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Exact Wavelets on the Ball
Boris Leistedt and Jason D. McEwen

Abstract—We develop an exact wavelet transform on the three-
dimensional ball (i.e. on the solid sphere), which we name
the flaglet transform. For this purpose we first construct an
exact transform on the radial half-line using damped Laguerre
polynomials and develop a corresponding quadrature rule. Com-
bined with the spherical harmonic transform, this approach
leads to a sampling theorem on the ball and a novel three-
dimensional decomposition which we call the Fourier-Laguerre
transform. We relate this new transform to the well-known
Fourier-Bessel decomposition and show that band-limitedness in
the Fourier-Laguerre basis is a sufficient condition to compute
the Fourier-Bessel decomposition exactly. We then construct the
flaglet transform on the ball through a harmonic tiling, which is
exact thanks to the exactness of the Fourier-Laguerre transform
(from which the name flaglets is coined). The corresponding
wavelet kernels are well localised in real and Fourier-Laguerre
spaces and their angular aperture is invariant under radial
translation. We introduce a multiresolution algorithm to perform
the flaglet transform rapidly, while capturing all information at
each wavelet scale in the minimal number of samples on the
ball. Our implementation of these new tools achieves floating-
point precision and is made publicly available. We perform
numerical experiments demonstrating the speed and accuracy
of these libraries and illustrate their capabilities on a simple
denoising example.

Index Terms—Harmonic analysis, wavelets, ball.

I. INTRODUCTION

A common problem in data analysis is the extraction
of non-trivial patterns and structures of interest from

signals. This problem can be addressed by projecting the data
onto an appropriate basis. Whereas Fourier analysis focuses
on oscillatory features, wavelets extract the contributions of
scale-dependent features in both real and frequency space
simultaneously. Initially defined in Euclidean space, wavelets
have been extended to various manifolds and are now widely
used in numerous disciplines. In particular, spherical wavelets
[1]–[10] have been extremely successful at analysing data on
the sphere and have now become a standard tool in geophysics
(e.g. [11]–[16]) and astrophysics (e.g. [17]–[32]). Naturally,
data may also be defined on the three-dimensional ball when
radial information (such as depth, redshift or distance, for
example) is associated with each spherical map.

First approaches to perform wavelet-type transforms on the
ball were developed by [33], [34] in the continuous setting
only, which thus cannot be used for exact reconstruction
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in practice. The spherical Haar transform [35], [36] was
extended to the ball by [37] to support exact analysis and
synthesis. However, this framework is very restrictive and
may not necessarily lead to a stable continuous basis [38]–
[40]. The first wavelet transform on the ball to tackle both
the continuous and discrete settings was developed in the
influential work of Lanusse et al. [41]. This wavelet transform
is based on an isotropic undecimated wavelet construction,
built on the Fourier-Bessel transform. Since these wavelets are
isotropic, their angular aperture depends on the distance to the
origin. Although the wavelet transform on the ball is exact in
Fourier-Bessel space, wavelet coefficients must be recovered
on the ball from their Fourier-Bessel coefficients (in order to
extract spatially localised information). However, there exists
no exact quadrature formula for the spherical Bessel transform
(the radial part of the Fourier-Bessel transform) [42], and
thus no way to perform the Fourier-Bessel transform exactly.
Consequently, the undecimated wavelet transform on the ball is
not theoretically exact when wavelet coefficients are recovered
on the ball. Nevertheless, the isotropic undecimated wavelet
transform does achieve good numerical accuracy, which may
be sufficient for many applications.1 Wavelets on the ball have
also been discussed in geophysics by [13], [14], who espoused
a philosophy of separability in the three Cartesian coordinates
of a ball-to-“cubed-sphere-ball” mapping, although in [13]
examples are shown where wavelet transforms have been
performed on each spherical shell only but not in the radial
direction. In ongoing work, these same authors have extended
their approach to the ball, where the wavelet transform in
the radial direction is tailored to seismological applications
by honouring certain major discontinuities in the seismic
wavespeed profile of the Earth [15], [16]. At present, to the
best of our knowledge, there does not exist an exact wavelet
transform of a band-limited signal defined on the ball.

One reason there is no exact wavelet transform on the ball
is due to the absence of an exact harmonic transform. We
resolve this issue by deriving an exact spherical Laguerre
transform on the radial half-line, leading to a new Fourier-
Laguerre transform on the ball which is theoretically exact.
Furthermore, this gives rise to a sampling theorem on the ball,
where all information of a band-limited function is captured in
a finite number of samples. With an exact harmonic transform
on the ball in hand, we construct exact wavelets through a
harmonic tiling, which we call flaglets (since they are built
on the Fourier-LAGuerre transform). Each wavelet kernel is
localised in real and Fourier-Laguerre spaces, and probes a
characteristic angular scale which is invariant under radial
translation. Flaglets allow one to probe three-dimensional

1The accuracy of the Fourier-Bessel transform, and thus the isotropic
undecimated wavelet transform on the ball, may be improved by numerical
iteration, although this can prove problematic for certain applications.
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spherical data in position and scale simultaneously. Moreover,
their exactness properties guarantee that the flaglet transform
captures and preserves all the information contained in a band-
limited signal.

The remainder of this article is organised as follows. In
Section II we define the spherical Laguerre transform on the
radial half-line and the Fourier-Laguerre transform on the ball.
In Section III we construct the exact flaglet transform on the
ball. In Section IV we present a multiresolution algorithm
to compute the flaglet transform and evaluate our algorithms
numerically. A simple denoising example is presented in
Section V. Concluding remarks are made in Section VI.

II. HARMONIC ANALYSIS ON THE BALL

The aim of this section is to construct a novel three-
dimensional transform which is appropriate for spherical co-
ordinates and admits an exact quadrature formula. For this
purpose, we first set out a radial one-dimensional transform
inspired by the Laguerre polynomials and we derive a natural
sampling scheme and quadrature rule on the radial half-
line. We relate this novel spherical Laguerre transform to the
spherical Bessel transform and show that the latter can be
evaluated exactly if the signal is band-limited in the spherical
Laguerre basis. We combine the spherical Laguerre transform
with the spherical harmonics to form the Fourier-Laguerre
transform on the ball, yielding a novel sampling theorem and
an exact harmonic transform.2

A. The spherical Laguerre transform

The Laguerre polynomials, solutions to the Laguerre differ-
ential equation [43], [44], are well known for their various ap-
plications in engineering and physics, notably in the quantum-
mechanical treatment of the hydrogen atom [45], as well as
in modern optics [46], [47]. They form a natural orthogonal
basis on the interval [0,∞) (i.e. non-negative reals R+) with
respect to an exponential weight function. In this work, since
we use this expansion along the radial half-line, we define the
spherical Laguerre basis function Kp(r) with r ∈ R+ as

Kp(r) ≡

√
p!

(p+ 2)!

e−r/2τ√
τ3

L(2)
p

( r
τ

)
, (1)

where L
(2)
p is the p-th generalised Laguerre polynomial of

order two, defined as

L(2)
p (r) ≡

p∑
j=0

(
p+ 2

p− j

)
(−r)j

j!
, (2)

and τ ∈ R+ is a scale factor that adds a scaling flexibility
and shall be defined at the end of this section. The basis

2A harmonic transform is typically associated with basis functions which
are eigenvalues of the Laplacian operator (e.g. the Fourier transform). In
this paper our basis functions on the radial half-line (and thus on the ball)
are not solutions of the Laplacian, hence harmonic analysis on the ball
is interpreted in a broader sense. Nonetheless, these basis functions form
orthonormal transforms and define valid dual spaces. We define band-limited
signals to have bounded support in the transform space of these orthogonal
basis functions.

functions Kp are orthonormal on R+ with respect to a radial
inner product:

〈Kp|Kq〉 =

∫
R+

drr2Kp(r)K
∗
q (r) = δpq. (3)

Note that the complex conjugate ∗ is facultative since we
use real basis functions. Any square-integrable real signal
f ∈ L2(R+) may be expanded as

f(r) =

∞∑
p=0

fpKp(r), (4)

for natural p ∈ N, where fp is the projection of f onto the
p-th basis function:

fp = 〈f |Kp〉 =

∫
R+

drr2f(r)K∗p (r). (5)

The decomposition follows by the orthogonality and com-
pleteness of the spherical Laguerre basis functions: orthonor-
mality is given by Eqn. (3), while the completeness relation
is obtained by applying the Gram-Schmidt orthogonalisation
process to the basis functions and exploiting the completeness
of polynomials on L2(R+, r2e−rdr).

When it comes to calculating the transform, one must
evaluate the integral of Eqn. (5) numerically. We consider
functions f band-limited at P in the spherical Laguerre basis,
such that fp = 0, ∀p ≥ P . It is straightforward to show that
if f is band-limited, then both er/2τKp(r) and er/2τf(r) are
polynomials of maximum degree P−1. In this case, Eqn. (5) is
the integral of a polynomial of order 2P−2 on R+ with weight
function r2e−r. Thus, applying Gaussian quadrature (e.g. [48],
[49]) with P sampling nodes is sufficient to evaluate this
integral exactly. The resulting quadrature formula is known
as the Gauss-Laguerre quadrature and is commonly used to
evaluate numerical integrals on R+. Hence, Eqn. (5) reduces
to a weighted sum:

fp =

P−1∑
i=0

wif(ri)K
∗
p (ri), (6)

where ri ∈ R+ is the i-th root of the P -th generalised
Laguerre polynomial of order two, and

wi =
(P + 2)rie

ri

(P + 1)[L
(2)
P+1(ri)]2

∈ R+ (7)

is the corresponding weight. Any P -band-limited function
f can be decomposed and reconstructed exactly using the
spherical Laguerre transform. All information content of the
function is captured in P samples located in the interval
[0, rP−1] where rP−1 is the largest root of the sampling.
Since rP−1 increases with P , one may wish to rescale the
sampling so that the spherical Laguerre transform contains
samples in any interval of interest [0, R], with R ∈ R+, while
the underlying continuous function is nevertheless defined on
R+. The scale factor τ is then chosen such that τ = R/rP−1.
Figure 1 shows the resulting spherical Laguerre sampling
constructed on r ∈ [0, 1] (i.e. rescaled with τ ) for increasing
band-limit P . Figure 2 shows the first six basis functions
constructed on r ∈ [0, 1] and the sampling nodes used to
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Fig. 1. Spherical Laguerre sampling scheme on r ∈ [0, 1] for increasing
band-limit P . If a function f is P -band-limited then f and the basis functions
need only be evaluated on P points for the spherical Laguerre transform to
be exact. For a particular P , the associated sampling is denser near the origin
since the quadrature is constructed on R+ with measure e−rdr.

obtain an exact transform.3 Note that the spherical Laguerre
transform is a real transform that can be extended to complex
signals by considering the real and imaginary parts separately.

B. Relation to the spherical Bessel transform

The spherical Bessel transform is a fundamental radial
transform arising from the resolution of the Laplacian operator
in spherical coordinates. It is central to the Fourier-Bessel
transform, commonly used in cosmology [50]–[52] to analyse
the spectral properties of galaxy surveys in three dimensions.
In this section we derive an analytical formula to exactly
compute the spherical Bessel transform of a function whose
spherical Laguerre transform is band-limited. This section is
optional to the reader interested in wavelets only.

The spherical Bessel transform of f ∈ L2(R+) reads

f̃`(k) = 〈f |j`〉 =

√
2

π

∫
R+

drr2f(r)j∗` (kr), (8)

for k ∈ R+, ` ∈ N, and where j`(kr) is the `-th order spherical
Bessel function. Note again that the complex conjugate is
facultative since the spherical Bessel functions are real. The
reconstruction formula is given by

f(r) =

√
2

π

∫
R+

dkk2f̃`(k)j`(kr). (9)

The spherical Bessel transform is thus symmetric and the
problem is reduced to the calculation of a similar inner product
for the decomposition and the reconstruction. However, to

3If one preferred to consider the measure dr rather than the spherical
measure r2dr, then the basis functions rKp(r) shown in Figure 2 (c) could
be used in place of the spherical Laguerre basis functions defined here.
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(b) Zoom on the oscillatory features of Kp(r)
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Fig. 2. First six spherical Laguerre basis functions Kp(r) constructed on
r ∈ [0, 1] and the associated sample positions (circles). A function f with
band-limit P = 6 can be decomposed and reconstructed exactly using these
six basis functions only. In that case, f and the basis functions are solely
evaluated at the sampling points. Functions rKp(r) can be viewed as basis
functions in cartesian coordinates satisfying the usual orthogonality relation∫
R+ dr(rKp(r))(rKq(r)) = δpq .

our knowledge, there exists no method to compute such an
integral exactly for a useful class of functions, and finding a
quadrature formula for the spherical Bessel functions on R+ is
a non-trivial issue. Moreover, the use of numerical integration
methods does not always guarantee good accuracy because of
the oscillatory nature of the spherical Bessel functions.

To find a tractable expression to compute Eqn. (8), we first
express f by its spherical Laguerre expansion, giving

f̃`(k) =

√
2

π

∑
p

fpj`p(k), (10)

which is a finite sum if f is band-limited in spherical Laguerre
space. In this expression j`p(k) is the projection of Kp onto
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j`(kr), i.e.

j`p(k) ≡ 〈Kp|j`〉 =

∫
R+

drr2Kp(r)j
∗
` (kr). (11)

Consequently, the problem of computing the spherical Bessel
decomposition of f is recast as evaluating Eqn. (10), through
the computation of the inner product of Eqn. (11). But unlike
the initial problem of Eqn. (8), j`p(k) admits an analytic
formula. Starting from the definition of Laguerre polynomials
in Eqn. (2), one can show that

j`p(k) =

√
p!

(p+ 2)!

p∑
j=0

cpjµ
`
j+2(k), (12)

where the cpj satisfy the following recurrence:

cpj ≡
(−1)j

j!

(
p+ 2

p− j

)
= −p− j + 1

j(j + 2)
cpj−1. (13)

The functions µ`j(k) are the moments of j`(kr)e−
r
2τ , i.e.

µ`j(k) ≡ 1

τ j−
1
2

∫
R+

drrjj`(kr)e
− r

2τ . (14)

From [53] we find an analytical solution for the latter integral:

µ`j(k) =
√
π 2j k̃` τ

3
2

Γ(j + `+ 1)

Γ(`+ 3
2 )

(15)

× 2F1

(
j + `+ 1

2
;
j + `

2
+ 1; `+

3

2
;−4k̃2

)
where k̃ = τk is the rescaled k scale and 2F1 is the Gaussian
hypergeometric function. Since either (j+`+1)/2 or (j+`)/2
is a positive integer, the latter reduces to a polynomial of k̃2

and it is possible to compute the quantity j`p(k) exactly using
Eqn. (12) to (15). Consequently, the inverse spherical Bessel
transform f̃`(k) may then be calculated analytically through
Eqn. (10), which is computed exactly if f is band-limited in
the spherical Laguerre basis.

C. The spherical harmonic transform

Whereas the spherical Laguerre transform is specifically
designed for analysing functions on the radial half-line, the
spherical harmonic transform is a natural choice for the
angular part of a consistent three-dimensional analysis. For
a function f ∈ L2(S2) on the two-dimensional sphere, the
transform reads

f(ω) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ω), (16)

where ω = (θ, φ) ∈ S2 are spherical coordinates of the unit
sphere S2, with colatitude θ ∈ [0, π] and longitude φ ∈ [0, 2π).
Thanks to the orthogonality and completeness of the spherical
harmonics Y`m(ω), the inverse transform is given by the
following inner product on the sphere:

f`m = 〈f |Y`m〉 =

∫
S2

dωf(ω)Y ∗`m(ω), (17)

with surface element dω = sin θdθdφ. For a function which
is band-limited in this basis at L, i.e. f`m = 0, ∀` ≥ L, the

decomposition and reconstruction operations can be performed
with a finite summation over the harmonics. This is usually
resolved by defining an appropriate sampling theorem on the
sphere with nodes ωj = (θj , φj), associated with a quadrature
formula. Various sampling theorems exist in the literature
[54]–[56]; the main features of all sampling theorems are (i)
the number of nodes required to capture all information in
a band-limited signal and (ii) the complexity of the related
algorithms to compute forward and inverse spherical harmonic
transforms. Although this work is independent from this choice
(provided that it leads to an exact transform), we adopt the
McEwen & Wiaux (hereafter MW) sampling theorem [56]
which is equiangular and has the lowest number of samples for
a given band-limit L, namely (L−1)(2L−1)+1 ∼ 2L2. The
corresponding algorithms to compute the spherical harmonic
transforms scale as O(L3) and are numerically stable to band-
limits of at least L = 4096 [56]. Further technical details are
provided in Section IV-B.

D. The Fourier-Laguerre transform

We define the Fourier-Laguerre basis functions
on B3 = R+ × S2 as the product of the spherical
Laguerre basis functions and the spherical harmonics:
Z`mp(r) = Kp(r)Y`m(ω) with the 3D spherical coordinates
r = (r, ω) ∈ B3. The orthogonality and completeness
of the Fourier-Laguerre basis functions follow from the
corresponding properties of the individual basis functions,
where the orthogonality relation is given explicitly by the
following inner product on B3:

〈Z`mp|Z`′m′p′〉 =

∫
B3

d3rZ`mpZ
∗
`′m′p′(r) (18)

= δ``′δmm′δpp′ ,

where d3r = r2 sin θdrdθdφ is the volume element in spher-
ical coordinates. Any three-dimensional signal f ∈ L2(B3)
can be decomposed as

f(r) =

P−1∑
p=0

L−1∑
`=0

∑̀
m=−`

f`mpZ`mp(r), (19)

with L and P the angular and radial band-limits, respectively,
i.e. f is such that f`mp = 0, ∀` ≥ L, ∀p ≥ P . The inverse
relation is given by the projection of f onto the basis functions:

f`mp = 〈f |Z`mp〉 =

∫
B3

d3rf(r)Z∗`mp(r). (20)

The Fourier-Laguerre transform may also be related to the
Fourier-Bessel transform using the results of Section II-B.4

In practice, calculating the Fourier-Laguerre transform re-
quires the evaluation of the integral of Eqn. (20). For this
purpose, combining the quadrature rules on the sphere and

4The Fourier-Laguerre and the Fourier-Bessel transforms of f are related
through

f̃`m(k) =

√
2

π

∑
p

f`mpj`p(k).

If f is band-limited in terms of its Fourier-Laguerre decomposition, the latter
sum is finite and both transforms can be calculated exactly since j`p(k) admit
the exact analytic formula Eqn. (12).
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on the radial half-line leads to a sampling theorem on B3.
For a signal with angular and radial band-limits L and P ,
respectively, all of the information content of the signal
is captured in N = P [(2L − 1)(L − 1) + 1] ∼ 2PL2

samples, yielding an exact Fourier-Laguerre transform on B3.
The three-dimensional sampling consists of spherical shells,
discretised according to a sampling theorem (where here we
adopt the MW sampling theorem), located at the nodes of
the radial sampling. The radial sampling may furthermore be
rescaled to any spherical region of interest [0, R] × S2 using
the parameter τ to dilate or contract the radial quadrature rule.

III. WAVELETS ON THE BALL

The exactness of the Fourier-Laguerre transform supports
the design of an exact wavelet transform on the ball. In
this section we first define a three-dimensional convolution
operator on the ball, derived from the convolutions defined
on the sphere and on the radial half-line. We then construct
flaglets through an exact tiling of Fourier-Laguerre space,
leading to wavelet kernels which are spatially localised and
form a tight frame. Furthermore, each kernel projects onto an
angular scale which is invariant under radial translation. We
finally introduce a multiresolution algorithm to compute the
flaglet transform and capture the information of each wavelet
scale in the minimal number of samples on the ball, while
optimising the computational cost of the transform.

A. Convolutions

The convolution of two functions f and h in a (Hilbert)
space of interest is often defined by the inner product of f
with a transformed version of h. In standard Fourier analysis
this transformation is the natural translation. Likewise, for
two signals on the sphere f, h ∈ L2(S2), the convolution is
constructed from the rotation operator Rω:

(f ? h)(ω) ≡ 〈f |Rωh〉 =

∫
S2

dω′f(ω′) (Rωh)
∗

(ω′). (21)

where, here and henceforth, we restrict ourselves to axisym-
metric kernels h, so that the rotation is only parameterised
by an angle ω = (θ, φ) [8], [57]. The spherical harmonic
decomposition of f?h is given by the product of the individual
transforms:

(f ? h)`m = 〈f ? h|Y`m〉 =

√
4π

2`+ 1
f`mh

∗
`0, (22)

with f`m = 〈f |Y`m〉 and h`0δm0 = 〈h|Y`m〉.
Similarly, we introduce a translation operator Tr to con-

struct the convolution of two functions on the radial half-line
f, h ∈ L2(R+):

(f ? g)(r) ≡ 〈f |Trh〉 =

∫
R+

dr′r′2f(r′) (Trh)
∗

(r′). (23)

The convolution in Laguerre space [58]–[60] is defined such
that the action Tr on the basis functions is

(TrKp)(r
′) ≡ K∗p (r)Kp(r

′), (24)

in which case f?h simplifies to a product in spherical Laguerre
space, yielding

(f ? h)p = 〈f ? h|Kp〉 = fph
∗
p, (25)

where fp = 〈f |Kp〉 and hp = 〈h|Kp〉. Consequently any
function f which is translated by a distance r on the radial
half-line has each coefficient fp transformed into fpKp(r).
This operation corresponds to a translation with a damping
factor, which is illustrated on a wavelet kernel in Figure 3
(the wavelet kernel itself is defined in Section III-C).5

Finally, we define the convolution of two functions on the
ball f, h ∈ L2(B3), where h is again assumed to be axisym-
metric in the angular direction, by combining the convolution
operators defined on the sphere and radial half-line, yielding

(f ? h)(r) ≡ 〈f |TrRωh〉 (26)

=

∫
B3

d3r′f(r′) (TrRωh)
∗

(r′). (27)

The convolution is given in harmonic space by the product

(f ? h)`mp = 〈f ? h|Z`mp〉 =

√
4π

2`+ 1
f`mph

∗
`0p, (28)

with f`mp = 〈f |Z`mp〉 and h`0pδm0 = 〈h|Z`mp〉.

B. Exact flaglet transform

With an exact harmonic transform and a convolution oper-
ator defined on the ball in hand, we are now in a position to
construct the exact flaglet transform on the ball. For a function
of interest f ∈ L2(B3), we define its jj′-th wavelet coefficient
WΨjj

′

∈ L2(B3) as the convolution of f with the flaglet (i.e.
wavelet kernel) Ψjj′ ∈ L2(B3):

WΨjj
′

(r) ≡ (f ?Ψjj′)(r) = 〈f |TrRωΨjj′〉. (29)

The scales j and j′ respectively relate to angular and radial
spaces. Since we restrict ourselves to axisymmetric kernels,
the wavelet coefficients are given in Fourier-Laguerre space
by the product

WΨjj
′

`mp =

√
4π

2`+ 1
f`mpΨ

jj′∗
`0p , (30)

where WΨjj
′

`mp = 〈WΨjj
′

|Z`mp〉, f`mp = 〈f |Z`mp〉 and
Ψjj′

`0pδm0 = 〈Ψjj′ |Z`mp〉. The wavelet coefficients contain
the detail information of the signal only; a scaling function
and corresponding scaling coefficients must be introduced to
represent the low-frequency, approximate information of the
signal. The scaling coefficients WΦ ∈ L2(B3) are defined by
the convolution of f with the scaling function Φ ∈ L2(B3):

WΦ(r) ≡ (f ? Φ)(r) = 〈f |TrRωΦ〉, (31)

or in Fourier-Laguerre space,

WΦ
`mp =

√
4π

2`+ 1
f`mpΦ

∗
`0p, (32)

where WΦ
`mp = 〈WΦ|Z`mp〉 and Φ`0pδm0 = 〈Φ|Z`mp〉.

5Note that this translation operator may also be viewed in real space as a
convolution with a delta function, similarly to the Euclidian convolution.
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(a) Wavelet kernel translated by r = 0.2
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(b) Wavelet kernel translated by r = 0.3
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(c) Wavelet kernel translated by r = 0.4

Fig. 3. Slices of an axisymmetric flaglet wavelet kernel constructed on the
ball of radius R = 1, translated along the radial half-line. The chosen kernel
has j = j′ = 5 and is constructed at resolution P = L = 64. For clarity we
zoomed on the range r ∈ [0, 0.5] (the slice hence relates to a ball of radius
r = 0.5). The three-dimensional wavelet can be visualised by rotating this
slice around the vertical axis passing through the origin. The translation on
the radial half-line not only translates the main feature (the wavelet peak) but
also accounts for a damping factor. Flaglets are well localised in both real and
Fourier-Laguerre spaces and their angular aperture is invariant under radial
translation.

Provided the flaglets and scaling function satisfy an admis-
sibility property, a function f may be reconstructed exactly
from its wavelet and scaling coefficients by

f(r) =

∫
B3

d3r′WΦ(r′)(TrRωΦ)(r′) (33)

+

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj
′

(r′)(TrRωΨjj′)(r′),

or equivalently in harmonic space by

f`mp =

√
4π

2`+ 1
WΦ
`mpΦ`0p (34)

+

√
4π

2`+ 1

J∑
j=J0

J′∑
j′=J′0

WΨjj
′

`mp Ψjj′

`0p.

The parameters J0, J ′0, J and J ′ defining the minimum and
maximum scales must be defined consistently to extract and
reconstruct all the information contained in f . They depend
on the construction of the flaglets and scaling function and are
defined explicitly in the next section.

Finally, the admissibility condition under which a band-
limited function f can be decomposed and reconstructed
exactly is given by the following resolution of the identity:

4π

2`+ 1

|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′

`0p|
2

 = 1, ∀`, p. (35)

We may now construct flaglets and scaling functions that
satisfy this admissibility property and thus lead to an exact
wavelet transform on the ball.

C. Flaglets and scaling functions

We extend the notion of harmonic tiling [8], [9], [61]
to the Fourier-Laguerre space and construct axisymmetric
wavelets (flaglets) well localised in both real and Fourier-
Laguerre spaces. We first define the flaglet and scaling function
generating functions, before defining the flaglets and scaling
function themselves.

We start by considering the C∞ Schwartz function with
compact support

s(t) ≡

{
e
− 1

1−t2 , t ∈ [−1, 1]
0, t /∈ [−1, 1]

, (36)

for t ∈ R. We introduce the positive real parameter λ ∈ R+
∗

to map s(t) to

sλ(t) ≡ s
(

2λ

λ− 1
(t− 1/λ)− 1

)
, (37)

which has compact support in [ 1
λ , 1]. We then define the

smoothly decreasing function kλ by

kλ(t) ≡
∫ 1

t
dt′

t′ s
2
λ(t′)∫ 1

1/λ
dt′

t′ s
2
λ(t′)

, (38)

which is unity for t < 1/λ, zero for t > 1, and is
smoothly decreasing from unity to zero for t ∈ [1/λ, 1].
Axisymmetric flaglets are constructed in a two-dimensional
space corresponding to the harmonic indices ` and p. We
associate λ with `-space and we introduce a second parameter
ν associated with p-space, with the corresponding functions
sν and kν . We define the flaglet generating function by

κλ(t) ≡
√
kλ(t/λ)− kλ(t) (39)

and the scaling function generating function by

ηλ(t) ≡
√
kλ(t), (40)

with similar expressions for κν and ην , complemented with a
hybrid scaling function generating function

ηλν(t, t′) ≡ [ kλ(t/λ)kν(t′)

+ kλ(t)kν(t′/ν) (41)

− kλ(t)kν(t′) ]
1/2

.
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The flaglets and scaling function are constructed from their
generating functions to satisfy the admissibility condition
given by Eqn. (35). A natural approach is to define Ψjj′

`mp

from the generating functions κλ and κν to have support on
[λj−1, λj+1]× [νj

′−1, νj
′+1], yielding

Ψjj′

`mp ≡
√

2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

νj′

)
δm0. (42)

With these kernels, Eqn. (35) is satisfied for ` > λJ0 and
p > νJ

′
0 , where J0 and J ′0 are the lowest wavelet scales used

in the decomposition. The scaling function Φ is constructed
to extract the modes that cannot be probed by the flaglets:6

Φ`mp ≡



√
2`+1
4π ην

(
p

νJ
′
0

)
δm0, if ` > λJ0 , p ≤ νJ′0√

2`+1
4π ηλ

(
`
λJ0

)
δm0, if ` ≤ λJ0 , p > νJ

′
0√

2`+1
4π ηλν

(
`
λJ0

, p

νJ
′
0

)
δm0, if ` < λJ0 , p < νJ

′
0

0, elsewhere.

To satisfy exact reconstruction, J and J ′ are defined from the
band-limits by J = dlogλ(L − 1)e and J ′ = dlogν(P − 1)e.
The choice of J0 and J ′0 is arbitrary, provided that 0 ≤ J0 < J
and 0 ≤ J ′0 < J ′. This framework generalises the notion of
the harmonic tiling used to construct exact wavelets on the
sphere [8], [9]; in fact, the flaglets defined here reduce in
angular part to the wavelets defined in [8] for the axisymmetric
case. The flaglets and scaling function tiling of the Fourier-
Laguerre space of the ball is illustrated in Figure 4. Flaglets
and the scaling function may be reconstructed in the spatial
domain from their harmonic coefficients. In Figure 5 flaglets
are plotted in the spatial domain for a range of different scales;
translated flaglets are plotted in Figure 3. The flaglets are well
localised in both real and Fourier-Laguerre spaces and their
angular aperture is invariant under radial translation.

IV. MULTIRESOLUTION ALGORITHM

In this section we discuss our implementation of the Fourier-
Laguerre and flaglet transforms. We notably introduce a mul-
tiresolution algorithm for the flaglet transform to capture each
wavelet scale in the minimal number of samples on the ball,
thereby reducing the computational cost of the transform.
We finally provide accuracy and complexity tests for our
implementation of both transforms, which we make publicly
available.

A. Algorithm

In our framework, each flaglet Ψjj′ has compact sup-
port in Fourier-Laguerre space on ` × p ∈ [λj−1, λj+1] ×
[νj
′−1, νj

′+1], as shown in Figure 4. Thus, Ψjj′ has band-
limits in ` and p of λj+1 and νj

′+1 respectively. For a band-
limited function f ∈ L2(B3), recall that the jj′-th wavelet
contribution is given by the simple product of Eqn. (30) in
harmonic space. Consequently, the band-limits of WΨjj

′

are
given by the minimum of the band-limits of f and Ψjj′ .

6Note that despite its piecewise definition Φ`mp is continuous along and
across the boundaries p = νJ

′
0 and ` = λJ0 .

` p

` `

p

p

Fig. 4. Tiling of Fourier-Laguerre space at resolution L = N = 64 for flaglet
parameters λ = ν = 2, giving J = J ′ = 7. Flaglets divide Fourier-Laguerre
space into regions corresponding to specific scales in angular and radial space.
The scaling part, here chosen as J0 = J ′0 = 4, is introduced to cover the
low frequency region and insures that large scales are also represented by the
transform.

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Fig. 5. Slices of four successive axisymmetric flaglet wavelet kernels, probing
different scales in angular and radial space. The flaglet parameters are λ =
ν = 2 and the kernels are constructed at resolution L = N = 92 on a ball of
radius R = 1. For visualisation purposes we show the flaglets corresponding
to j ∈ {4, 5} and j′ ∈ {5, 6}, translated to r = 0.3 and zoomed on the range
r ∈ [0, 0.4]. Kernels of angular order j = 4 (first row) probe large angular
scales compared to those of order j = 5 (second row). Similarly, kernels of
radial order j′ = 5 (first column) probe large radial scales compared to those
of order j′ = 5 (second column).
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Thus, for j < J or j′ < J ′ the wavelet scale WΨjj
′

can be represented in fewer samples than f , without any
loss of information. We exploit this property by designing
a multiresolution approach where each wavelet scale is rep-
resented in real space with the smallest number of samples
necessary. Note that the scaling function must be used at full
resolution since its angular and radial band-limits are L and
P respectively. To summarise the multiresolution algorithm,
although f is decomposed at full resolution, the wavelets
coefficients are reconstructed in real space with the minimum
number of samples supporting their band-limits. This leads
to a significant reduction in computation time, which is then
dominated by the small number of full resolution Fourier-
Laguerre transforms.

B. Fast implementation

Our implementation of the algorithms of this article is made
available in the following three packages, which are written in
C and include MATLAB interfaces for most high-level features,
and are described in turn:
• FLAG: spherical Laguerre transform and Fourier-

Laguerre transforms on the ball (exact spherical Bessel
and Fourier-Bessel decompositions are optional features
that additionally require the GNU Math Library7).

• S2LET: axisymmetric wavelet transform on the sphere
through harmonic tiling.

• FLAGLET: axisymmetric flaglet transform on the ball,
combining FLAG and S2LET to construct flaglets in
Fourier-Laguerre space through harmonic tiling.

We make these three packages publicly available.8 All pack-
ages require SSHT9, which implements fast and exact algo-
rithms to perform the forward and inverse spherical harmonic
transforms corresponding to the MW sampling theorem [56].
SSHT requires the FFTW10 package.

Since the naive spherical harmonic transform scales as
O(L4) and the spherical Laguerre transform scales as O(P 2),
the naive complexity of the Fourier-Laguerre transform
is O(P 2L4). However, rather than computing triple inte-
grals/sums over the ball directly, it is straightforward to
show that the Fourier-Laguerre transform can be performed
separately on the sphere and on the radial half-line, like the
Fourier-Bessel transform [50]. Since the angular and radial
samplings are separable, the related transforms can be com-
puted independently through a separation of variables, so that
the complexity reduces to O(Q5) for Q ∼ P ∼ L. The
separation of variables also means we are able to exploit high-
performance recurrences and algorithms that exist for both
the spherical Laguerre and spherical harmonic transforms. In
particular, the radial basis functions Kp(r) are calculated using
a normalised recurrence formula derived from the recurrence
on the Laguerre polynomials. Moreover, a critical point for the
accuracy of the Fourier-Laguerre transform is the computation

7http://www.gnu.org/software/gsl/
8http://www.flaglets.org/
9http://www.jasonmcewen.org/
10http://www.fftw.org/

of the Gauss-Laguerre quadrature, for which we use the previ-
ous normalised recurrence complemented with an appropriate
root-finder algorithm. The fast spherical harmonic transforms
implemented in the SSHT package use the Trapani & Navaza
method [62] to efficiently compute Wigner functions (which
are closely related to the spherical harmonics) through re-
cursion.11 These fast spherical harmonic transform algorithms
[56] scale as O(L3). The final complexity achieved by the
Fourier-Laguerre transform is thus O(Q4).

The flaglet transform (forward and inverse) is calculated in
a straightforward manner in Fourier-Laguerre space, thus its
computation is dominated by the Fourier-Laguerre transform
of the signal, approximation coefficients, and wavelets coeffi-
cients at all scales, requiring [(J + 1− J0)(J ′ + 1− J ′0) + 2]
Fourier-Laguerre transforms. If all wavelet contributions are
reconstructed at full resolution in real space, the overall
wavelet transform scales as O([(J + 1 − J0)(J ′ + 1 −
J ′0)+2]Q4). Note that J and J ′ depend on the band-limits L
and P and the parameters λ and ν, respectively. However, in
the previous section we established a multiresolution algorithm
that takes advantage of the band-limits of the individual
flaglets. With this algorithm, only the scaling function and the
finest wavelet scales (i.e. j ∈ {J−1, J} and j′ ∈ {J ′−1, J ′})
are computed at maximal resolution corresponding to band-
limits L and P . The complexity of the overall multiresolution
flaglet transform is then dominated by these operations and
scales as O(Q4).

C. Numerical validation

In this section we evaluate FLAG and FLAGLET in terms
of accuracy and complexity. We show that they achieve
floating-point precision and scale as detailed in the previous
section. In both cases we consider band-limits L = P = 2i

with i ∈ {2, . . . , 9} and generate sets of harmonic coef-
ficients f`mp following independent Gaussian distributions
N (0, 1). We then perform either the Fourier-Laguerre or
the flaglet decomposition, before reconstructing the har-
monic coefficients, therefore denoted by f rec

`mp. We evalu-
ate the accuracy of the transforms using the error metric
ε = max |f`mp − f rec

`mp|, which is theoretically zero for both
transforms since all signals are band-limited by construction.
The complexity is quantified by observing how the compu-
tation time tc = [tsynthesis + tanalysis]/2 scales with the band-
limits, where the synthesis and analysis computation times,
tsynthesis and tanalysis respectively, are defined explicitly for the
two transforms in the paragraphs that follow. The stability
of both ε and tc is checked by averaging over hundreds of
realisations of f`mp in the cases i ∈ {2, . . . , 7} and a small
number of realisations for i ∈ {8, 9}. Recall that for given
band-limits L and P the number of samples on the ball
required by the exact quadrature is N = P [(2L−1)(L−1)+1].
All tests were run on a 2.5GHz Core i5 processor with 8GB
of RAM.

The results of these tests for the Fourier-Laguerre transform
are presented on Figure 6. The indicators ε and tc are plotted

11Alternatively, Risbo’s method could also be used to compute Wigner
functions [63].

http://www.flaglets.org/
http://www.jasonmcewen.org/
http://www.fftw.org/
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against the number of samples N . Each test starts from
coefficients f`mp randomly generated. The synthesis refers to
constructing the band-limited signal f from the decomposition
f`mp. The analysis then corresponds to decomposing f into
Fourier-Laguerre coefficients f rec

`mp. As shown in Figure 6,
FLAG achieves very good numerical accuracy, with numerical
errors comparable to floating-point precision, and computation
time scales as O(Q4), in agreement with theory.

The results of similar tests for the flaglet transform (entirely
performed in real space) are presented on Figure 7. As
previously, the indicators ε and tc are plotted against the
number of samples N . Since we evaluate the flaglet transform
in real space, a preliminary step is required to construct a
band-limited signal f from the randomly generated f`mp.
This step is not included in the computation time since its
only purpose is to generate a valid band-limited test signal
in real space. The analysis then denotes the decomposition
of f into wavelet coefficients WΨjj

′

and scaling coefficients
WΦ on the ball. The synthesis refers to recovering the signal
f rec from these coefficients. The final step, which is not
included in the computation time, is to decompose f rec into
Fourier-Laguerre coefficients f rec

`mp in order to compare them
with f`mp. As shown in Figure 7, FLAGLET achieves very
good numerical accuracy, with numerical errors comparable
to floating-point precision. Moreover, the full resolution and
multiresolution algorithms are indistinguishable in terms of
accuracy. However, the latter is ten times faster than the
former since only the scaling function and a small number
of wavelet coefficients are computed at full resolution. As
shown in Figure 7, computation time scales as O(Q4) for
both algorithms, in agreement with theory.

V. DENOISING ILLUSTRATION

In this section we illustrate the use of the flaglet transform in
the context of a simple denoising problem. We consider two
datasets naturally defined on the ball and contaminate them
with band-limited noise. We compute the flaglet transform
of the noisy signal and perform simple denoising by hard-
threshold the wavelet coefficients. We reconstruct the signal
from the thresholded wavelet coefficients and examine the
improvement in signal fidelity.

A. Wavelet denoising

Consider the noisy signal y = s + n ∈ L2(B3), where
the signal of interest s ∈ L2(B3) is contaminated with noise
n ∈ L2(B3). A simple way to evaluate the fidelity of the
observed signal y is to examine the signal-to-noise ratio, which
we define on the ball by

SNR(y) ≡ 10 log10

‖s‖22
‖y − s‖22

. (43)

The signal energy is given by

‖y‖22 ≡ 〈y|y〉 =

∫
B3

d3r|y(r)|2 =
∑
`mp

|y`mp|2, (44)

where the final equality follows from a Parseval relation on
the ball (which follows directly from the orthogonality of the
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(a) Numerical accuracy of the Fourier-Laguerre transform
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(b) Computation time of the Fourier-Laguerre transform

Fig. 6. Numerical accuracy and computation time of the Fourier-Laguerre
transform computed with FLAG, where N corresponds to the number of
samples on the ball required to capture all the information contained in the
band-limited test signal. We consider L = P = 2i with i ∈ {2, . . . , 9}.
These results are averaged over many realisations of random band-limited
signals and were found to be very stable. Very good numerical accuracy is
achieved, with numerical errors comparable to floating-point precision, found
empirically to scale as O(Q2) as shown by the red line in panel (a), where
Q ∼ P ∼ L. Computation time scales as O(Q4) as shown by the red line
in panel (b), in agreement with theory.

Fourier-Laguerre basis functions). In practice, we compute
signal energies through the final Fourier-Laguerre space ex-
pression to avoid the necessity of an explicit quadrature rule.

We seek a denoised version of y, denoted by d ∈ L2(B3),
such that SNR(d) is as large as possible in order to extract the
informative signal s. We take the flaglet transform of the noisy
signal since we intend to denoise the signal in wavelet space,
where we expect the energy of the informative signal to be
concentrated in a small number of wavelet coefficients while
the noise energy will be spread over many wavelet coefficients.
Since the flaglet transform is linear, the wavelet coefficients
of the jj′-th scale of the noisy signal is simply the sum of the
individual contributions:

Y jj
′
(r) = Sjj

′
(r) +N jj′(r), (45)

where capital letters denote the wavelet coefficients, i.e.
Y jj

′ ≡ y ?Ψjj′ , Sjj
′ ≡ s ?Ψjj′ and N jj′ ≡ n ?Ψjj′ .

In the illustrations performed here, we assume the noise
model

E
(
|n`mp|2

)
= σ2

( p
P

)2

δ``′δmm′δpp′ , (46)

which corresponds to a white noise for the angular space
with a dependence on the radial mode p, where E(·) denotes
ensemble averages. We do not opt for a white noise in radial
space (i.e. E

(
|n`mp|2

)
= σ2δ``′δmm′δpp′ ) because the latter

has its energy concentrated in the centre of the ball due
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(a) Numerical accuracy of the flaglet transform
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(b) Computation time of the flaglet transform

Fig. 7. Numerical accuracy and computation time of the flaglet transform
computed with FLAGLET, where N corresponds to the number of samples
on the ball required to capture all the information contained in the band-
limited test signal. We consider L = P = 2i with i ∈ {2, . . . , 9}, with
parameters λ = ν = 2, J0 = J ′0 = 0. These results are averaged over
many realisations of random band-limited signals and were found to be very
stable. The flaglet transform is either performed at full-resolution (dashed
lines) or with the multiresolution algorithm (solid lines). Very good numerical
accuracy is achieved by both the full resolution and multiresoltion algorithms
(which achieve indistinguishable accuracy), with numerical errors comparable
to floating-point precision, found empirically to scale as O(PL) as shown by
the red line in panel (a). The multiresolution algorithm is ten times faster than
the full-resolution approach. Computation time scales as O(PL3) for both
algorithms as shown by the red line in panel (b), in agreement with theory.

to the shape of the spherical Laguerre basis functions. The
p-dependence gives a greater weight to small-scale radial
features and hence yields a more homogeneous noise on the
ball, which is more useful for visualisation purposes. For this
noise model one can show that the expected covariance of the
wavelet coefficients of the jj′-th scale reads

E
(
|N jj′(r, ω)|2

)
= σ2

∑
`p

( p
P

)2

|Ψjj′

`0p|
2|Kp(r)|2 (47)

≡
(
σjj
′
(r)
)2

.

Denoising is performed by hard-thresholding the
wavelet coefficients Y jj

′
, where the threshold is taken

as T (r) = 3σjj
′
(r). The wavelet coefficients of the denoised

signal Djj′ ≡ d ?Ψjj′ are thus given by

Djj′(r) =

{
0, if Y jj

′
(r) < T (r)

Y jj
′
(r), otherwise.

(48)

The denoised signal d is then reconstructed from its wavelet
coefficients and scaling coefficients (the latter are not thresh-
olded and thus not altered). To assess the effectiveness of this
simple flaglet denoising strategy when the informative signal
s is known, we compute the SNR of the denoised signal
and compare it to the SNR of the original noisy signal. In

what follows we apply this simple denoising technique to two
datasets naturally defined on the ball.

B. Examples

The first dataset we consider is the full-sky Horizon sim-
ulation [64]: an N-body simulation covering a 1Gpc periodic
box of 70 billion dark matter particles generated from the
concordance model cosmology derived from 3-year Wilkinson
Microwave Anisotropy Probe (WMAP) observations [65]. The
purpose of such a simulation is to reproduce the action of
gravity (and to a minor extent galaxy formation) on a large
system of particles, with the initial conditions drawn from a
cosmological model of interest. The outcome is commonly
used to confront astrophysical models with observations. For
simplicity we only consider a ball of 1MPc radius centered at
the origin so that the structures are of reasonable size. Figure 8
shows the initial data, band-limited at L = P = 128, as well
as their wavelet coefficients with λ = ν = 2, J = J ′ = 7
and scaling coefficients for J0 = J ′0 = 6 since the lower scale
indices do not contain a great deal of information. We see
that the filamentary distribution of matter is naturally suited
to a flaglet analysis on the ball since the informative signal
is likely to be contained in a reduced number of wavelet
coefficients. The original data are corrupted by the addition
of random noise defined by Eqn. (46) for an SNR of 5dB.
The wavelet denoising procedure described previously is then
applied. The denoised signal is recovered with an SNR of
11dB, highlighting the effectiveness of this very simple flaglet
denoising strategy on the ball. The results of this denoising
illustration are presented in Figure 9.

The second dataset we consider is Ritsema’s seismological
Earth model of shear wavespeed perturbations in the mantle,
known as S40RTS [13], [14], [66].12 The model supplies
spherical harmonic coefficients in the angular dimension and
radial spline coefficients in the depth dimension to define a
signal on the ball, which we band-limit. Contrarily to the
first example, Ritsema’s model does not contain a lot of
structure at the smallest scales but essentially contains large-
scale features. As previously, the original data are corrupted by
the addition of random noise defined by Eqn. (46) for an SNR
of 5dB. The flaglet denoising procedure described previously
is then applied. The denoised signal is recovered with an
SNR of 17dB, again highlighting the effectiveness of this very
simple flaglet denoising strategy on the ball. As expected, the
improvement in SNR is better than for the previous dataset
since the informative signal is mainly captured by a few large
wavelet scales. The results of this denoising illustration are
presented in Figure 10.

VI. CONCLUSIONS

One reason an exact wavelet transform of a band-limited
signal on the ball has not yet been derived is due to the absence
of an exact harmonic transform on the ball. We have taken
advantage of the orthogonality of the Laguerre polynomials on
R+ to define the spherical Laguerre transform, a novel radial

12http://www.earth.lsa.umich.edu/∼jritsema/

http://www.earth.lsa.umich.edu/~jritsema/
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(a) Band-limited data (b) Scaling coefficients

(c) (j, j′) = (6, 6) (d) (j, j′) = (6, 7)

(e) (j, j′) = (7, 6) (f) (j, j′) = (7, 7)

Fig. 8. Flaglet decomposition of the N-body simulation dataset considered
for the first denoising example. The initial dataset was pixelised and band-
limited at L = P = 128. The flaglet parameters are λ = ν = 2 (giving
J = J ′ = 7) and the scaling coefficients correspond to J0 = J ′0 = 6
since the lower scale indices do not contain a great deal of information. The
four wavelet coefficients together with the scaling coefficients decompose
the initial dataset exactly, i.e. the original signal can be recovered perfectly
from these wavelet and scaling coefficients. All signals were oversampled on
L = P = 256 for visualisation purposes.

transform that admits an exact quadrature rule. Combined with
the spherical harmonics, we used this to derive a sampling
theorem and an exact harmonic transform on the ball, which
we call the Fourier-Laguerre transform. A function that is
band-limited in Fourier-Laguerre space can be decomposed
and reconstructed at floating-point precision, and its Fourier-
Bessel transform can be calculated exactly. For radial and an-
gular band-limits P and L, respectively, the sampling theorem
guarantees that all the information of the band-limited signal
is captured in a finite set of N = P [(2L − 1)(L − 1) + 1]
samples on the ball.

We have developed an exact wavelet transform on the ball,
the so-called flaglet transform, through a tiling of the Fourier-
Laguerre space. The resulting flaglets form a tight frame and

(a) Band-limited data (b) Noise

(c) Noisy signal (d) Denoised signal

Fig. 9. Denoising of an N-body simulation. The data are contaminated with
a band-limited noise and decomposed into wavelet coefficients. Denoising is
performed by a simple hard-thresholding of the wavelet coefficients, following
a noise model. The denoised signal is then reconstructed from the thresholded
wavelet coefficients. In this example, for an initial SNR of 5dB, the flaglet
denoised signal is recovered with SNR of SNR = 11dB (with resolution
L = P = 128, oversampled on L = P = 256 and using flaglet parameters
λ = ν = 2, J0 = J ′0 = 0, giving J = J ′ = 7).

are well localised in both real and Fourier-Laguerre spaces.
Their angular aperture is invariant under radial translation.
We furthermore established a multiresolution algorithm to
compute the flaglet transform, capturing all the information
contained in each wavelet scale in the minimal number of
samples on the ball, thereby reducing the computation cost of
the flaglet transform considerably.

Flaglets are a promising new tool for analysing signals on
the ball, particularly for extracting spatially localised features
at different scales of interest. Exactness of both the Fourier-
Laguerre and the flaglet transforms guarantees that any band-
limited signal can be analysed and decomposed into wavelet
coefficients and then reconstructed without any loss of in-
formation. To illustrate these capabilities, we considered the
denoising of two different datasets which were contaminated
with synthetic noise. A very simple flaglet denoising strategy
was performed by hard-thresholding the wavelet coefficients
of the noisy signal, before reconstructing the denoised signal
from the thresholded wavelet coefficients. In these illustrations
a considerable improvement in SNR was realised by this sim-
ple flaglet denoising strategy, demonstrating the effectiveness
of flaglets for the analysis of data defined on the ball. Our
implementation of all of the transforms and examples detailed
in this article is made publicly available. In future work we
intend to revoke the axisymmetric constraint by developing
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(a) Band-limited data (b) Noise

(c) Noisy signal (d) Denoised signal

Fig. 10. Denoising of a seismological Earth model. The data are contaminated
with a band-limited noise and decomposed into wavelet coefficients. Denois-
ing is performed by a simple hard-thresholding of the wavelet coefficients,
following a noise model. The denoised signal is then reconstructed from the
thresholded wavelet coefficients. In this example, for an initial SNR of 5dB,
the flaglet denoised signal is recovered with SNR of 17dB (with resolution
L = P = 128 and using flaglet parameters λ = ν = 3, J0 = J ′0 = 0,
giving J = J ′ = 7).

directional flaglets.
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