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A directional continuous wavelet
transform on the sphere

J. D. McEwen, M. P. Hobson, A. N. Lasenby

Abstract— A new construction of a directional continuous
wavelet analysis on the sphere is derived herein. We adopt
the harmonic scaling idea for the spherical dilation operator
proposed recently by Sanz et al. [1] but extend the analysis to a
more general directional framework. Directional wavelets are a
powerful extension that allow one to probe oriented structure
in the analysed function also. In our new spherical wavelet
methodology all functions and operators are defined directly on
the sphere. The construction of wavelets in our framework is
demonstrated with an example.

Index Terms— Wavelet transforms, spheres, convolution.

I. INTRODUCTION

HE extension of wavelet analysis to a spherical manifold

is of important theoretical and practical interest. Wavelets
are a powerful signal analysis tool due to the spatial and scale
localisation encoded in the analysis. The usefulness of such
an analysis has previously been demonstrated on a large range
of physical applications. However, many of these applications
are restricted to Euclidean space R™, where the dimension
of the space n is often one or two. Nevertheless, data are
often defined on other manifolds, such as the 2-sphere (S?;
hereafter we refer to the 2-sphere simply as the sphere). For
example, applications where data are defined on the sphere
are found in astrophysics (e.g. [2], [3]), planetary science
(e.g. [4]-[6]), geophysics (e.g. [7]-[9]), computer vision (e.g.
[10]) and quantum chemistry (e.g. [11], [12]). A wavelet
transform on the sphere is required to realise the potential
benefits of a wavelet analysis in these settings. In this work
we construct a new directional continuous spherical wavelet
transform (CSWT).

A number of attempts have been made previously to extend
wavelets to the sphere. Discrete second generation wavelets
on the sphere that are based on a multi-resolution analysis
have been developed [13], [14]. Haar wavelets on the sphere
for particular tessellation schemes have been developed also
[15], [16]. However, these discrete constructions may not lead
to a stable basis (see [17] and references therein). Further-
more, the symmetry of the sphere is clearly lost when a
tessellation scheme is adopted. Other authors have focused
on the continuous wavelet transform on the sphere. Contin-
uous spherical wavelets have been constructed directly from
spherical harmonic functions or Legendre polynomials by [18],
[19], however these solutions suffer from poor localisation and
require an abstract dilation parameter that imposes a number of
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ad hoc assumptions. A satisfactory extension of the continuous
wavelet transform to the sphere is defined by [20], however
this construction also requires an abstract dilation parameter
and corresponding ad hoc assumptions. Others adopt a tangent
bundle viewpoint [21], [22], thereby avoiding the necessity
to define a dilation operator on the sphere. Many of these
previous works also consider azimuthally symmetric wavelets
only and do not make the extension to a directional analysis. A
consistent and satisfactory framework for a directional spher-
ical wavelet transform has been constructed and developed
by [23]-[29]. This transform was derived entirely from group
theoretic principles originally [23], however the formalism has
since been reintroduced independently of the original group
theoretic formalism in an equivalent, practical and consistent
approach [29]. In these works a dilation operator is derived on
the sphere, which may be conceptualised as the conjugation
by the stereographic projection of the usual Euclidean dilation
in the plane. For a more detailed review of the attempts made
to construct a wavelet transform on the sphere see [23], [24],
[30].

Recently, an alternative wavelet construction on the sphere
has been derived by [1]. In this setting the spherical dilation
operator is defined by a scaling operation in spherical har-
monic space. In this construction all functions and operations
are defined directly on the sphere. However, the derivation
presented by [1] is not fully general and is restricted to az-
imuthally symmetric wavelets. We adopt the harmonic scaling
idea for the dilation operator proposed by [1] but extend the
spherical wavelet analysis to incorporate directional wavelets.
Directional wavelets are a powerful extension that allow one
to probe oriented structure in the analysed function also (see
e.g. [26] for a discussion of directional wavelets).

The remainder of this paper is organised as follows. We
begin by outlining some mathematical preliminaries in sec-
tion [l In section [ITI] and section [TV] we derive the spherical
wavelet analysis and synthesis respectively. In section [V] we
show some properties of our spherical wavelet construction.
We demonstrate in section [VI] the construction of spherical
wavelets in our formalism. Finally, concluding remarks are
made in section

II. MATHEMATICAL PRELIMINARIES

It is necessary first to outline some mathematical prelimi-
naries before constructing the wavelet transform on the sphere.
By making all assumptions and definitions explicit we hope to
avoid any confusion over the conventions adopted. The reader
familiar with harmonic analysis on the sphere may skip this
section and refer back to it as required.



We consider the space of square integrable
functions L%(S?, dQ2) on the unit 2-sphere S2, where
dQ(w) = sinfdf d¢ is the usual rotation invariant measure
on the sphere and w = (0,¢) € S? denotes spherical
coordinates with colatitude € and longitude ¢. A square
integrable function on the sphere f € L?(S?, dQ) may be
represented by the spherical harmonic expansion

) 4
(w) = Z Z f@mnm(“‘)) ’

=0 m=—¢

where the spherical harmonic coefficients are given by the
usual projection on to the spherical harmonic basis functions

fom = [ 4900 £0) V(o).

The * denotes complex conjugation. We adopt the Condon-
Shortley phase convention where the normalised spherical
harmonics are defined by

20 —|— 1(£—m)!
(£+m)!
where P;*(x) are the associated Legendre functions. Using

this normalisation the orthogonality of the spherical harmonic
functions is given by

/ dQ Yo (W)Y (w) = S0t S (1
S2
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where J;; is the Kronecker delta function.

To construct a directional CSWT on the sphere one must
consider rotations on the sphere. Rotations on the sphere are
characterised by the elements of the rotation group SO(3),
which we parameterise in terms of the three Euler angles

= (a, B, fy) The rotation of f is defined by

[R(p)fl(w) = f(p~'w), p€SOM).

It is also useful to characterise the rotation of a function on the
sphere in harmonic space. The rotation of a spherical harmonic
basis function may be represented by a sum of weighted
harmonics of the same ¢ [12], [31]:

[R(p)Yem] ( p) Yen(w) , 2)

n=—/4

where the Wigner functions DY (p) are described below.
From (2)) it is trivial to show that the harmonic coefficients of
a rotated function are related to the coefficients of the original
function by

Z’m Z Dmn

n=—{

) fen - 3)

Note carefully the distinction between the indices of the
Wigner functions in (2) and (3). The Wigner functions may
be decomposed as [12], [31]

DL (a,B,y) =e ™ dl, (B) e, 4)

"'We adopt the zyz Euler convention corresponding to the rotation of a
physical body in a fixed co-ordinate system about the z, y and z axes by 7,
(B and « respectively.
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where the real polar d-matrix is defined by [31]
min({+m,l—n)
t=max(0,m—n)
[(£+m)! (€= m)! (L +n)! (£ —n)1 ]2
U+m—t)Nl—n—t)!({t+n—m)t
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and the sum over ¢ is defined so that the arguments of the
factorials are non-negative. The Wigner functions satisfy the
orthogonality condition

/ dp DL, (p) DL (p) =
S0(3)

where dp = sin 8 da df dy. Recursion formulae are available
to compute rapidly the Wigner d-matrices in the basis of either
complex [11], [32] or real [33], [34] spherical harmonics.
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III. ANALYSIS

We adopt the strategy suggested by [1] and define spherical
wavelets and the spherical dilation operator in harmonic space.
We extend this idea here to a directional wavelet transform on
the sphere. The dilated wavelet ¥ (w; R) is defined in harmonic
space by
20+1

82
where Wy,,(R) are the spherical harmonic coefficients of
U(w; R), T (q) are the family of wavelet generating func-
tions and R € RJ is the real, strictly positive dilation
parameter. Note that the wavelet generating functions are
not defined on the sphere but rather on the non-negative
real line: Y, € L2(R", dx), m € Z (although we consider
only |m| < £ for Wy, (R), we are in general free to define
Y,., Vm € Z). For the functions ¥(w;R) to classify as
wavelets they must satisfy certain admissibility criteria so
that the analysed function may be reconstructed perfectly
from its wavelet coefficients. We consider admissibility and
the synthesis of a function from its wavelet coefficients in
section [V]

An overcomplete wavelet basis on the sphere may be
constructed from the following spherical wavelet family:

{[R(p)¥](w; R) | p € SO(3), RERS}.

The directional CSWT of f € L?(S2%, dQ) is given by the
projection onto each wavelet basis function in the usual
manner:

WHR.p) = [ 4900) f0) RO @ R). )

The transform is general in the sense that all orientations
in the rotation group SO(3) are considered, thus directional
structure is naturally incorporated. It is important to note,
however, that only local directions make any sense on S2.
There is no global way of defining directions on the sphereE]—

lIIZm(R) = Tm(gR) 5 (6)

2There is no differentiable vector field of constant norm on the sphere and
hence no global way of defining directions.
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there will always be some singular point where the definition
fails.

It is useful to represent the CSWT in terms of harmonic
coefficients. Substituting into (7) the spherical harmonic ex-
pansion of the analysed function and of the rotated wavelet,
and noting the orthogonality of the spherical harmonics given
by (I), one may represent the CSWT by

Y S Dl

=0 m=—fn=—{

WL(R, p) P i(R). @)

IV. SYNTHESIS

For the multi-resolution analysis we describe in the pre-
vious section to classify as a wavelet analysis, it must be
possible to reconstruct perfectly the original function from
its wavelet coefficients and the wavelet basis functions. To
ensure that this is possible the wavelets must satisfy certain
admissibility criteria. We derive the admissibility criteria and
perfect reconstruction formula in this section. We then relate
the admissibility condition for each wavelet basis function to
an equivalent condition for the family of wavelet generating
functions.

Consider the expression

/ooE / dp W (R, p) [R(p)Lx¥(w; R),  (9)
SO(3)

where the Ly operator in L?(S?, dQ) is defined by the action

(LYg)Zm = gmz/c“t;‘

on the spherical harmonic coefficients of functions
g € L*(S?%,dQ) (C4 is defined below). Substituting the
harmonic representation of the wavelet coefficients given by
and the harmonic representation of [R(p)L~+¥](w;R)
into (9), and noting the orthogonality of the Wigner functions
defined by (3), (9) may be rewritten as

Z Z flm Yvﬂm
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For perfect reconstruction we require the admissibility criteria

0<CT_2£+1 Z/

to hold V/. We call C% the admissibility constant. If admis-
sibility is satisfied it is apparent from that the original
function may be reconstructed by

_ [T dR f
- /0 = /so(s) dp WE(R, p)
% [R(p) L ¥)(w; R)

(10)

Y

— [T ( )\ <oo, (12)
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We relate the admissibility criteria that each spherical wavelet
must satisfy to an equivalent admissibility condition for the
family of wavelet generating functions. Substituting (6) into

(I2) and making the change of variables ¢ = /R, the
admissibility constant may be rewritten as
dq 2
0<CT—Z Tm(@))? <oo. (14

m=—{

Since [, > dq |T,.(q)|? is always non-negative it is possible
to recast the admissibility condition on the family T,, in the
following form: [;* % 1T,(q)]? < 00, ¥Vm € Z and Im € Z

such that [, % 1T (q)]> #0 .

V. PROPERTIES

In this section we describe some properties of the wavelet
basis functions and the wavelet coefficients of the CSWT
derived in the previous sections.

A. Compensation

Admissible wavelets are compensated (i.e. have zero mean):
/ dQ(w) ¥(w; R) =0, VR € R} .
S2

We show this property by noting that admissibility imposes
the condition Y,,,(0) = 0, ¥m € Z. Considering the spherical
harmonic transform of the wavelet,

Vo TaltR) = [ 400) WwiR) Vi),

and setting £ = 0 and m = 0 we obtain the compensation
property.

B. Wavelet energy

The energy of a wavelet at a particular dilation scale is given

by
/ dQ(w) [¥(w; R)|?
52

oo L
= 33 [ W (B)P
=0 m=—¢
L
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where in the second line we have made use of the orthogo-
nality of the spherical harmonics described by ().

C. Function energy
The energy of the analysed function is given by

dQ(w) |f(w)|?

S2

oo 4
S el

£=0 m=—/¢
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where in the second line we have made use of the orthogo-
nality of the spherical harmonics described by (I). We may



also relate the energy of the function directly to its spherical
wavelet coefficients:

* dR xf %
712 = [T [, @ R W ()

To show this property we substitute the harmonic represen-
tation of the wavelet coefficients given by (8) and note the
orthogonality of both the spherical harmonics and Wigner
functions described by (I)) and (3)) respectively.

D. Wavelet domain variance

The variance of the wavelet coefficients for a particular scale
is used by [1] as a measure of the concentration properties of
the wavelet transform. However, this measures the variance
of the wavelet coefficient values and not the localisation of
energy in wavelet space. In any case, it is useful to relate
variance in the wavelet domain to the energy of the analysed
function and wavelet.

The variance of the wavelet coefficients for a particular scale
is given by

[awfn)’ = (Wi ) - [(who)|*

where we define the expected value over rotations of
G(p) € L*(SO(3), dp) by
1
Gl =gz [ dnGilo).
872 Jsos)

The expected value of the wavelet coefficients is given by

[eS) 4 l
(WERP)) =" 5" 3 fom Vin(R) (Dli(0)

=0 m=—fn=—¢

and
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where we have applied the Wigner D-function decomposition
described by (). The expected value of the wavelet coeffi-
cients is thus

(WE(R, p)) = foo Wio(R0),

which is zero for an admissible wavelet. The variance of the
wavelet coefficients is therefore given by

<(W§(R,p)‘2>
i ZZ: Zé: Tillem\ZI\Pen(R)IQ,

=0 m=—Cn=—4

[awim)]’

where the second line follows from the harmonic represen-
tation of the wavelet coefficients given by (8) and by the
orthogonality of the Wigner functions described by (3).
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VI. WAVELET CONSTRUCTION

In the spherical wavelet framework outlined herein wavelets
on the sphere are constructed directly in spherical harmonic
space. Spherical wavelets may be constructed in harmonic
space from the analogue of the Fourier definition of planar
Euclidean wavelets. We must then check that the candidate
wavelets are admissible. In this section we demonstrate the
construction of a directional spherical wavelet with an exam-
ple.

We construct the spherical analogue of the Morlet wavelet
using our spherical wavelet formalism. Note that this differs
from the definition of the spherical Morlet wavelet constructed
from the projection of the planar Morlet wavelet on to the
sphere [25], [26]. The planar Morlet wavelet is defined by a
Gaussian in Fourier space centered on the wave vector of the
wavelet, hence we define the analogue of the Morlet wavelet
on the sphere by a Gaussian in spherical harmonic space.
Various associations between Fourier and spherical harmonic
space are possible. Here we choose to assocate ¢ and m in
spherical harmonic space with the x and y components of a
vector in Fourier space respectivelyE] The wavelet generating
functions are defined by

_ (¢.R—L)?24(m—M)?  (¢R)24 L2 4 (m—M)?
2 2

Y..((R) =e e ,

15)

where L € N and M € Z, |M| < L define the centre of
the Gaussian when R = 1. The correction term subtracted
is included to ensure admissibility (and takes a similar form
to the correction used to ensure the planar Morlet wavelet
is admissible [26]). For numerical purposes, when L > 5
the correction is numerically negligible and may simply be
ignored. Moreover, for numerical purposes it is possible to
relate the maximum spherical harmonic /. that must be
considered to L and R: liax = [(L + v/ —21ne)/R]|, where
€ is the allowable relative error and [z] is the smallest
integer greater than or equal to xz. We adopt the relation
limax = [(L + 5)/R], which ensures e < 1075.

Before proceeding it is necessary to check that the candidate
wavelet generating functions generate admissible spherical
wavelets. We must show that the admissibility integral for the
wavelet generating functions, given by

/OO da T, (g)]? = e [E7+(m =07 /OO 49 (et —1)2.
o 4 o 4
converges. To do this, we split the range of integration up
into the interval (0, €), where € > 0 is small, and the interval
(e,00). For the latter, we can appeal to the comparison test
for integrals since the ratio of %e*qz (e?t — 1)2 to ¢~ 2 tends
to zero as ¢ — oo, for any L, and f:o % is finite (provided
€ > 0). For the lower range, we note that the expansion of the
integrand for small ¢ is ¢L?, and f(; dg qL? is finite.

In this section we have demonstrated the construction of
admissible wavelets on the sphere in the spherical wavelet
framework described herein. In particular, we have constructed

3 Alternatively one may choose to associate ¢ with the length of a vector in
Fourier space and m with its phase. We have considered this association also,
although the support of the resulting functions is not so compact. Moreover,
we have not yet shown that the candidate wavelets that result are admissible.
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the analogue of the Morlet planar wavelet. In Fig. [I]and Fig. 2]
we plot this spherical wavelet for (L, M) = (10,0) for a
dilation scale of R = 1 and R = 0.5 respectively. Note
that this construction yields a spherical wavelet that differs
to the spherical Morlet wavelet constructed by projecting the
planar Morlet wavelet on to the sphere (to make a compar-
ison see [25], [26]). Other wavelets on the sphere may be
constructed in our framework in a similar manner. Although
we have constructed complex spherical wavelets, real wavelets
may be constructed simply by ensuring the reality condition
T_n(q) = (=1)™Y% (g) is satisfied.

VII. CONCLUDING REMARKS

We have presented the construction of a new directional
continuous wavelet transform on the sphere. Dilation on the
sphere is performed by a scaling in harmonic space, as recently
proposed by [1]. We extend the spherical wavelet analysis
presented by [1] to a more general directional framework,
allowing one to probe oriented structure of the analysed
function. Our framework has the advantage that all wavelets
and operators are defined directly on the sphere. Once the
wavelet analysis is performed, the original function may be
reconstructed perfectly from its wavelet coefficients and the
wavelet basis functions. We have proved the corresponding
synthesis formula and have derived the resulting admissi-
bility criteria that the wavelets must satisfy. Wavelets are
constructed in our framework in spherical harmonic space. We
have demonstrated the construction of a wavelet basis with
the example of the analogue of the Morlet wavelet in our
spherical wavelet setting. Other wavelets on the sphere may
be constructed in our framework in a similar manner.

Not only is the extension of a wavelet analysis to a spher-
ical manifold of important theoretical interest, it is also of
important practical use in order to extend the potential benefits
afforded by a wavelet analysis to data that are defined on the
sphere. For data sets of practical size, that may contain tens of
millions of pixels, it is imperative to have a fast algorithm for
performing the spherical wavelet analysis. In a recent work
we have presented fast algorithms to perform a directional
CSWT [35] (for the CSWT derived by [23]-[29]). Fortunately,
for a given dilation the analysis formula described herein is
identical to that considered in these works. Our fast algorithms
are therefore directly applicable to our new directional wavelet
construction.

The application of our spherical wavelet transform to prac-
tical data is beyond the scope of this paper. In a future work
we intend to examine the localisation properties of spherical
wavelets constructed in our framework using numerical sim-
ulations and to apply these to analyse the anisotropies of the
cosmic microwave background (CMB). Spherical wavelets are
a powerful tool for analysing the CMB, from which we are
able to learn a great deal about the physics of the early universe
[36]-[38].
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Fig. 1. Plots of the analogue of the Morlet wavelet constructed on the sphere
for R = 1 using the formalism outlined herein. Parametric plots are shown
in the left column of panels; colour plots on the sphere are shown in the right
column of panels.



(a) Re{¥(w; R=10.5)}

(b) Im{¥(w; R =10.5)}

© |¥(w; R =0.5)]

Fig. 2. Plots of the analogue of the Morlet wavelet constructed on the sphere
for R = 0.5 using the formalism outlined herein. Parametric plots are shown
in the left column of panels; colour plots on the sphere are shown in the right
column of panels. For illustration purposes the colour map and distance of
the parametric plots from the unit sphere have been scaled by one fifth in this
figure relative to the plots for R = 1.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. —, NO. —, APRIL 2006

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

C. L. Bennett, A. Banday, K. M. Gorski, G. Hinshaw, P. Jackson,
P. Keegstra, A. Kogut, G. F. Smoot, D. T. Wilkinson, and E. L. Wright,
“4-year COBE DMR cosmic microwave background observations: Maps
and basic results,” Astrophys. J. Lett., vol. 464, no. 1, pp. 1-4, 1996.
C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon,
S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L.
Wright, C. Barnes, M. R. Greason, R. S. Hill, E. Komatsu, M. R.
Nolta, N. Odegard, H. V. Peiris, L. Verde, and J. L. Weiland, “First-
year Wilkinson Microwave Anisotropy Probe (WMAP) observations:
Preliminary maps and basic results,” Astrophys. J. Supp., vol. 148, no. 1,
pp. 1-28, 2003.

M. A. Wieczorek, “Gravity and topology of terrestrial planets,” submit-
ted to Treatise on Geophysics, 2006.

M. A. Wieczorek and R. J. Phillips, “Potential anomalies on a sphere:
Applications to the thickness of the lunar crust,” J. Geophys. Res., vol.
103, pp. 383-395, 1998.

D. L. Turcotte, R. J. Willemann, W. F. Haxby, and J. Norberry, “Role
of membrane stresses in the support of planetary topology,” J. Geo-
phys. Res., vol. 86, pp. 3951-3959, 1981.

K. A. Whaler, “Downward continuation of Magsat lithosphere anomalies
to the Earth’s surface,” Geophys. J. R. astr. Soc., vol. 116, pp. 267-278,
1994.

S. Swenson and J. Wahr, “Methods for inferring regional surface-
mass anomalies from GRACE measurements of time-variable gravity,”
J. Geophys. Res., vol. 107, pp. 2193-278, 2002.

F. J. Simons, F. A. Dahlen, and M. A. Wieczorek, “Spatiospectral
concentration on a sphere,” SIAM Rev., p. in press, 2006.

R. Ramamoorthi and P. Hanrahan, “A signal processing framework for
reflection,” ACM Transactions on Graphics, vol. 23, no. 4, pp. 1004—
1042, 2004.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and
stable determination of rotation matrices between spherical harmonics
by direct recursion,” J. Chem. Phys., vol. 111, no. 19, pp. 8825-8831,
1999.

D. W. Ritchie and G. J. L. Kemp, “Fast computation, rotation and
comparison of low resolution spherical harmonic molecular surfaces,”
J. Comput. Chem., vol. 20, no. 4, pp. 383-395, 1999.

P. Schroder and W. Sweldens, “Spherical wavelets: Efficiently repre-
senting functions on the sphere,” in Computer Graphics Proceedings
(SIGGRAPH ‘95), 1995, pp. 161-172.

W. Sweldens, “The lifting scheme: a custom-design constriction of
biorthogonal wavelets,” Applied Comput. Harm. Anal., vol. 3, no. 2,
pp- 186-200, 1996.

L. Tenorio, A. H. Jaffe, S. Hanany, and C. H. Lineweaver, “Applications
of wavelets to the analysis of cosmic microwave background maps,” pp.
823-834, 1999.

R. B. Barreiro, M. P. Hobson, A. N. Lasenby, A. J. Banday, K. M.
Gorski, and G. Hinshaw, “Testing the Gaussianity of the COBE-DMR
data with spherical wavelets,” Mon. Not. Roy. Astr. Soc., vol. 318, pp.
475-481, 2000.

W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM J. Math. Anal., vol. 29, no. 2, pp. 511-546, 1997.

W. Freeden and U. Windheuser, “Combined spherical harmonic and
wavelet expansion — a future concept in the Earth’s gravitational de-
termination,” Applied Comput. Harm. Anal., vol. 4, pp. 1-37, 1997.
W. Freeden, T. Gervens, and M. Schreiner, Constructive approximation
on the sphere — with application to geomathematics. Clarendon Press,
Oxford, 1997.

M. Holschneider, “Continuous wavelet transforms on the sphere,” J.
Math. Phys., vol. 37, pp. 41564165, 1996.

B. Torrésani, “Position-frequency analysis for signals defined on
spheres,” Signal Proc., vol. 43, pp. 341-346, 1995.

S. Dahlke and P. Maass, “Continuous wavelet transforms with appli-
cations to analyzing functions on sphere,” J. Fourier Anal. and Appl.,
vol. 2, pp. 379-396, 1996.

J.-P. Antoine and P. Vandergheynst, “Wavelets on the n-sphere and
related manifolds,” J. Math. Phys., vol. 39, no. 8, pp. 3987-4008, 1998.
——, “Wavelets on the 2-sphere : A group theoretical approach,”
Applied Comput. Harm. Anal., vol. 7, pp. 1-30, 1999.

J.-P. Antoine, L. Demanet, L. Jacques, and P. Vandergheynst, “Wavelets
on the sphere: Implementation and approximations,” Applied Comput.
Harm. Anal., vol. 13, no. 3, pp. 177-200, 2002.

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-
dimensional wavelets and their relatives. Cambridge: Cambridge
University Press, 2004.



MCEWEN et al.: A DIRECTIONAL CONTINUOUS WAVELET TRANSFORM ON THE SPHERE 7

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, and
M. Morvidone, “Stereographic wavelet frames on the sphere,” Applied
Comput. Harm. Anal., vol. 19, no. 2, pp. 223-252, 2005.

L. Demanet and P. Vandergheynst, “Gabor wavelets on the sphere,” in
SPIE, 2003.

Y. Wiaux, L. Jacques, , and P. Vandergheynst, “Correspondence principle
between spherical and Euclidean wavelets,” Astrophys. J., vol. 632, no. 1,
pp. 15-28, 2005.

H. N. Mhasker, F. J. Narcowich, and J. D. Ward, ‘“Representing and
analysing scattered data on spheres,” in Multivariate Approximation
and Applications, N. Dyn, D. Leviaton, D. Levin, and A. Pinkus, Eds.
Cambridge University Press, 2001.

D. M. Brink and G. R. Satchler, Angular Momentum, 3rd ed. Oxford:
Clarendon Press, 1993.

T. Risbo, “Fourier transform summation of Legendre series and d-
functions,” J. Geodesy, vol. 70, no. 7, pp. 383-396, 1996.

J. Ivanic and K. Ruedenberg, “Rotation matrices for real spherical
harmonics. Direct determination by recursion,” J. Phys. Chem. A, vol.
100, no. 15, pp. 6342-6347, 1996.

M. A. Blanco, M. Flérez, and M. Bermejo, “Evaluation of the rotation
matrices in the basis of real spherical harmonics,” J. Mol. Struct.
(Theochem), vol. 419, pp. 19-27, 1997.

J. D. McEwen, M. P. Hobson, D. J. Mortlock, and A. N. Lasenby, “Fast
directional continuous spherical wavelet transform algorithms,” IEEE
Trans. Sig. Proc., in press, 2006.

J. D. McEwen, M. P. Hobson, A. N. Lasenby, and D. J. Mortlock, “A
high-significance detection of non-Gaussianity in the WMAP 1-yr data
using directional spherical wavelets,” Mon. Not. Roy. Astr. Soc., vol. 359,
pp. 1583-1596, 2005.

——, “A high-significance detection of non-Gaussianity in the WMAP
3-yr data using directional spherical wavelets,” Mon. Not. Roy. Astr. Soc.,
vol. 371, pp. L50-L54, 2006.

J. D. McEwen, P. Vielva, M. P. Hobson, E. Martinez-Gonzalez, and
A. N. Lasenby, “Detection of the ISW effect and corresponding dark
energy constraints made with directional spherical wavelets,” submitted
to Mon. Not. Roy. Astr. Soc., 2006.

Jason McEwen was born in Wellington, New
Zealand, in August 1979. He received a B.E. (Hons)
degree in Electrical and Computer Engineering from
the University of Canterbury, New Zealand, in 2002.

Currently, he is working towards a Ph.D. degree
at the Astrophysics Group, Cavendish Laboratory,
Cambridge. His area of interests include spherical
wavelets, the cosmic microwave background and
wavelet based reflectance and illumination in com-
puter graphics.

Michael Hobson was born in Birmingham, England,
in September 1967. He received the B.A. degree in
natural sciences with honours and the Ph.D. degree
in astrophysics from the University of Cambridge,
England, in 1989 and 1993 respectively.

Since 1993, he has been a member of the As-
trophysics Group of the Cavendish Laboratory at
the University of Cambridge, where he has been
a Reader in Astrophysics and Cosmology since
2003. His research interests include theoretical and
observational cosmology, particularly anisotropies in

the cosmic microwave background, gravitation, Bayesian analysis techniques
and theoretical optics.

Anthony Lasenby was born in Malvern, England,
in June 1954. He received a B.A. then M.A. from
the University of Cambridge in 1975 and 1979, an
M.Sc. from Queen Mary College, London in 1978
and a Ph.D. from the University of Manchester in
1981.

His Ph.D. work was carried out at the Jodrell
Bank Radio Observatory specializing in the Cosmic
Microwave Background, which has been a major
subject of his research ever since. After a brief
period at the National Radio Astronomy Observatory
in America, he moved from Manchester to Cambridge in 1984, and has been
at the Cavendish Laboratory Cambridge since then. He is currently Head of
the Astrophysics Group and the Mullard Radio Astronomy Observatory in the
Cavendish Laboratory, and a Deputy Head of the Laboratory. His other main
interests include theoretical physics and cosmology, the application of new
geometric techniques in computer graphics and electromagnetic modelling,
and statistical techniques in data analysis.



	Introduction
	Mathematical preliminaries
	Analysis
	Synthesis
	Properties
	Compensation
	Wavelet energy
	Function energy
	Wavelet domain variance

	Wavelet construction
	Concluding remarks
	References
	Biographies
	Jason McEwen
	Michael Hobson
	Anthony Lasenby


