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ABSTRACT
We present a novel, general-purpose method for deconvolving and denoising images
from gridded radio interferometric visibilities using Bayesian inference based on a
Gaussian process model. The method automatically takes into account incomplete
coverage of the uv-plane, signal mode coupling due to the primary beam, and noise
mode coupling due to uv sampling. Our method uses Gibbs sampling to efficiently ex-
plore the full posterior distribution of the underlying signal image given the data. We
use a set of widely diverse mock images with a realistic interferometer setup and level
of noise to assess the method. Compared to results from a proxy for point source-
based CLEAN method we find that in terms of RMS error and signal-to-noise ratio
our approach performs better than traditional deconvolution techniques, regardless
of the structure of the source image in our test suite. Our implementation scales as
O(np log np), provides full statistical and uncertainty information of the reconstructed
image, requires no supervision, and provides a robust, consistent framework for incor-
porating noise and parameter marginalizations and foreground removal.

Key words: instrumentation:interferometers, methods: data analysis, methods: sta-
tistical

1 INTRODUCTION

The next generation of large-scale radio interferometers,
such as ASKAP (Johnston et al. 2008), MWA (Lonsdale
et al. 2009), PAPER (Parsons et al. 2010), and SKA (Jarvis
2007), promise incredible scientific reward but also incred-
ible data analysis challenges. The tremendous volume of
data, high dynamic range, wide bandwidth, large amounts
of radio interference, and significant foregrounds present se-
rious instrumentation and analysis difficulties (Bhatnagar
2009; Norris et al. 2013). Image deconvolution — the pro-
cess of removing the effects of signal mode coupling due

? Email: sutter@iap.fr

to the primary beam, noise mode coupling due to uv sam-
pling, incomplete Fourier mode sampling, and noise — is
an important first step in scientific analysis from these in-
struments (Thompson et al. 2001). The ideal algorithm for
performing image deconvolution suitable for these upcom-
ing surveys would be: (1) robust to changes in the input
signal and instrument configuration, (2) parametrized by as
few tunable inputs as possible, (3) as automated as possi-
ble, (4) driven by the data rather than user-selected guesses
as to the source signal, (5) as informative as possible given
the difficulty of processing the data even a single time, (6)
scalable to the extreme sizes of future data sets, (7) as fast
as possible, and (8) able to easily incorporate modeling of
foregrounds or other systematics.
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Unfortunately, the most commonly used algorithm for
interferometric image reconstruction, CLEAN (Högbom 1974),
satisfies few – if any — of these criteria. Originally developed
to remove point source foregrounds from a smooth back-
ground source image, CLEAN works by iteratively removing
the effects of high-intensity point sources in the Fourier-
transformed uv-plane. While the original algorithm excels in
a limited number of cases, it is not appropriate for general
reconstruction problems. Modern implementations of CLEAN
that appear in standard radio astronomy packages (e.g.,
CASA (Jaeger 2008)) incorporate several advanced features
such as simultaneous deconvolution at multiple scales (Corn-
well 2008; Rau & Cornwell 2011) and time-varying analy-
sis (Stewart et al. 2011; Rau 2012).

However, even these more advanced versions of CLEAN

require significant fine-tuning and supervision during the de-
convolution process. Users must select thresholds for decid-
ing which pixels contain “point sources” and the amount by
which to remove the point source effects in uv-space. The
optimal choices for these thresholds are not known in ad-
vance for a given observation. Users may also select specific
regions of the image to apply more or fewer CLEANing itera-
tions. CLEAN has no final end state: users must decide when
an image has been deconvolved “enough” without introduc-
ing unwanted artefacts. Finally, CLEAN gives no information
on the uncertainties in the reconstruction.

Realizing the shortcomings of traditional and more
sophisticated CLEAN-based algorithms, methods based on
a regularized likelihood, such as the maximum entropy
method (MEM; Ables 1974; Gull & Daniell 1978; Cornwell
& Evans 1985) generated significant interest. MEM produces
an image estimate which minimizes the difference between
the estimate and the data given the level of noise and some
chosen metric. While MEM requires less fine-tuning and su-
pervision than CLEAN, the user must still choose the metric
(usually expressed as an entropy functional), and the opti-
mal choice of the metric is not known in advance (Starck
et al. 2001). The final reconstructed image is thus only opti-
mal in regards to that metric. Similarly to CLEAN, MEM gives
no uncertainty information and in general tends to underes-
timate the source image intensity (Starck et al. 2001; Sutton
& Wandelt 2006).

As Bhatnagar & Cornwell (2004) and Puetter et al.
(2005) pointed out, optimal reconstruction techniques must
be spatially adaptive and operate at multiple scales simul-
taneously. Many authors have proposed relatively new al-
ternative methods based on compressed sensing techniques
(Wiaux et al. 2009; Suksmono 2009; Wiaux et al. 2010;
Wenger et al. 2010; McEwen & Wiaux 2011; Li et al. 2011;
Carrillo et al. 2012; Wolz et al. 2013; Carrillo et al. 2013),
Bayesian processes (Ayasso et al. 2012), and separation of
smooth and point-like components (Giovannelli & Coulais
2005).

In this work, we present a general purpose, Bayesian
reconstruction algorithm to infer the source image from re-
alistic interferometric radio data. Bayesian analysis starts
with building a generative probabilistic forward model of
the data. Given this model choice, the posterior probability
density function (the posterior distribution) quantifies what
is known about the source image once the data have been
obtained (Gelman et al. 2004). The purpose of this paper is
to demonstrate that a surprisingly simple choice of model

for the source image, that of an isotropic Gaussian process,
performs very well in realistically simulated examples for a
test suite of widely diverse images.

The key to practical Bayesian image analysis is to be
able to navigate efficiently through the very high dimen-
sional parameter space, since every pixel value is an inde-
pendent parameter. For example, in this paper we will ex-
plore posterior distributions in 104-dimensional parameter
spaces. Gibbs sampling is a powerful technique that has been
used successfully for sky maps with more than 106 pixels in
the context of Cosmic Microwave Background signal recon-
struction and power spectrum estimation (Wandelt et al.
2004; Jewell et al. 2004; Sutter et al. 2012). Conceptually,
Gibbs sampling iterates between samples of the signal and
its power spectrum in a way that respects the joint posterior
distribution of signal and power spectrum given the image.
This separation allows for significant speedups compared to
grid based evaluations of the posterior: the algorithm scales
as np lognp, where np is the total number of pixels, in the
ideal pregridded flat-sky limit discussed here.

Our assumptions for our mock observations allow us
to pregrid the intensities before the iterative solution step.
More general curved-sky analysis would necessarily be more
expensive, either with gridding-regridding steps during the
analysis in an AW-projection method or with the spherical
harmonic transform operation in a full sky. This is similar to
the computational scalability of traditional CLEAN. However,
CLEAN typically completes in order ∼ 10 steps, whereas our
method usually requires ∼ 100 iterations. As we will see be-
low, the primary computational cost in each iteration comes
from solving a matrix-vector equation. Fortunately, this is
a common problem in computational science and there are
many fast, scalable solutions available (Press et al. 1986).

While the Gibbs sampling framework itself is indepen-
dent of prior (see, for example, Sutton & Wandelt (2006)
for an implementation based on fluxon models) we choose an
isotropic Gaussian process prior. Gaussian processes are sur-
prisingly flexible in describing a variety of images (Mackay
2003). Because Gibbs sampling can be understood as a non-
linear generalization of the least-squares optimal signal re-
construction provided by the Wiener filter (see Section 3)
without requiring a choice of the signal covariance a priori,
successive samples are always constrained by the data in
regions of high signal-to-noise. In regions of low signal-to-
noise, the Gaussian process is the least informative comple-
tion to a full probabilistic model. In this regime the method
still maps out the signal likelihood taking into account all
modeled signals and imperfections in the data at the two-
point correlation level.

In addition to the speed gains mentioned above, the
method of Gibbs sampling offers several advantages over
traditional deconvolution techniques: (1) it explores the
full posterior shape, giving complete statistical information
on the resulting image; (2) it automatically takes into ac-
count signal mode coupling from the primary beam; (3)
the sampled representation produced by the method makes
marginalization trivial ; (4) it provides optimal reconstruc-
tion (i.e., Wiener filtering) without assuming a signal covari-
ance; (5) since we have already specified the signal prior, the
method has no tunable parameters and operates completely
unsupervised; and (6) it offers a sparse reconstruction tech-
nique with a full Bayesian motivation.
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Section 2 below presents our mock observations and in-
terferometer setup used to assess our new method. Next, in
Section 3 we outline the method of Gibbs sampling as ap-
plied to radio interferometers. In Section 4 we compare our
method to a proxy for traditional CLEAN in terms of recon-
structed image fidelity, residuals, and statistics such as RMS
error and residual signal-to-noise levels. Finally, we conclude
in Section 5 with a discussion of planned extensions and the
potential role of this method in future observations.

2 SIMULATED OBSERVATIONS

2.1 Interferometer Setup

We model the visibility data d obtained from an interfero-
metric observation as

d = IFA s+ I n, (1)

where s is a vector containing a discretization of the input
sky, A is a primary beam pattern, F is a Fourier transform
operator that converts from pixel space to the uv-plane, I is
an interferometer pattern in the uv-plane, and n is a Gaus-
sian realization of the noise. We discretize the signal s, data
d, and noise n with np elements.

We generate all input visibilities within a 20 degree
square patch discretized to 128 pixels per side, similar to
the approach of Myers et al. (2003) and Sutter et al. (2012).
While this size of patch violates the strict flat-sky approxi-
mation, it allows us to explore the validity of our technique
at higher resolutions and probe the range of scales accessible
to realistic interferometers. Because it is easier in interfer-
ometry to perform calculations in visibility space than in
image space (Baron et al. 2012), we do not establish an ob-
servation wavelength for these mock observations, since our
results and conclusions are independent of wavelength.

We model the primary beam pattern A as a Gaussian
with peak value of unity and standard deviation 1.5 deg.
With these parameters the primary beam decreases to a
value of 10−3 halfway to the edge of the box. This allows us
to include all Fourier modes up to the Nyquist frequency in
our analysis and ensures that the periodic boundary condi-
tions inherent in the Fourier transform do not cause un-
wanted edge-effects. We prevent the primary beam from
reaching values below 10−4. This value reflects a balance be-
tween faithfully representing the suppression of signals far
from the point center (so that Fourier transforms have cor-
rect periodic boundaries) and the need to preserve numerical
stability in the conjugate-gradient algorithm utilized in the
method below.

We assemble the interferometer array in a simple way by
randomly placing 12 antennas and selecting all baseline pairs
within the uv-plane. We then allow the assembly to rotate
uniformly for 6 hours while observing the same sky patch at
the north celestial pole. This choice of antenna arrangement
and integration time roughly corresponds to existing instru-
ments, such as an extended configuration of ALMA (Nyman
et al. 2010) or VLA (Perley et al. 2011), although our fidu-
cial setup uses fewer elements to highlight the performance
of our method in less-than-optimal observing regimes. The
interferometer pattern is discretized to the same resolution
as our input images (np = 128 pixels on a side; described

Figure 1. Fiducial interferometer pattern (black) after randomly

placing 12 antennas and integrating for six hours assuming a
pointing at the north celestial pole. The interferometer pattern is

discretized to the same resolution as our input images (np = 128

pixels on a side).

below). We construct the interferometer pattern I by plac-
ing a value of one wherever a baseline length intersects a
pixel during its rotation and zeros elsewhere. We show the
resulting uv-plane coverage in Figure 1. This configuration
covers roughly 70% of the uv-plane, although the coverage
varies significantly for each `-bin, where ` is the radius of a
given annulus in the uv-plane. Some bins, especially at very
low and very high `, have zero coverage due to the lack of
baselines at that distance. However, even if these bins had
adequate coverage, we expect statistics here to be relatively
poor due to the reduced number of modes in these regions.
Most bins have at least 60% coverage and several bins have
complete coverage.

We determine the noise per pixel by summing the inte-
gration time spent in that pixel by all baselines. We do not
adopt a noise model for a particular instrument; rather, we
set the noise variance to be

σ2
i ∝ 1/tobs,i, (2)

where tobs is the observation time in pixel i. We then set
an overall signal-to-noise ratio of 10 by multiplying all noise
variances by a constant value to maintain |IFA s|/|In| = 10.
This provides a scaling of the noise that would normally be
caused by instrument effects such as the effective area of the
apertures and the system temperature in a realistic observa-
tion. We use a Gaussian realization of this noise variance to
generate n in Equation (1). We then multiply this noise by
the interferometer pattern I to maintain consistency with
the signal. Figure 2 shows a particular noise realization for
one of our test images and the resulting data d.
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Figure 2. (left) Noise realization used in all test cases. The noise is randomly selected assuming a variance given by Eq. (2) and an

overall signal-to-noise ratio of 10. (right) Example data d (Equation 1) in the uv-plane for the Einstein test image.

2.2 Test Images

Radio interferometers are used to study a wide variety of
interesting astrophysical and cosmological phenomena, such
as supernova remnants (Bhatnagar et al. 2011), molecular
gas clouds (Gratier et al. 2010), cluster radio halos (Cas-
sano et al. 2010), magnetic fields in dwarf galaxies (Heesen
et al. 2011), the interstellar medium (Zhang et al. 2012), the
galactic center (McClure-Griffiths et al. 2012), and the cos-
mic microwave background (Pearson et al. 2005). To assess
the ability of our method to cope with this variety of targets
we select eight input images drawn from the CASA (Jaeger
2008) user guide 1, which we present in Figure 3.

The test images represent a diverse variety of realis-
tic — and a few unrealistic — imaging scenarios, such as
a protoplanetary disk, a face-on spiral galaxy, a cluster, an
AGN jet and lobe, and the face of Einstein. These images
were provided in a mix of resolutions and dynamic ranges.
To simplify our analysis (but without loss of generality), we
remapped all images to a uniform grid np = 128 pixels on
a side and renormalized all intensities to a peak of unity.
Some test images had artificial artefacts built-in, and the
remapping procedure introduced some additional glitches in
the image. We left these artefacts intact to test the abil-
ity of our isotropic Gaussian process prior to recover highly
anisotropic portions of the data.

3 METHOD OF GIBBS SAMPLING

Previous works have extensively discussed Gibbs Samples
(e.g., Wandelt et al. 2004; Sutter et al. 2012), so we only
briefly introduce the relevant equations as applied to in-
terferometric observations here. We begin with some initial
guess of the angular power spectrum C0

` and progressively

1 http://casaguides.nrao.edu/index.php?title=Sim_Inputs

iterate samples from the conditional distributions

si+1 ← P (s|Ci
`,m) (3)

Ci+1
` ← P (C`|si+1), (4)

where m is the least squares estimate of the signal s given
the data d (i.e., BTN−1Bm = BTN−1d, where B represents
a full signal-to-data operator). The samples (Ci

`, s
i) con-

verge to samples from the joint distribution P (C`, s,m) =
P (m|s)P (s|C`)P (C`) after a sufficient number of iterations.

Given an angular power spectrum sample Ci
`, we gen-

erate a new signal sample by drawing from a multivariate
Gaussian with mean Si(Si +N)−1m and variance ((Si)−1 +
N−1)−1. Here S and N are the signal and noise covariance,
respectively. We do this by solving the set of equations

M si+1 = ATF−1I(INI)−1d

+ F−1S−1/2F ξ1

+ATF−1I(INI)−1/2F ξ2,

(5)

where we define the matrix operator M as

M ≡ F−1S−1F +ATF−1I(INI)−1IFA. (6)

In the above equations AT is the primary beam transpose
and F−1 is the inverse Fourier transform. The first term in
the right-hand side of the above equation provides the solu-
tion for the Wiener-filtered map, while the second and third
terms of Eq. (5) provide random fluctuations with the re-
quired variance. The vectors ξ1 and ξ2 are of length np with
elements drawn from a standard normal distribution. As an
illustration, Figure 4 shows an example Wiener-filtered map
(i.e., from just solving the first term in the right-hand side)
and full signal sample si at a single iteration for the Einstein
test case. We see that the fluctuation terms in Equation (5)
fill in regions weakly constrained by the data with a guess
that mimics the known portions of the signal given the level
of noise.

The signal covariance matrix S is diagonal in the uv-
plane for isotropic signals (which we assume as part of our
Gaussian process prior), so S`,`′ = C`δ`,`′ , where ` = 2πu,

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. Suite of test input images. All images have been rescaled to 128 × 128 pixels and have had their intensities remapped to a

maximum of unity. The repixelization process introduces some artefacts, which we leave in place to assess the ability of our isotropic
prior to handle anisotropic data. Each image is 20 deg across. The color scale ranges from 0.0 (black) to 1.0 (white).

Figure 4. Sample iteration of the Gibbs sampling algorithm

for the Einstein test image, showing the Wiener-filtered signal

(left) and full sample reconstruction with mock fluctuations added
(right). Each image is 20 deg across. The color scale ranges from

0.0 (black) to 1.0 (white).

with u being the radial distance in the uv-plane. Here
and throughout we assume the flat-sky approximation that
makes this identity valid. By construction, Gibbs sampling
explores the exact posterior and therefore treats the cou-
plings introduced by partial sky coverage optimally (Wan-
delt et al. 2004). The algorithm “knows” about the couplings
since they are contained in the data model (Eq. 1) which un-
derlies the analysis. However, to a very good approximation
the noise covariance matrix N is diagonal, and thus we will
assume this for simplicity. We assign to the matrix N en-
tries equal to Ni,j = σ2

i δi,j , where σi is the noise variance
for the ith pixel in the uv-plane. The construction I(INI)−1

provides a pseudo-inverse of N , so that any locations in the

uv-plane with no antenna coverage do not yield infinities
when taking the inverse.

We solve numerically the above matrix-vector equation
using a preconditioned conjugate-gradient scheme (Press
et al. 1986). The preconditioner approximates the diagonal
components of M and is

P−1 = F−1I(INI)−1IF (F−1Ã2), (7)

where Ã is the Fourier transform of the primary beam
pattern. We implemented the code to solve the above
equations with the open-source PETSc library (Balay
et al. 1997, 2010, 2011) and the MPI-parallelized version
of FFTW (Frigo & Johnson 2005).

Given the latest signal sample, si, we generate a new
angular power spectrum sample from Eq. (4) by comput-
ing the variance π2

l in annuli of constant ` on the Fourier-
transformed signal. We then use this variance to draw from
the probability density P (C`|si), which follows an inverse
Gamma distribution, by creating a vector p` of length n`

(assuming a Jeffreys’ ignorance prior) and unit Gaussian
random elements. Here, n` is the number of pixels in the
bin `. The next power spectrum sample is then simply

Ci+1
` =

π`

|p`|2
. (8)

In the above, we assume `(`+1)C` to be constant across
the width of each annulus in the uv-plane. The width of each
annulus can be set as desired. For the test cases which we
work with in this paper we chose the width to be 8π/L,
where L is the longest baseline of the interferometer. This is
four times the uv-space resolution. This choice limits corre-
lations between angular power spectrum bins which develop
as a consequence of partial sky coverage. All `-bins have uni-
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Figure 5. Posterior signal variance in image space (left) and ac-

ceptance mask derived from the variance (right) for the Einstein

test image. The variance map is 20 deg across, and to show the
detailed shape of the variance mask, we have zoomed in on the

inner ten degrees. The acceptance region of the mask is shown in

black.

form width except for the first, which we restrict to cover
only the central zone where we enforce Ci

0 = 0, since our
analysis cannot constrain the DC mode. We wish to capture
as much power spectrum information as possible, so we cor-
respondingly widen the width of the second bin to close this
gap.

To determine convergence so that our iterative samples
from the conditional distributions (Eq. 4) are indeed samples
from the joint distribution, we employ multiple chains with
different random number seeds. Our convergence criterion
is the Gelman-Rubin (G-R) statistic, which compares the
variance among chains to the variance within each chain.
The G-R statistic asymptotes to unity, so convergence is said
to be achieved when this statistic is below a given tolerance
level for each `-bin (Gelman & Rubin 1992). For our test
images we stopped iterating when the G-R statistic reached
less than 1.1, which took from 500 to 1500 steps, depending
on the image.

After convergence, we take the mean of the signal sam-
ples as our reconstructed image and simply calculate the
variance for each pixel to assess the uncertainty in the recon-
struction. Figure 5 shows the variance for the Einstein test
image. We naturally see insignificant variance in the center
of the primary beam where the data support is strongest,
with steadily increasing variance away from the pointing
center.

We may use the variance to build a mask of the final
reconstructed image in which we only accept pixels below a
given variance threshold. While this certainly isn’t necessary
for the method to work, it provides an easy way to combine
the posterior mean and variance information in a single plot.
First, we compute the asymptotic variance σasmp, or the
mean of the variance along the outer edge of image plane.
We then reject any pixel whose variance σ is greater than
σasmp/2 and whose signal-to-noise ratio s/

√
σ < 1. This

last criterion prevents us from masking low-intensity, but
still well-constrained, pixels. The values chosen to create the
mask are arbitrary, and we choose them solely on aesthetic
merit. We repeat: this mask is not necessary to perform
the deconvolution and produce a reconstructed signal. We
only use it to neatly incorporate the measured uncertainty
information in the plotted images.

As we see in Figure 5, the acceptance mask generally

follows the primary beam pattern. The detailed shape near
the mask edge is influenced by the relative signal-to-noise
levels and highlights the non-obvious nature of the regions
of reliable reconstruction. We also notice an asymmetry in
the acceptance mask: this is in response to the asymmetric
nature of the fiducial interferometer setup (Figure 1) and
provides strong evidence that the symmetric nature of our
Gaussian process prior does not greatly influence our infer-
ence.

4 COMPARISON TO CLEAN

We compare images recovered by Gibbs sampling, as de-
scribed in the previous section, to those recovered by a proxy
for the point source-based CLEAN algorithm. CLEAN is imple-
mented in various radio interferometric imaging packages
(such as CASA). However, it is not straightforward to use
these packages to reconstruct images from simulated visibil-
ities already defined on gridded coordinates; these packages
are instead tailored to analyse observations made by real in-
terferometric telescopes, with data in a specific format. Con-
sequently, we compare to reconstructions made with a proxy
for the point source-based CLEAN algorithm. While there are
more sophisticated implementations of CLEAN that would un-
doubtedly perform better with our test images, this gives us
a simple standard of comparison allowing us to demonstrate
the viability of our method. We will include further compar-
isons in future work.

It was shown by Wiaux et al. (2009) that `1 reconstruc-
tion with the Dirac basis (i.e. pixel basis) results in very
similar reconstruction quality to CLEAN (see Wiaux et al.
2009; Figure 1). This is to be expected since it is known al-
ready that CLEAN is closely related to `1 reconstruction with
the Dirac basis (Marsh & Richardson 1987). We thus take a
similar approach to that taken by recent studies (McEwen
& Wiaux 2011; Carrillo et al. 2012; Wolz et al. 2013; Car-
rillo et al. 2013) and use `1 reconstruction with a Dirac basis
as a proxy for the CLEAN algorithm. The reconstructed im-
age that serves as a CLEAN proxy is therefore given by the
solution of the optimisation problem:

min ‖s‖1 such that ‖d− IFAs‖2 6 ε , (9)

where ‖·‖1 denotes the `1 norm and ε is related to a residual
noise level estimator (see, e.g., Wiaux et al. 2009; Carrillo
et al. 2012). We solve this problem using the Sparse OPTi-
misation (SOPT2) package (Carrillo et al. 2012, 2013) us-
ing the Douglas-Rachford splitting algorithm (Combettes &
Pesquet 2007). Note that the SOPT package is a versatile
code, capable of solving much more sophisticated optimi-
sation problems than the straight-forward `1 minimisation
performed here (for examples of more extensive use see Car-
rillo et al. 2012, 2013b; Wolz et al. 2013).

Figures 6 and 7 are galleries of the input images (with-
out noise), our posterior mean reconstruction using Gibbs
sampling, and a standard reconstruction using our imple-
mentation of CLEAN. For all these images we have zoomed in
to the inner 10 degrees where the primary beam selects the
most prominent signal. We have applied our variance-based

2 http://basp-group.github.io/sopt/
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acceptance mask for our Gibbs sampling reconstructions. We
see that Gibbs sampling is able to recover the complete range
of source images to very high fidelity. We even faithfully re-
cover glitches in the input image, such as the asymmetric
protoplanetary disk in the SWOLF image and discontinu-
ous lobe structure in the 3c288 image. This emphasizes the
power of the Wiener Filter: in regions of strong data sup-
port, our samples are driven to the data regardless of choice
of prior. We also recover low-intensity portions of the image
both in the center of the image and towards the edge of the
primary beam, such as the regions between the spiral arms
in the M51HA image. However, there are other low-intensity
regions, such as the lower portion of the mustache in the
Einstein image, where the signal is too low to distinguish it
from the noise, and our mask rejects those pixels.

A comparison to the CLEAN images especially highlights
the abilities of our Gibbs sampling reconstruction technique.
In all images, we recover a broader range of fluxes over a
wider extent than CLEAN (as in, for example, the cluster re-
construction). Also, Gibbs sampling is able to recover por-
tions of the image further into the edges of the primary
beam, as can be easily seen in the 3c288 and HCO+4-360
images. Finally, in images with glitches, such as SWOLF,
CLEAN tends to exaggerate the asymmetries.

Figure 8 shows the residuals (i.e., difference maps) be-
tween the mean posterior signal generated by Gibbs sam-
pling and the input test image. In all cases the variance-
based acceptance mask has been applied. We see that the
maximum residual occurs in the center of the Einstein test
image, where the Gibbs method slightly underestimates the
source intensity. This is probably due to the method at-
tempting to average the very high-contrast features adjacent
to the center. The Einstein image turns out to be the most
difficult: the residuals for all other images are typically an
order of magnitude smaller. While the residuals are some-
what correlated with the distributions of the source image,
like the Einstein test image it appears that our method per-
forms poorest in regions of high intensity contrast. However,
these differences are very mild: typically on the order of 1%
of the input source intensity.

We may further quantify the differences between the
input signals and their reconstructions with CLEAN and our
Gibbs sampling method by binning the intensities, as we
do in Figure 9. Bounding the histograms of the posterior
mean are 2σ error bars measured from the variance in the
generated samples. This is another example of the kind of
information unavailable in traditional reconstruction tech-
niques. For almost all test images and intensity bins, our
posterior mean reconstruction is within two standard devia-
tions of the input signal. This is unsurprising: our Bayesian
method automatically discovers the local variance because
that variance is directly related to the relative level of signal
and noise in a given bin. In a few bins, such as the high-
intensity bin of the Einstein test image, our method tends
to underestimate the true intensity. This is due to the high
pixel-by-pixel contrast in the central image region discussed
above.

While the CLEAN image intensities largely fall within
the uncertainty ranges of the Gibbs reconstruction, there
is a systematic steepening of the distributions: CLEAN tends
to have too many low-intensity pixels and correspondingly
too many high-intensity pixels. This validates the discussion

above which noted that CLEAN does not fully reproduce the
observed range of input fluxes.

Finally, we may further simplify the comparison by re-
ducing our measurement error to a single scalar. Two error
metrics are commonly used: the root-mean-square (RMS)
of the residual map, and the signal-to-noise ratio (SNR).
This last quantity itself has several variations; we take that
of Carrillo et al. (2012):

SNR ≡ 20 log10

σs

σs−ŝ
, (10)

where σx is the standard deviation of image x, with s de-
noting the original image and ŝ denoting the reconstructed
image. For both measures we first apply our variance-based
acceptance mask before calculating the error metrics.

Figure 10 shows the RMS and SNR for each of our
test images for both Gibbs sampling and traditional CLEAN.
As expected from our residuals, Gibbs sampling performed
most poorly in terms of RMS with the Einstein test im-
age due to its highly complex structure. With the excep-
tion of that image and g41.1-0.3.b, all RMS errors are below
4× 10−3. The SNR for all reconstructions with Gibbs sam-
pling fall between 10 and 25. In both RMS and SNR mea-
sures Gibbs sampling outperforms CLEAN for all test images.
The largest differences occur in images with high degrees of
symmetry (e.g., M51HA, SWOLF ) since in these cases our
isotropic Gaussian process prior performs best in marginal
signal-to-noise portions of the image.

5 CONCLUSIONS

We have presented an innovative method for deconvolving
radio interferometric images using the Bayesian method of
Gibbs sampling. Our method naturally offers several advan-
tages over traditional deconvolution approaches. It fully ac-
counts for signal and noise mode coupling and incomplete
uv-plane coverage in an automatic and well-motivated fash-
ion, requires no fine-tuning or supervision as the method
progresses, and provides an informative description of the
uncertainty information in the signal reconstruction. We
choose an isotropic Gaussian process image prior, though
we don’t specify the signal covariance in advance.

We have tested our method with a realistic interfero-
metric observing scenario of a wide variety of source images.
These images represent typical targets, including protoplan-
etary disks and active galactic nuclei jet-and-lobe systems.
Note that our choice of prior is wrong for all test cases,
but the iterative application of the Wiener filter allows us
to discover the source images within the noise and incom-
plete uv-plane coverage. We find that our method is quite
robust: regardless of the structure of the source image we
are able to recover the intensity distribution to a very high
fidelity. Our method outperforms traditional point source-
based CLEAN in terms of intensity distributions, RMS error,
and reconstruction signal-to-noise ratio. As expected given
our isotropic Gaussian process prior, we perform best on
images with large amount of symmetry, though the Wiener
filter provides a route for reliable reconstructions of asym-
metric images in regions of strong data support regardless
of source structure.

Using our method we can also easily incorporate un-
certainty information in the reconstructed image. As dis-

c© 0000 RAS, MNRAS 000, 000–000



8 P.M. Sutter et al.

Figure 6. Beamed input images without noise added (As; left column), posterior mean signal after 500 Gibbs sampling iterations

(middle column), and CLEAN reconstruction (right column). Axes are marked in deg. For clarity we have zoomed in on the innermost 10
degrees where the signal is most prominent. The color scale ranges from 0.0 (black) to 0.6 (white).
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Figure 7. Same as Figure 6 for the remaining four test images.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 8. Residuals (differences between reconstructed signal and beamed input signal As) for the Gibbs sampling algorithm for all

test images. All images are 20 deg across. The color scale ranges from 0.0 (black) to 1.0 (white).

Figure 9. Histograms of sky intensities in the beamed input signal As (red), CLEAN reconstructed sky (green), and Gibbs sampling

reconstructed sky (blue). Error bars (light blue) on the Gibbs sampling intensities are 2σ uncertainties calculated from the posterior
signal samples.

cussed in earlier works (Wandelt et al. 2004), the error model
generated from the isotropic Gaussian process prior tends
to underestimate the true errors, but this situation is far
preferable to no error model at all. With our error model
we can construct acceptance masks based on the local (i.e.,
pixel-by-pixel) signal-to-variance ratios. The desired thresh-
old can be adjusted based on the desired level of confidence
in the deconvolution. Since the sample variance is directly
tied to the relative level of noise by way of the Wiener Filter,
our method naturally and self-consistently determines this
mask.

While the test cases we have presented in this work use
an interferometric setup with realistic noise levels, primary
beam shape, and antenna array, they do represent a rel-
atively simplistic observing scenario. A fully implemented
method would include simultaneous solutions of multiple

frequencies, mosaicked images, and wide bandwidth obser-
vations. Also, we have specified an overall SNR of 10 for our
fiducial observations, and we must examine the performance
of this method in different regimes.

Additionally, future large-scale interferometers will de-
liver incredibly high volumes of data. Image deconvolu-
tion from even a single pointing at a single frequency will
tax most computing systems. To accommodate future data
sets we have implemented our algorithm using the MPI-
parallelized PETSc (Balay et al. 2011) toolkit, so our ap-
proach automatically grows with the size of the data without
loss of scalability. Algorithmically, the most expensive por-
tion of our approach is the solution to Equation (5), which
scales as O(np lognp) in the ideal pregridded flat-sky ap-
proximation we have presented here.

While we have not discussed foreground removal in this
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Figure 10. Quantitative assessment of the errors. We show RMS error between the beamed input signal As and the reconstructed

images in the left plot. In the right plot we show the SNR as defined by Eq. (10). For each image we compare the Gibbs sampling
reconstructed sky (red) to the CLEAN reconstruction (blue). For the RMS (SNR) error measurement, smaller (larger) values indicate

better performance.

work, this method easily accommodates modeling in two
fashions. First, partial signal or foreground information, if
known in advance, can enter as an additional prior. Alter-
natively, foreground models can be added as an additional
sampling step within the algorithm (Wandelt et al. 2004).
The resulting posterior mean signal will thus automatically
include marginalizations over the unconstrained parameters
of the model. The same approach can be taken with the
noise: if, for example, the noise spectrum is known but the
absolute amplitude is not, we can sample over that ampli-
tude. This flexibility, in addition to the other strengths dis-
cussed above, suggest that Gibbs sampling is a promising
response to the challenges of contemporary and future radio
interferometric observations.
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