considered.
This illustrates the robustness of our method – the tem-
perature parameter does not need to be fine-tuned.
One must nevertheless ensure that the flow is indeed

contained within the posterior as required for the learned
harmonic mean to be accurate. The temperature param-
eter needs to be sufficiently small for this to be the case.
If the flow was a perfect approximation of the posterior,
any value T ≤ 1 would do. In practice this is not the
case, and if the temperature is chosen to be too close to
unity, the flow might not be contained within the poste-
rior in some regions of the parameter space, causing the
estimator’s variance to grow. This effect can partially
be seen when looking at the violin plot for T = 0.95 in
Figure 7. Most of the evidence estimates remain accu-
rate but it can be seen that there exists an outlier. The
smallest evidence estimate computed is many standard
deviations away from the ground truth. To avoid this,
one should always ensure that the flow at the chosen tem-
perature does not have fatter tails than the posterior. If
the flow for T = 1 were a perfect approximation of the
posterior, one would expect the variance of the estimator
to increase as T is reduced below unity due to the result-

ing smaller effective sample size. However, when dealing
with a finite number of samples from the posterior and
imperfect approximations, a temperature value closer to
unity is not always best. When T is large, the possibil-
ity of the flow not being contained within the posterior
increases. It is better to choose a lower, more conserva-
tive value of T when dealing with a more complicated or
high-dimensional posterior. In practice, we find T ≈ 0.9
works well for most problems. A lower T value should
be used if the posterior is particularly complex or high-
dimensional. This value can then be adjusted based on
the error estimate or other diagnostics computed by the
harmonic code (McEwen et al. 2021).

4.4. Practical cosmological example: DES Y1 analysis

In Section 4.2 we showed that the learned harmonic
mean estimator with normalizing flows works very well
on a range of simple benchmark examples, where the
ground truth Bayesian evidence is available. In this sec-
tion we show it also performs well in a practical context,
by applying it to a Dark Energy Survey Year 1 (DES Y1)
example. DES is an on-going cosmological survey de-
signed to gain insight into the nature of dark energy. We
perform a 3x2pt analysis (Abbott et al. 2018a; Joachimi
& Bridle 2010), i.e. a joint analysis of galaxy clustering
and weak lensing considering shear, clustering and their
cross correlation, on a DES Y1-like configuration.
We follow the reference approach described by Cam-

pagne et al. (2023), who extract and compress a subset
of the DES Year 1 lensing and clustering data and set
up a forward model following the DES Y1 Pipeline (Ab-
bott et al. 2018a). We use the DES Y1 redshift distribu-
tions4 and simulate a 3x2pt data vector for a fixed cos-
mology. We use this as our mock data vector and run an
inference pipeline to obtain posterior contours and evi-
dence estimates. We refer the reader to Campagne et al.
(2023) for the priors and all other details. To sample
from the posterior we use the Cobaya package (Torrado
& Lewis 2019) with the Metropolis-Hastings algorithm.
We then apply harmonic to these samples to evaluate the
Bayesian evidence. For comparison, we also sample using
the PolyChord nested sampler (Handley et al. 2015a,b) in
Cobaya, which provides a benchmark Bayesian evidence
estimate. We perform the analysis twice, assuming either
a ΛCDM or wCDM cosmological model, with the dark
energy equation of state parameter w fixed to w = −1 or
free to vary, respectively.
The ΛCDM and wCDM models have 20 and 21 param-

eters respectively. With the Metropolis-Hastings sam-
pler, we run 64 chains per model, obtaining an average
of approximately 5, 800 and 6, 500 samples per chain for
ΛCDM and wCDM respectively. We discard 500 samples
for burn-in in both cases. We train a rational quadratic

4 http://desdr-server.ncsa.illinois.edu/despublic/y1a1_
files/chains/2pt_NG_mcal_1110.fits

http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/chains/2pt_NG_mcal_1110.fits
http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/chains/2pt_NG_mcal_1110.fits
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(a) ΛCDM

(b) wCDM

Fig. 8.— Corner plot of the sampled posterior (solid red) and rational quadratic spline flow trained on the posterior samples with
temperature T = 0.8 (dashed blue) for the DES Y1 analysis example for (a) ΛCDM and (b) wCDM cosmological models. The internal
importance target distribution given by the concentrated flow is contained within the posterior and has thinner tails, as required for the
learned harmonic mean estimator, even in this higher dimensional case.
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flow consisting of 3 layers, with 128 spline bins, applying
standardization, on half of the chains, and use the other
half for inference.
Figure 8 shows the corner plots of the training samples

alongside the flow at T = 0.8. It can be seen the flow
also behaves as expected in this higher-dimensional prac-
tical setting, capturing the posterior distribution while
being contained within it. Log evidence values, Bayes
factors and computation time are reported in Table 1 for
the learned harmonic mean estimator, nested sampling
with PolyChord and by the näıve flow estimate intro-
duced in Spurio Mancini et al. (2023) and described in
Section 3.2.6.
Note that the values computed by the learned har-

monic mean and nested sampling are in close agreement,
showing a slight preference for ΛCDM, matching the con-
figuration of our simulated setup. The values computed
by the näıve estimator are in approximate agreement but
exhibit an error two orders or magnitude larger than
the error of the learned harmonic mean (in higher di-
mensional examples to be reported in an ongoing work
we observe the näıve estimator failing much more catas-
trophically).
In terms of computational speed (summarized in Ta-

ble 1 but reported in great detail here), sampling with
Cobaya using the Metropolis-Hastings algorithm takes
approximately 8 hours for ΛCDM and wCDM each on
64 CPU cores. The compute time added by harmonic
is around 5 minutes on 1 GPU for training and 3 min-
utes on 128 CPU cores to estimate the evidence for
each model. Using PolyChord takes approximately 47
hours for ΛCDM and wCDM each, on the same 64
CPU cores used for the Metropolis-Hastings sampling.
The Metropolis-Hastings algorithm in this case is much
quicker due to the use of a proposal covariance ma-
trix based on a Planck cosmology (Campagne et al.
2023). Thanks to the flexibility of the learned harmonic
estimator, we can leverage this advantage and choose
Metropolis-Hastings over nested sampling, while still be-
ing able to estimate the Bayesian evidence and perform
model comparison. Even in this higher dimensional set-
ting, the learned harmonic mean only adds a few minutes
of compute time on top of the sampler. This demon-
strates the potential scalability of the method and its
potential for computing the evidence from existing saved
down MCMC chains.

5. CONCLUSIONS

In this work we outlined the learned harmonic mean
estimator with normalizing flows, a robust, flexible and
scalable estimator of the Bayesian evidence. Normalizing
flows meet the core requirements of the learned impor-
tance target distribution of the learned harmonic mean
estimator: namely, they provide a normalized probabil-
ity distribution for which one can evaluate probability
densities. We use them to introduce an elegant way to
ensure the probability mass of the learned distribution
is contained within the posterior, a critical requirement
of the learned harmonic mean. This avoids the need for
a bespoke training approach, resulting in a more robust
and flexible estimator. Furthermore, flows offer the po-

tential of greater scalability than the classical machine
learning models considered previously.
To validate its accuracy, we applied the learned har-

monic mean to several benchmark problems. Our
method produced accurate results, even in cases where
the original harmonic mean had been shown to fail. We
also applied the learned harmonic mean to a practical
cosmological example, the Dark Energy Survey Year 1
(DES Y1) data 3x2pt analysis. Even in this higher di-
mensional context for up to 21 parameters our method
computed an estimate that was in excellent agreement
with the conventional approach using nested sampling.
This shows the potential for scalability of our method.
Many existing methods of estimating the Bayesian evi-
dence, including previous work on the learned harmonic
mean, require careful parameter fine-tuning. Beyond the
flow architecture, we only introduced one hyperparame-
ter – the concentrated flow temperature T , which does
not require any fine-tuning. We showed this empirically
by considering a selected benchmark problem for a range
of T values. The estimate remained accurate, demon-
strating the robustness of our method.
Since the learned harmonic mean estimator is decou-

pled from the sampling method, it can be used in a wide
variety of settings. This includes approaches such as
simulation-based inference, variational inference and var-
ious MCMC methods where the evidence could not oth-
erwise be computed accurately, such as the No U-Turn
Sampler (NUTS) (Hoffman & Gelman 2011). When
using MCMC methods for parameter estimation, the
Bayesian evidence can be obtained essentially “for free”
or even post-hoc from saved down MCMC chains. Since
the estimator is agnostic to the sampling strategy, it is
highly flexible. The best suited sampling strategy may
be used for the problem at hand, as we demonstrated
in the DES Y1 example, where Metropolis-Hastings ac-
curately sampled the posterior much faster than nested
sampling. In ongoing work we leverage the flexibility
of the learned harmonic mean to demonstrate its use
with NUTS and the CosmoPower-JAX emulator (Spu-
rio Mancini et al. 2022; Piras & Spurio Mancini 2023) to
scale evidence calculation to ∼ 150 dimensions. Overall,
the learned harmonic mean estimator with normalizing
flows is a robust, flexible and scalable tool for Bayesian
model comparison that can be used in a variety of con-
texts.
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