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ABSTRACT
Polarization of radiation is a powerful tool to study cosmic magnetism and analysis of polariza-
tion can be used as a diagnostic tool for large-scale structures. In this paper, we present a solid
theoretical foundation for using polarized light to investigate large-scale magnetic field struc-
tures: the cosmological polarized radiative transfer (CPRT) formulation. The CPRT formula-
tion is fully covariant. It accounts for cosmological and relativistic effects in a self-consistent
manner and explicitly treats Faraday rotation, as well as Faraday conversion, emission, and
absorption processes. The formulation is derived from the first principles of conservation
of phase-space volume and photon number. Without loss of generality, we consider a flat
Friedmann-Robertson-Walker (FRW) space-time metric and construct the corresponding po-
larized radiative transfer equations. We propose an all-sky CPRT calculation algorithm, based
on a ray-tracing method, which allows cosmological simulation results to be incorporated and,
thereby, model templates of polarization maps to be constructed. Such maps will be crucial
in our interpretation of polarized data, such as those to be collected by the Square Kilometer
Array (SKA). We describe several tests which are used for verifying the code and demonstrate
applications in the study of the polarization signatures in different distributions of electron
number density and magnetic fields. We present a pencil-beam CPRT calculation and an all-
sky calculation, using a simulated galaxy cluster or a model magnetized universe obtained
from GCMHD+ simulations as the respective input structures. The implications on large-scale
magnetic field studies are discussed; remarks on the standard methods using rotation measure
are highlighted.
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1 INTRODUCTION

Signatures of magnetic fields are seen on all scales, from planets (see e.g. Stevenson 2003; Schubert & Soderlund 2011) and stars (see e.g.
Parker 1970; Brandenburg & Subramanian 2005; Beck 2008; Schrijver & Zwaan 2008; Vallée 1998, 2011b), to galaxies (Ferrière 2009;
Vallée 2011a; Beck & Wielebinski 2013; Planck Collaboration et al. 2015, 2016b) and galaxy clusters (see e.g. Govoni et al. 2006; Guidetti
et al. 2008; Vacca, V. et al. 2010; Pratley et al. 2013; Kronberg 2016). Magnetic fields should also permeate large-scale structures such as
superclusters (see e.g. Xu et al. 2006), filaments (see e.g. Ryu, Kang & Biermann 1998; Brüggen et al. 2005; Ryu et al. 2008), walls, and
voids (see e.g. Beck et al. 2013), as the early-time magnetic seeds get amplified during the structure formation and evolution processes in the
Universe (see e.g. Widrow 2002; Durrer & Neronov 2013; Kronberg 2016, for comprehensive reviews). However, observational evidence
of these weak large-scale magnetic fields is scarce. Magnetic fields must have played a pivotal role in: (i) star formation by transporting
angular momentum out from accretion discs and so allowing materials to accrete onto proto-stars (see e.g. Balbus & Hawley 1991), (ii) jet
production by affecting the central accretion, as well as accelerating and collimating the materials that form jets (see e.g. Pudritz, Hardcastle
& Gabuzda 2012), (iii) cosmic-ray production through the acceleration of charged particles (Fermi 1949), and (iv) cosmic-ray propagation
through deflecting the ray or confining the charged particles (see e.g. Jokipii 1966, 1967). However, the origins of large-scale magnetic fields,
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their co-evolution with astrophysical structures, and their properties at present are as of yet to be determined. How magnetic fields impact the
formation of the first structures and their subsequent evolution remains a pressing problem in contemporary astrophysics and cosmology. The
current understanding, however, will be revolutionized as high-quality all-sky polarization data will become available from upcoming radio
telescopes, such as the Square Kilometer Array (SKA)1 (see e.g. Feretti & Johnston-Hollitt 2004; Gaensler, Beck & Feretti 2004; Beck &
Gaensler 2004; Johnston-Hollitt et al. 2015).

Polarization surveys by emerging generation of radio telescopes, such as the GaLactic and Extragalactic All-skyMWA (GLEAM) Survey
(Wayth et al. 2015) on the MurchisonWidefield Array (MWA2) (Tingay et al. 2013), the polarization Sky Survey of the Universe’s Magnetism
(POSSUM) (Gaensler et al. 2010) on the Australian SKA Pathfinder (ASKAP3) (Hotan et al. 2014), as well as the Multi-frequency Snapshot
Sky Survey (MSSS) (Heald et al. 2015b) on the Low-Frequency Array (LOFAR4) (van Haarlem et al. 2013), due to their improved sensitivities
and resolutions, can already access a domain of weak magnetic field strengths that was unexplored before. They enable investigations of
magnetism in a variety of astrophysical sources. These experiments pave the way for broadband spectro-polarimetric surveys to be performed
by the SKA, which will be a game-changer. The SKA is an interferometric radio telescope designated to have a total collecting area of about
a square kilometer in its complete configuration. Its sensitivity, bandwidths, and field-of-view will provide a transformational polarization
dataset with which the detection of the very weak magnetic field of the cosmic web5 may become possible (Vazza et al. 2015; Giovannini
et al. 2015) – with the SKA the evolution of magnetism in galaxies and galaxy clusters may be traced (Gaensler et al. 2015), and the detailed
internal structure of the magnetized cosmic plasmas (both across the medium and along the line-of-sight) may be mapped or imaged (Han
et al. 2015; Heald et al. 2015a). An all-sky polarization survey performed with the SKA will significantly increase the density of known
polarized background sources on the sky (Feretti & Johnston-Hollitt 2004; Beck & Gaensler 2004). These sources serve as distant radio
backlights, illuminating the magnetized Universe via the effect of Faraday rotation, i.e. rotation of the polarization plane of radiation as it
travels and interacts with the magnetic fields threaded in an ionized medium. Such a dataset will be immensely rich, containing information
of the polarized sources themselves, as well as the foreground sources lying along the line-of-sight. These sources can be the Milky Way,
nearby or distant galaxies, galaxy clusters, and even the cosmic filaments connecting clusters of galaxies. With all the exciting opportunities
opened up by observational advances, the pressing questions to be addressed now are: how do we uncover and characterize the polarization
signals from data, and ultimately, use them to infer and quantify magnetic field properties? How do we confront our theoretical models of
cosmic magnetism against observations? More specifically, how do we compare simulation results which encode physical model predictions
to the results obtained by observational experiments?

This paper aims to address the second and third questions by providing a solid theoretical foundation and a polarized radiative transfer tool
to investigate cosmicmagnetism on large scales (i.e.Mpc scales and beyond).We present a new formulation of cosmological polarized radiative
transfer (CPRT), which is fully covariant and is valid for polarization transfer in flat space-time. Our derivation is based on a covariant general
relativistic radiative formulation stemmed from the first principles of conservation of phase-space volume and photon number (Fuerst & Wu
2004; Younsi, Wu & Fuerst 2012). The covariant CPRT equation allows the properties of the magnetic fields to be captured as they co-evolve
with the structures in the expanding Universe. Furthermore, since our formulation accounts for the relativistic and cosmological effects in a
self-consistent manner, polarization evolution in various cosmic media as a function of redshift can be investigated. The formulation preserves
the basic structure of the conventional polarized radiative transfer (see e.g. Sazonov & Tsytovich 1968; Sazonov 1969; Pacholczyk 1977;
Jones & Odell 1977a,b; Degl’innocenti & Degl’innocenti 1985), making it easy to implement for practical calculations, as we demonstrate in
example problems and applications. Moreover, the formulation is general: it can be reduced to the form from which the conventional rotation
measure (RM) quantity (see e.g. Rybicki & Lightman 1986) is derived, assuming the absence of emission and absorption, insignificant
Faraday conversion, and negligible effects of non-thermal electrons in the medium (see On et al. 2019, for details and the generalization of the
standard RM expression to account for an isotropic distribution of non-thermal relativistic electrons with a power-law energy spectrum). At
the same time, since the CPRT formulation explicitly accounts for absorption, emission, and Faraday processes, its application is not restricted
to any special cases. To our knowledge, our formulation of CPRT, which is applicable to study large-scale cosmic magnetism, is the first of
its kind6.

The CPRT formulation serves as a solid platform whereby, given some input distributions of electron number densities and magnetic
fields, one can trace the rays and compute their intensities and polarization over redshifts. These inputs can either be generated by simple
modeling or cosmological simulations. We devise and construct a ray-tracing algorithm that solves the CPRT equation, thereby constructing
model templates and making theoretical all-sky intensity and polarization maps. These data outputs, when combined with advanced statistical
methods for data analysis and characterization, will help us achieve a reliable interpretation of observational data, crucial for scientific
extraction. Results obtained from such a forward approach also provide an experimental test-bed for assessing line-of-sight component
separation methods and methods used for characterizing signals themselves and the underlying physical processes.

This paper focuses on laying the foundation of the cosmological polarized radiative transfer approach to study the structure of large-scale
magnetic fields. In Section 2, we present the CPRT formulation and its derivation. Our ray-tracing algorithms for solving the CPRT equation

1 https://www.skatelescope.org
2 http://www.mwatelescope.org/
3 http://www.atnf.csiro.au/projects/askap/index.html
4 http://www.lofar.org/
5 Current upper limits on the intergalactic field strength are all model-dependent but generally fall within the range of |BIGM | ≤ 10−8 to 10−9 G (see e.g.
Kronberg 1994; Blasi, Burles & Olinto 1999; Brown et al. 2017).
6 Formulations and codes capable of computing general relativistic polarized radiative transfer (GRPRT) in the (curved) Kerr space-time metric have been
extensively studied and presented (Broderick & Blandford 2003; Broderick & Blandford 2004; Shcherbakov & Huang 2011; Gammie & Leung 2012; Dexter
2016; Mościbrodzka & Gammie 2018). Their applications primary concern polarized emissions from magnetized accretion flows and jets around a spinning
black hole.
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are given in Section 3. Verification tests for the code implementation and their results are described in Section 4. Demonstrations of applying
the CPRT calculations to practical astrophysical applications are discussed in Section 5. We perform a set of single-ray CPRT calculations,
showcasing the ability of the tool to study the cosmological evolution of polarization with or without bright radio sources along the line-of-
sight. We also demonstrate how to compute polarization maps of an astrophysical object and an entire polarized sky, interfacing cosmological
MHD simulation results with the CPRT calculations. We highlight the implications of these calculations on large-scale magnetic field studies.
In Section 6, we summarize the whole paper.

Unless otherwise specified, c.g.s. units and a [ −,+,+,+ ] signature are used throughout this work.

2 COSMOLOGICAL POLARIZED RADIATIVE TRANSFER

The CPRT formulation is derived based on a covariant general relativistic radiative transfer (GRRT) formulation (Fuerst & Wu 2004; Younsi,
Wu & Fuerst 2012), stemming from the first principles of conservation of phase-space volume and photon number. We start off by reviewing
the polarized radiative transfer equation and the GRRT formulation to derive the covariant CPRT formulation. Then, we construct the
corresponding CPRT equations assuming a flat Friedmann-Robertson-Walker (FRW) space-time metric, without loss of generality.

2.1 Conventional polarized radiative transfer

We first set out the polarized radiative transfer (PRT) equation and show how the covariant formulation of radiative transfer can be directly
generalized to that of the PRT.

In the absence of scattering, the transfer equation of polarized radiation, in tensor representation, can be written as
dIi,ν
ds
= −κi j,ν Ij,ν + εi,ν , (1)

or in the matrix form,

d
ds


Iν
Qν
Uν
Vν

 = −

κν qν uν vν
qν κν fν −gν
uν − fν κν hν
vν gν −hν κν




Iν
Qν
Uν
Vν

 +

εI,ν
εQ,ν
εU,ν
εV,ν

 (2)

(Sazonov 1969; Pacholczyk 1970, 1977; Jones & Odell 1977a; Degl’innocenti & Degl’innocenti 1985; Janett et al. 2017; Janett, Steiner &
Belluzzi 2017; Janett & Paganini 2018; Huang & Shcherbakov 2011a), where s is the path length of the radiation; the tensor index i or j in
equation (1) runs from 1 to 4, denoting the Stokes parameters Iν , Qν , Uν and Vν , respectively. The coefficient tensor κi j,ν accounts for the
amount of absorption (through κν , qν , uν and vν), rotation (through fν) and conversion (through hν and gν) of the radiation along its direction
of propagation, and εi,ν accounts for the amount of emission. Essentially absorption acts as a sink; emission serves as a source. Propagation
effects of Faraday rotation and Faraday conversion are non-dispersive. Faraday rotation, due to circular birefringence (i.e. the slightly different
speeds at which the left and right circularly waves travel in a magneto-ionic medium), results in the change of polarization angles as radiation
propagates (i.e. Qν ↔ Uν). Faraday conversion, due to linear birefringence, concerns with the interconversion between the linear and circular
polarization modes of the radiation (i.e. Qν ↔ Vν ; Uν ↔ Vν). The equation for the transfer of polarized radiation presented at above, with
variable transfer coefficients, is suitable for transport in a homogeneous or weakly anisotropic medium (Sazonov & Tsytovich 1968; Sazonov
1969; Pacholczyk 1977; Jones & Odell 1977a). Note that all quantities in equations (1) and (2) depend on the frequency of the radiation ν.

It is useful to note that the Stokes parameters are observables fully describing the properties of light but are coordinate-system dependent
quantities. They can be combined in the complex forms, i.e. (Qν ± iUν), and be linearly transformed to so-called E- and B- modes, which
describe, respectively, parity-odd polarization and parity-even polarization, and so are invariant under transform of coordinate systems.
Stokes parameters alone are not rotationally invariant. Therefore, coordinate systems adopted, as well as the definitions and conventions of
polarization, must be explicitly stated to remove any ambiguities in the interpretation of the Stokes results. We note that different handedness
of coordinate systems (right-handed or left-handed), as well as the geometry of the problem, have been used in the literature that derived
the polarized radiative transfer equations and the (thermal and non-thermal) transfer coefficients (see e.g. Sazonov 1969; Pacholczyk 1970;
Melrose & McPhedran 1991; Huang & Shcherbakov 2011a). The sign of Stokes Vν that describes the sense of the circular polarization also
varies from paper to paper. Furthermore, different conventions have been used in the literature regarding the definition of the polarization
angle7, the definition of the handedness of circular polarization, and the definition of Vν (see Robishaw 2008, for a compilation of the
conventions used in radio polarization work). We thus define in Appendix A the coordinate systems and the geometry of the problem
considered in this work, and discuss in Appendix B the intricacies of keeping a consistent polarization convention.

Here we note that the Uν components uν , gν and εU,ν can vanish (so Vν couples only to Uν , i.e. Uν ↔ Vν but Qν = Vν) by a choice of
a local coordinate system (see e.g. Sazonov 1969; Pacholczyk 1977). With the geometry defined in Fig. A1 in the Appendix A, uν , gν and
εU,ν become zero in the basis (x, y) since the projection of the magnetic field onto the (x, y)-plane is parallel to y.

Another useful remark concerns the features of equations (1) and (2). They reduce to the usual scalar radiative transfer equation only
when a specific intensity Iν is considered, i.e. dIν/ds = −κν Iν + εν . Conversely, one can utilize the fact that all the Stokes parameters have the
same physical units to easily include polarization in the covariant formulation of radiative transfer, as is outlined in the subsequent subsection.

7 Investigations of the polarization of the cosmic microwave background adopt the opposite convention to the International Astronomical Union (IAU)
standard, for which polarization angle increases clockwise (counterclockwise) when looking at the source for the former (latter). To rectify the discrepancy
requires an opposite sign applied to StokesUν (see https://aas.org/posts/news/2015/12/iau-calls-consistency-use-polarization-angle).

MNRAS 000, 1–30 (2018)

https://aas.org/posts/news/2015/12/iau-calls-consistency-use-polarization-angle


4 J. Y. H. Chan, K. Wu, A. Y. L. On, D. J. Barnes, J. D. McEwen, and T. D. Kitching

2.2 Covariant general relativistic radiative transfer

From the first principles of conservation of photon number and phase space volume, it can be shown that the Lorentz-invariant intensity is
given by Iν ≡ Iν/ν3, and that the covariant formulation of the radiative transfer takes the form

dIν
dτν
= −Iν +

ξν
ζν
= −Iν + Sν (3)

(see Appendix D), where τν =
∫
κν ds is the optical depth, ζν = ν κν and ξν = εν/ν2 are the Lorentz-invariant coefficients of absorption and

emission respectively, and the Lorentz-invariant source function is defined by Sν ≡ ξν/ζν .
In relativistic settings, we want the covariant radiative transfer equation to be evaluated in space-time intervals instead of optical depth

or path length. This can be achieved by introducing the mathematical affine parameter λa. The problem is then translated into an evaluation of
ds/dλa (i.e. the variation in the path length s with respect to λa), and asking the question of what is the co-moving 4-velocity vβ of a photon
traveling in a fluid that has 4-velocity uβ .

Assuming the photon has a 4-momentum kα, then the co-moving 4-velocity vβ can be obtained by the projection of kα on to the fluid
frame, i.e.

vβ = Pαβkα = kβ + (kαuα)uβ (4)

(Fuerst & Wu 2004), where we have used the projection tensor Pαβ = gαβ + uαuβ , with gαβ as the space-time metric tensor. The variation
in s with respect to λa is therefore

ds
dλa

= −




vβ


 ���
λa,obs

= −

√
gαβ(kβ + (kαuα)uβ)(kα + (kβuβ)uα)

���
λa,obs

= −kαuα
���
λa,obs

(5)

(Younsi, Wu & Fuerst 2012). Note that for a stationary observer positioned at infinity kβuβ = −Eobs. It follows that the ratio

kαuα
���
λa,co

kβuβ
���
λa,obs

=
νco
νobs

, (6)

which corresponds to the relative energy shift of the photon between the observer’s frame and the comoving frame. Using the Lorentz-invariant
properties of Iν , ζν and ξν yields the covariant relativistic radiative transfer equation

dIν
dλa

= −kαuα
���
λa,co

(
− κco,ν Iν +

εco,ν

ν3
co

)
(7)

(Younsi, Wu & Fuerst 2012), where all the quantities are frequency dependent and are evaluated along the path of a photon, i.e. comoving as
denoted by the subscript “co".

2.3 Cosmological polarized radiative transfer formulation

The CPRT formulation is constructed by making two generalizations to the GRRT: (i) by accounting for the polarization of the radiation
and (ii) by incorporating a cosmological model to describe the space-time geometry of the Universe in which the radiation propagates. The
former generalization is straightforward in the sense that the PRT equation takes the general form of radiative transfer (see Section 2.1) and
that all the Stokes parameters have the same physical units. Therefore, similar to how one can obtain the Lorentz-invariant intensity by taking
Iν ≡ Iν/ν3, the invariant Stokes parameters are obtained by Iν,i = [Iν,Qν,Uν,Vν]T = [Iν,Qν,Uν,Vν]T/ν3 where the tensor index i runs
from 1 to 4, and the superscript “T" denotes the transpose (for notational simplicity we drop the subscript ν of the Stokes parameters and in
the coefficients of absorption and emission hereafter). It follows that the covariant polarized radiative transfer equation, in tensor notation,
takes the form

d(Ii,co)

dλa
=

d(Ii,co/ν3
co)

dλa
= −kαuα

���
λa,co

{
−κi j,co

(
Ij
ν3

co

)
+
εi,co

ν3
co

}
. (8)

Next, to make the formulation appropriate in cosmological settings and, therefore, suitable for (but not limited to) the investigation
of cosmological magnetic fields, the factor kαuα is to be evaluated using the space-time metric of a chosen cosmological model such that
equation (8) is evaluated in terms of a cosmological variable, e.g. the redshift z, instead of the mathematical affine parameter λa.

Without loss of generality, we consider a flat FRW universe whose space-time metric has the diagonal elements (−1, a2, a2, a2), where
a = 1/(1 + z) is the cosmological scale factor describing the expansion of the universe. For simplicity, we consider a photon propagating
radially in a cosmological medium with 4-velocity uβ , i.e.

kα =


E
pr
pθ
pφ

 = ν


1
1
0
0

 ; uβ = γ


1
βr
βθ
βφ

 , (9)
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where p = (pr, pθ, pφ) denotes the 3-velocity of the photon, β = (βr, βθ, βφ) denotes the 3-velocity of the medium, and γ = 1/
√
(1 + β2) is

the corresponding Lorentz factor (here, we use c = h = 1). Evaluating kαuα then yields

kαuα
���
z
= γzνz (−1 + a2βr,z ) , (10)

and the ratio

kαuα
���
z

kβuβ
���
zobs

=
νz
νzobs

(
γz
γzobs

(a2 βr,z − 1)
(a2

obs βr,zobs − 1)

)
. (11)

If the motion of the medium can be neglected (i.e. β=0, γ=1), the ratio is simplified to

kαuα
���
z

kβuβ
���
zobs

=
νz
νzobs

, (12)

which is the relative shift of energy (or frequency) of the photon, as one expects from equation (6). By defining kα = (E, p) = dxα/dλa, one
may also obtain

d
dλa
=

d x0

dλa

d
d x0 = E

d
ds
= E

dz
ds

d
dz

, (13)

and use this to also show that the photon’s energy E ∝ a−1 and thus

νz
νzobs

=
aobs

a
=

1 + z
1 + zobs

, (14)

in a flat FRW universe (see e.g. Dodelson 2003). In other words, the ratio in equation (12) corresponds to the relative energy shift of the
photon due to the cosmic expansion.

Finally, by applying the chain rule given in equation (13) to equation (8), we obtain the CPRT equation defined in redshift space:

d
dz


I

Q

U

V

 = (1 + z)

−

κ q u v

q κ f −g

u − f κ h
v g −h κ



I

Q

U

V

 +

εI
εQ
εU
εV


1
ν3


ds
dz

, (15)

where all the quantities are Lorentz invariant and ds/dz for a flat FRW universe is given by

ds
dz
=

c
H0
(1 + z)−1

[
Ωr,0(1 + z)4 +Ωm,0(1 + z)3 +ΩΛ,0

]− 1
2
, (16)

(see e.g. Peacock 1999), where H0 is the standard Hubble parameter,Ωr,0,Ωm,0 andΩΛ,0 are the dimensionless energy densities of relativistic
matter and radiation, non-relativistic matter, and a cosmological constant (dark energy with an equation of state of w ≡ −1), respectively. The
subscript “0" denotes that the quantities are measured at the present epoch (i.e. z = 0).

Note that the CPRT formulation is general and can adopt different cosmological models with flat space-time geometry through the kαuα

factor. Ray-tracing calculation for equation (15) can then be performed for arbitrary photon geodesics. For clarity, we reiterate that a flat
space-time is considered in our derivation such that straightforward parallel transport of the polarization Stokes vector Sν,i = [Iν,Qν,Uν,Vν]T

of the radiation along the photon geodesics is enabled8. For radiation propagating in a curved space-time, the rotation of its polarization vector
measured by the observer has a contribution caused not only by the Faraday rotation but also by the curvature of the embedded manifold, i.e.
angle is not preserved transporting along the line-of-sight. Taking advantage of the flat geometry of the Universe (Planck Collaboration et al.
2016a), we therefore limit our evaluation and discussion to a cosmological model describing a flat universe only. The flatness of space-time
ensures that the angles measured in the local comoving frame would be the same everywhere along the geodesic.

We highlight that the covariant nature of the CPRT formulation allows a straightforward transform of an observable between the comoving
frame and the observer’s frame. Computation from the invariant Stokes parameters to the observable Stokes parameters in the comoving frame
requires only a scalar multiplication of the cube of the radiation frequency, i.e. [Iν(z),Qν(z),Uν(z),Vν(z)]T = [Iν(z),Qν(z),Uν(z),Vν(z)]T ×
ν(z)3. The results at z = 0 are then what would be measured in the observer’s frame at the present time, provided that the transform of the
local polarization frame to the instrument’s polarization frame are properly handled (as is noted in Appendix A), along with the corrections
of instrumental effects and foregrounds, such as ionospheric effects.

8 For completeness, we note that polarized radiative transfer in Kerr space-time has been extensively studied (Broderick & Blandford 2003; Broderick &
Blandford 2004; Shcherbakov &Huang 2011; Gammie & Leung 2012; Dexter 2016; Mościbrodzka & Gammie 2018), for which the standard approach involves
solving the photon geodesic, keeping track of the local coordinate system such that polarized emission is being added appropriately in the presence of a
rotation of the coordinate system propagated along the ray, and finally, connecting these frames to the polarization frame at the point of observation. Difficulties
stem from that the Stokes parameters are not rotationally invariant quantities. Working with rotationally invariant quantities, e.g. the spin-2 signals of E- and
B-modes, might therefore be more favourable.
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2.4 Polarized transfer coefficients

Following the derivation of the CPRT equation, i.e. equation (15), in this subsection we discuss the corresponding transfer coefficients
appropriate for the context of cosmic plasmas. The expressions of the coefficients considered in this paper are explicitly specified in
Appendix C.

An astrophysical plasma generally consists of a population of thermal electrons and a population of non-thermal electrons, which could
be relativistic electrons that gyrate around magnetic field lines, electrons accelerated by shocks, or electrons injected by cosmic rays. Given
that dielectric suppression9 (see e.g. Bekefi 1966; Rybicki & Lightman 1986) is insignificant, which is generally true for cosmic plasmas
(see e.g. Melrose & McPhedran 1991), here the transfer coefficients is expressed as the sum of their respective thermal and non-thermal
components, i.e. κi j = (κi j,th + κi j,nt) and εi = (εi,th + εi,nt), where “th" and “nt" denote the thermal and non-thermal components of the
absorption and emission coefficients respectively.

In this work, we consider thermal bremsstrahlung and non-thermal synchrotron radiation process10. For thermal bremsstrahlung,
expressions of the Faraday rotation coefficient fth and Faraday conversion coefficient hth, as well as the expressions of the absorption
coefficients κth, qth and vth follow Pacholczyk (1977)11. The emission coefficients are computed via Kirchoff’s law accordingly. For non-
thermal synchrotron emission, we consider relativistic electrons that has a power-law energy distribution. We use the expressions of the
transfer coefficients that follow Jones & Odell (1977a) and consider an isotropic distribution of relativistic electrons’ momentum direction.

As detailed in Appendix B, the sign of StokesV depends on its definition, polarization conventions, handedness of the coordinate systems
used, as well as the time dependence of the electromagnetic wave (i.e. whether the exponent has +iωt or −iωt) and the definition of the
relative phase between the x and y-components of the electric field of the radiation. However, some of these information were not explicitly
stated in Jones & Odell (1977a), and inconsistent definitions of the time dependence of the electromagnetic wave were used in Pacholczyk
(1977) in deriving the radiative transfer coefficients for bremsstrahlung and synchrotron radiation process (see their equations 3.33 and 3.93).
We therefore expound on the strategy to eliminate ambiguity in Appendix B and present a consistent set of expressions of all the transfer
coefficients in Appendix C, given the geometry explicitly defined in Appendix A and the polarization convention conforming to the IEEE/IAU
standard.

3 ALGORITHMS AND NUMERICAL CALCULATION

The CPRT equations given in equation (15) can, in principle, be either solved by direct integration via numerical methods, or by diagonalizing
and determining the inverse of the transfer matrix operator. We adopt the former approach and employ a ray-tracing method in this paper.
In this section, we present algorithms to solve the CPRT equation numerically. We first present the algorithm for computing the CPRT for a
single ray, followed by the algorithm for an all-sky setting wherein cosmological MHD simulation results may be incorporated to generate a
set of theoretical all-sky intensity and polarization maps.

3.1 Ray-tracing

The CPRT algorithm consists of three basic components concerning (i) the interaction of radiation with the line-of-sight plasmas, (ii) the
cosmological effects on radiation and the co-evolution of plasmas with the Universe’s history, and (iii) numerical computation of the CPRT
equation, which is a set of four coupled differential equations evaluated in the redshift z-space. In the following, we discuss each of these
components, starting with the numerical method. We describe the implementation of the algorithm and highlight its specific designs to
accommodate the inclusion of line-of-sight astrophysical sources and intervening plasmas of different properties.

3.1.1 Numerical method

The radiation propagation is parameterized by redshift z and is sampled discretely into Ncell number of cells. We adopt a sampling scheme
such that each z-interval corresponds to an approximately equal light travel distance. That is, between the initial redshift zinit at which we start
evaluating the CPRT equation and the final redshift z = 0 at which observation is made, the total light travel distance stot is first computed

9 Dielectric suppression, or known as the Razin effect or Razin-Tsytovich effect (Razin 1960; Ramaty 1968), is a plasma effect on synchrotron emission.
Synchrotron radiation is suppressed exponentially below the Razin frequencyωR = ω

2
p/ωB, where ωp is the plasma angular frequency and ωB is the electron

angular gyrofrequency, since the electrons can no longer maintain the phase with the emitted radiation as the wave phase velocity would increase to above the
speed of light (see e.g. Melrose 1980).
10 In addition to thermal bremsstrahlung and non-thermal synchrotron radiation process considered in this work, we note that transfer coefficients appropriate
for different astrophysical environments have been extensively studied in the literature. Accurate expressions for the coefficients of Faraday rotation and Faraday
conversion in uniformly magnetized relativistic plasmas, such as those in jets and hot accretion flows around black-holes, are reported in Huang & Shcherbakov
(2011b). Expressions of the transfer coefficients in the case of ultra-relativistic plasma that is permeated by a static uniform magnetic fields, for frequencies of
high harmonic number limits, and for a number of distribution functions (isotropic, thermal, or power law) are presented in Heyvaerts et al. (2013). Emission
and absorption coefficients for cyclotron process, that is important in accretion discs of compact objects, have also been studied by Chanmugam et al. (1989);
Vaeth & Chanmugam (1995). Careful incorporation of the above would be a useful improvement to the current CPRT implementation, expanding the range of
its applications and enabling a realistic modeling of the magnetized Universe.
11 The same expressions of κth, qth and vth are provided in Wickramasinghe &Meggitt (1985) but a typo of an extra factor of the square of angular frequency is
found in the denominator of vth via dimensional analysis. We also note that the sign of qth in Wickramasinghe & Meggitt (1985) is also different to Pacholczyk
(1977), which might be due to different polarization sign conventions or a sign error.
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by solving equation (16) followed by finding the corresponding lower and upper boundary values of z; where in each z-interval, light travels
a distance as close to seq = stot/Ncell as possible. Note that the light travel distance acts as a scaling factor in the context of numerical
evaluation. For efficient numerical computation, its multiplications with the transfer coefficients would ideally be close to unity.

Each z interval can be further refined to incorporate astrophysical structure(s) and their sub-structure(s). Our code implementation
allows an option to switch on/off such a refinement scheme, as well as to incorporate multiple structures at different redshifts. Within the
refinement zone, we employ a uniform sampling in the log10 (1 + z) space which has the advantage of preserving the profile shape when
multi-frequency calculations are to be carried out. In algorithmic terms, at the cell of index indrefine, the increment over each refined cell
is given by [log10 (1 + z′) − log10 (1 + z)]/Nrefine

cell , where z′ and z are, respectively, the upper and lower boundaries of the z-interval to be
refined, and Nrefine

cell is the total number of refined cells.
A fourth-order Runge-Kutta (RK) differential equation solver is used to integrate equation (16), and to solve equation (15), which

ultimately gives us the Stokes parameters {I,Q,U,V} at z = 0 in the observer’s frame. Parameters to be set for the solver include the total
number of (coupled) differential equations to be solved Neqn, the number of steps for the RK solver Nstep; and the error tolerance level eps.
The error estimation of the solver is carried out by comparing the solution obtained with a fourth-order RK formula to that obtained with a
fifth-order RK formula. If the computed error is less than eps then the calculation proceeds; otherwise the algorithm halts, reports errors of
non-convergence, and returns without further computation.

The upper and lower limits of the z-variables are updated along the ray. The outputs are passed into the next computation as the inputs
(i.e. as updated initial conditions). Since the evaluation of the CPRT starts from a higher z to a lower z value until the present z0 = 0 is
reached, a substitution of z → −z is made in equation (15) as we set that as the function to be evaluated by the RK solver.

3.1.2 Interaction of radiation with plasmas

Radiation is parameterized by frequency ν(z), which has a redshift dependence of ν(z) = νobs(1 + z), where νobs is the observed frequency
at the present epoch z = 0. Its intensity and polarization properties change when passing through the magnetized intervening plasmas. The
strength of the radiative processes, captured through transfer coefficients in the CPRT equation, depends on the physical properties of the
plasmas, in addition to the frequency of the radiation. In general, both thermal and non-thermal electrons are present in astrophysical plasmas.
Parameters describing them include: ne,tot, fraction of non-thermal electrons Fnt (and thus ne,th and ne,nt), temperatures Te for thermal
electrons, power-law index of the non-thermal electrons’ energy spectrum p and the electrons’ low energy cut off described by the Lorentz
factor γi . Added to this list are parameters describing the strength and direction of magnetic fields, B, which can be decomposed into two
components. One component is decomposed along the line-of-sight direction B‖ = |B| cos θ, and another component is decomposed in the
plane normal to the line-of-sight B⊥ = |B| sin θ, where θ is the angle between the direction of the magnetic field and the line-of-sight.

By specifying the observed frequency of radiation νobs at z = 0 and the radiation background at an initial redshift zinit, and given some
input distributions of electron number density ne(z) and magnetic field strength |B(z)| through which light travels, solving the CPRT equations
yields the evolution of the intensity and polarization of the radiation as a function of z.

3.1.3 Cosmological effects

In this paper, we adopt the maximum likelihood cosmological parameters obtained by the Planck Collaboration et al. (2016a) with the present
Hubble constant H0 = 100 h0 = 67.74 kms−1Mpc−1, the matter density today Ωm,0 = 0.3089, and the cosmological constant or vacuum
density todayΩΛ,0 = 0.6911 (Planck Collaboration et al. 2016a). The radiation density today is given byΩr,0 = 4.1650×10−5(h0)

−2 (Wright
2006).

We have already noted the frequency shift of the radiation due to the expansion of the Universe, i.e. ν(z) = νobs(1+ z). The cosmological
(expansion) effects on the temperatures, electron number densities, as well as the strengths of magnetic fields are given by, respectively,
Te(z) = Te,0(1 + z)2, ne(z) = ne,0(1 + z)3, and |B(z)| = |B0 |(1 + z)2, assuming frozen-in flux condition. These properties, as well as the
structures of magnetic fields, are also subjected to local structure formation, evolution and outflows, as well as to influences by external
injections, such as cosmic rays. Consequently, the inter-stellar medium (ISM), intra-cluster medium (ICM), and intergalactic media (IGM)
all exhibit different characteristic properties. The CPRT formulation is covariant and accounts for cosmological and relativistic effects
self-consistently. Because of these advantages, theoretical predictions of the intensity and polarization of the radiation can be computed
straightforwardly by incorporating simulation results describing the cosmic plasmas into the computation of the transfer coefficients, and then
solving the CPRT equation.

3.2 All-sky polarization calculation

We construct an all-sky CPRT algorithm that can interface with cosmological simulation results, numerically solve the CPRT equation, and
thereby generate theoretical all-sky polarization maps that serve as model templates. A schematic of the algorithm is shown in Fig. 1.

Fig. 2 illustrates the concept of the all-sky algorithm, in which the CPRT equation is solved in a spherical polar coordinate system
(r, θ, φ), where (θ, φ) corresponds to the celestial sky coordinates and the radial axis r corresponds to the redshift axis z. Note that outputs
of the cosmological evolutions of plasma properties, e.g. ne(z) and |B(z)|, obtained from a cosmological MHD simulation can be inputted to
the CPRT calculations through the transfer coefficients. Spatial fluctuations of the plasma properties in a finite simulation volume, usually in
Cartesian coordinate system (i, j, k), can also be mapped to the spherical polar coordinate system (r, θ, φ) at each sampled redshift z. A more
rigorous treatment that guarantees the magnetic field is divergence-free is also possible within our all-sky framework. We will present these
details in a forthcoming paper.
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Define parameters for:
(i) the cosmological model: H0,Ωm,0,ΩΛ,0, and Ωr,0;
(ii) coarse z-sampling scheme: z0 = 0.0, zinit and Ncoarse

cell ; and

(iii) 4th-order RK differential equation solver: {NCPRT
eqn = 4, NCPRT

RKstep, and eps}.

Single Ray? iray = 1, Nray,+1

Assign to each ray (θ, φ)iray.Coarse z-sampling:
(i) Compute stot from zinit to z0 = 0.0 using 4th-order RK differential

equation solver with parameters: {Ndl
eqn = 1, Ndl

RKstep, and eps}.

(ii) Compute the redshift boundary values of each z-interval δz such that
δz corresponds to approximately a constant seq = stot/Ncoarse

cell , store in
array azinterval[0 : Ncoarse

cell ].

(iii) Compute the mean-z value for each δz, store in array
azintervalavg(1 : Ncoarse

cell ), azintervalavg(0) = 0.0.

Before stepping through z from high to low values, define
(i) radiation frequency ν[iz = Ncoarse

cell , iray] = ν0 × (1.0 + zinit),

(ii) initial radiation background {I,Q,U,V}|(iz=Ncoarse
cell ,iray), and

(iii) RK solver upper limit xinit = −zinit.

iz = (Ncoarse
cell − 1), 0,−1

Refine z
at iz?

Refine z-sampling:
at indrefine

z , refine δz between azinterval[indrefine
z ]

and azinterval[indrefine
z − 1] such that (δzrefine) is

constant in log(1 + z)-space, store the refined-z
values into array alogzplus1(1 : N refine, 1 : Nray).

Define
(i) radiation frequency ν[(iz = N refine

cell , iray]

= ν0 × (1.0 + azinterval[indrefine
z ]),

(ii) initial radiation background at
irefine
z = Nrefine to equal to the coarse-

grid values {I,Q,U,V}|(indrefine
z +1).

(iii) RK solver upper limit
xinit = −azinterval[indrefine

z ].

irefine
z =

(Nrefine − 1), 1,−1

Compute zplus1refine = 10log10 alogzplus1[irefine
z ,iray].

Similar to (II)-(VIII) but in the refined grid.

Store the final outputs of the RK-
solver in the coarse-grid arrays:
I[indrefine

z , iray] = F1refine[N refine
RK ],

Q[indrefine
z , iray] = F2refine[N refine

RK ],

U[indrefine
z , iray] = F3refine[N refine

RK ],

V[indrefine
z , iray] = F4refine[N refine

RK ]; as well
as the corresponding {I,Q,U,V}|(indrefine

z ,iray)
.

(I) Compute zplus1 = 1.0 + azintervalavg[iz]

(II) Compute ν[iz, iray] = ν0 ∗ zplus1.

(III) Assign plasma properties:
total electron number density ne,tot[iz, iray], temperature of thermal
electrons Te[iz, iray], fraction of non-thermal electrons Fnt[iz, iray],
p[iz, iray] and γi[iz, iray] for non-thermal electrons with a power-law
energy spectrum, the strength B[iz, iray] and orientation cos θ[iz, iray]
of magnetic field.

(IV) Compute transfer coefficients:
thermal and/or non-thermal components, and their sums.

(V) Initialize the RK-solver: set the lower limit of the RK solver xfinal =
−azinterval[iz], and the increment δx = (xfinal − xinit)/(NRK − 1);
set the inputs to the RK-solver by F1[1] = I[iz + 1, iray], F2[1] =
Q[iz + 1, iray], F3[1] = U[iz + 1, iray], and F4[1] = V[iz + 1, iray].

iRK = 1, (NRK − 1),+1

(VI) Set the RK inputs:
Y0(1) = F1(1);Y0(2) = F2(1);Y0(3) = F3(1);Y0(4) = F4(1).

(VII) Call the RK-solver to solve the CPRT equations with the assigned
transfer coefficients, evaluated from the limit xinit to xfinal.

(VIII) Set the outputs of the RK-solver {I,Q,U,V}|z as the inputs to the
next cell: F1[iRK+1] = Y N[1], F2[iRK+1] = Y N[2], F3[iRK+1] =
Y N[3], and F4[iRK + 1] = Y N[4].

(IX) Store the outputs of the RK-solver by I[iz, iray] = F1[NRK],
Q[iz, iray] = F2[NRK], U[iz, iray] = F3[NRK], V[iz, iray] = F4[NRK].

(X) Compute{I,Q,U,V}|(iz,iray) by dividing {I,Q,U,V}|(iz,iray) by the
cube of ν[iz, iray].

(XI) Update the upper limit of the RK solver
xinit = −azinterval[iz].

Write out {I,Q,U,V} at z = 0 and any other desired redshifts.

Yes, iray = Nray = 1

total number of rays = Nray

No

z-loop starts

Ray-loop starts

No

Yes

RK-loop starts

RK-loop ends

z-loop ends

refined z-loop starts

refined z-loop ends

Figure 1. The CPRT algorithm. MNRAS 000, 1–30 (2018)
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z

z = 0

(z, θ, φ)

Figure 2. Illustration of the concept of the all-sky algorithm based on a ray-tracing technique: the CPRT equation is solved for each light ray (indicated in red)
that is parameterized by (z, θ, φ). The radial direction coincides with the direction of redshift z while (θ, φ) maps to the coordinates of the celestial sky. The
observer is positioned at the center of the circles, i.e. at z = 0. Note that the co-moving Hubble radius is represented inside-out. That is, the co-moving Hubble
sphere expands as we approach the center (z = 0) due to the expansion of the Universe. This set-up is applicable for a universe that has a simple topology like
ours, as is suggested by measurements of the cosmic microwave background (Planck Collaboration et al. 2014).

IGM-like plasma ICM-like plasma

Properties
Model A-I A-II B-I B-II

ne, tot (cm−3) 2.1918 × 10−7 1.00 × 10−3

Fnt (%) 1.00 1.00
Te, th (K) 1.875 × 103 5.00 × 105

p 4.00 2.50
corresponds to α 1.50 0.75
γi 10.0 30.0
|B | (G) 1.00 × 10−9 1.00 × 10−6

cos θ 0.5 [−1.0, 1.0] 0.5 [−1.0, 1.0]

Table 1. Properties of different intervening plasma models used in this paper. To test the ability of our CPRT equation solver to handle the extreme limits, the
total electron number density ne, tot for models A is set equal to the mean electron number density of the Universe (see Appendix E for details); temperature
of the thermal electrons in the IGM-like and ICM-like plasma models are assumed to take the lower-end values typical to IGM and ICM. Fnt denotes the
non-thermal relativistic electron fraction, p denotes the power-law index of the energy spectrum of the non-thermal relativistic electrons, which relates to the
spectral index of the synchrotron radiation α = (p − 1)/2. γi is the electrons’ low-energy cut-off Lorentz factor. |B | denotes the magnetic field strength. The
magnetic field direction along the line-of-sight is described by cos θ ∈ [−1.0, 1.0] which is set random for Models A-II and B-II.

We add a remark here on the sampling scheme over a sphere for efficient follow-on data analysis. There is an option to compute rays
that are randomly positioned over the entire celestial sphere. Alternatively, one may utilize the advantages of efficient spherical sampling
schemes, such as the HEALPix sampling (Górski et al. 2005) and the sampling scheme devised by McEwen & Wiaux (2011) which affords
exact numerical quadrature. In such a case, ray-tracing CPRT calculation is performed at each grid point on the sphere. Map data constructed
this way allows efficient power spectrum analyses and spherical wavelet analyses (e.g. McEwen, Hobson & Lasenby 2006; Sanz et al. 2006;
Starck et al. 2006; Geller et al. 2008; Marinucci et al. 2008; Wiaux et al. 2008; Leistedt et al. 2013; McEwen, Vandergheynst & Wiaux 2013;
McEwen et al. 2015; McEwen, Durastanti & Wiaux 2018; Chan et al. 2017) to characterize the spatial fluctuations of polarization, crucial for
searching polarization signatures imprinted by large-scale magnetic fields in observational data.

4 CODE VERIFICATION

In this section we present the single-ray and multiple-ray experiments performed for code verification12. The z-sampling scheme follows the
recipe described in Section 3.1.1 (or see the related red boxes in Fig. 1).We consider polarized radiative transfer at frequencies νobs = 1.42GHz
and 5.00 GHz for illustrative purposes13. Properties of the intervening plasma considered are listed in Table 1, which can be IGM-like (model
A) or ICM-like (model B) with magnetic field directions along the line-of-sight set at a fixed angle (models A-I and B-I) or set as randomly
oriented (models A-II and B-II). Thermal bremsstrahlung and non-thermal synchrotron radiation process are accounted for.

12 Consistency test is also performed by comparing the results of light-travel time obtained by integrating equation (16) using our code (then dividing by the
speed of light) to those that are obtained using the publicly available cosmological calculator by Wright (2006), http://www.astro.ucla.edu/~wright/
CosmoCalc.html. The results agree with each other, up to the maximum digits displayed in Wright (2006), i.e. three decimal places.
13 νobs = 1.4 GHz is chosen since it lies within the operating range of many current and upcoming radio telescopes, such as the Arecibo radio telescope
(http://www.naic.edu/), the Five hundred meter Aperture Spherical Telescope (FAST, http://fast.bao.ac.cn), the Australia Telescope Compact
Array (ATCA, https://www.narrabri.atnf.csiro.au/), LOFAR, MWA, ASKAP, SKA, etc.
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4.1 Single-ray tests

To test the accuracy and precision of our CPRT integrator in handling polarized radiative transfer in scenarios investigated in this paper,
we repeat the two integration tests presented in Section 3.2 in Dexter (2016). We solve the standard PRT equation (equation (2)) that is
reduced from the general CPRT equation (equation (15)), and compare the numerical solutions we obtained to the analytic solutions, which
are explicitly given in Appendix C of Dexter (2016) for the idealized situations with constant transfer coefficients along a ray.

In the first test, we consider pure emission and absorption in Stokes I and Q. The light ray travels through the Faraday-thin IGM-like
plasma or the Faraday-thick ICM-like plasma (models A-I or B-I) over a cosmological distance from z = 6 to z = 0. Detailed values of both
the (thermal and non-thermal) emission and absorption transfer coefficients, as well as the optical depths used in the calculations are given in
Table F1 in Appendix F. As is seen in Figure 3, the numerical solution obtained by our CPRT integrator agrees with the analytical solution
up to the machine floating-point precision throughout the entire light path.

In the second test, we consider radiation of observed frequencies νobs = 1.4 GHz and νobs = 5.0 GHz. The radiation travels through the
Faraday thick ICM-like plasma (B-I) of a fewMpc in length scale. Only pure Faraday rotation and Faraday conversion and polarized emission
in Q and V are considered (note that εU is set to zero due to the choice of coordinate systems (see Appendix 2.1). To ease checking the
oscillatory behavior of the resulting V , we boost the Faraday conversion effect artificially by setting its transfer coefficient to the same order
magnitude as the Faraday rotation coefficient. The results of the second test is presented in Figure 4. An excellent agreement between the
numerical and analytic solutions is obtained in both cases of different radiation frequencies. Machine floating-point precision is maintained
over the ray despite that the residuals in Q, U and V increase with each oscillation. Similar trend is also found in Figure 4 in Dexter (2016)
and that in Mościbrodzka & Gammie (2018).

MNRAS 000, 1–30 (2018)
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Figure 3. Plots of the analytic solutions (computed using equation C2, and C3 in Dexter (2016); denoted by line) and numerical solutions (obtained from our CPRT code in Fortran; denoted in star) to
the test problem with pure emission and absorption in I and Q. Transfer coefficients are constant over the entire ray. The left panels show the results using the IGM-like plasma model (A-I), where we use
(εI , tot, εQ, tot) = (2.62 × 10−53, 2.06 × 10−55) erg s−1 cm−3 Hz−1 str−1, (κtot, qtot) = (2.23 × 10−38, 7.07 × 10−52) cm−1. The right panels show the results using the ICM-like plasma model (B-I), where we use
(εI , tot, εQ, tot) = (1.25 × 10−38, 9.05 × 10−39) erg s−1 cm−3 Hz−1 str−1, κtot, qtot = (9.34 × 10−34, 5.49 × 10−34) cm−1. All the other transfer coefficients are set to zero. Note that the resulting I and Q have a very
small order of magnitude, and thus their residual resx = xemp − xana too, with x = {I,Q}; dividing resx by the order of magnitude of quantity x gives machine floating-point precision. Note that such a precision
is attained over the entire light path in both models.

Figure 4. Plots of the analytic solutions (computed using equation C6, C7, C8 in Dexter (2016); denoted by line) and numerical solutions (obtained from our CPRT code in Fortran; denoted in star) to the test
problem with pure constant Faraday rotation, Faraday conversion and emission in Q and V . ICM-like plasma parameters (model B-I) are used to compute the coefficients f , εQ , and εV while h is set to be of
the same order of magnitude of f to make the oscillatory behavior in V apparent. The left and right panels show the results using νobs = 1.4 GHz and νobs = 5.0 GHz, respectively. At νobs = 1.4 GHz, the
non-zero transfer coefficients are ( ftot, htot) = (1.16 × 10−23, 1.00 × 10−23) cm−1, (εQ, tot, εV , tot) = (9.05 × 10−39, 5.51 × 10−43) erg s−1 cm−3 Hz−1 str−1. At νobs = 5.0 GHz, the non-zero transfer coefficients are
( ftot, htot) = (9.37 × 10−25, 1.00 × 10−25) cm−1, (εQ, tot, εV , tot) = (3.52 × 10−39, 1.14 × 10−43) erg s−1 cm−3 Hz−1 str−1. Residuals grow with each oscillation, yet, machine floating-point precision is attained (with
residual divided by the order of magnitude of the corresponding Stokes parameter) over the entire light path in both cases.
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Profile I Profile II
zori 5.93623409775142 1.00082825012323

zrefine
central 5.90499449730497 0.9992434724235666

Peak frequency Input νin
central (GHz) 1.41400848881021 1.41928070323115

Output νpeak,0 (GHz) 1.41400848881021 1.41928070323115
Fractional difference
(νpeak,0 − ν

in
central)/ν

in
central

−8.99280649946616 × 10−15 −1.110223037256493 × 10−16

Dispersion Input σin 0.000866648853601 −0.000123250853536
Output σ0 0.000866648853601 −0.000123250853536

Fractional difference
(σ0 − σ

in)/σin 1.59377719355 × 10−17 5.66495635124 × 10−18

Peak intensity
ratio Analytical rana

I 0.00299659998884 0.12484483163785

Empirical remp
I

0.00299659998884 0.12484483163785
Fractional

difference(remp
I − rana

I )/r
ana
I

4.34172933267 × 10−16 1.06713879307 × 10−14

Power-law index
of Analytical mana 3.0000

(I
zori=5.94
peak,0 / Empirical memp 3.00000000000099

I
zori=1.00
peak,0 )

Fractional difference
(memp −mana)/mana −3.29218134236 × 10−13

Table 2.Results of the multi-ray code-verification test where two Gaussian profiles, originating at zori = 5.94 and at zori = 1.00 respectively, are cosmologically
transported in a vacuum but an expanding flat space-time. Four parameters are compared against their theoretical values; the empirical results are found to be
consistent with the expected values up to machine floating-point precision.

4.2 Multiple-ray test

To verify the redshift-refinement scheme and the whole code, we performed multi-ray calculations evaluating the cosmological radiative
transfer of two Gaussian profiles that centered at two different redshifts. The two input profiles, originating at zori = 5.94 and 1.00, have
frequency samples assigned through the redshift-refinement scheme at that specific zori. The central frequency of the profiles is then given
by νin

central = νobs(1 + zrefine
central), where zrefine

central is the redshift value of the Nrefine/2 cell, for Nrefine = 500. The ray then freely propagates
in vacuum afterwards, i.e. all the transfer coefficients are set to zero when computing the CPRT equation. As such, frequency shift of the
radiation is the only cosmological effect which modifies the radiation properties in its transport. We compare the values of four quantities
obtained from the CPRT calculations against the theoretical expected values. These quantities are (i) the frequency at which the resulting
profile peaks, νpeak,0, (ii) the standard deviation of the resulting profile, σ0, (iii) the empirical ratio of the output to the input peak intensity
remp
I
= I in

peak/Ipeak,0, for each Gaussian profile, and (iv) the power-law index of the ratio of the output peak intensities of the two profiles,
memp. Analytically, the resulting profile obtained from the CPRT of each case (i.e. emission at zori = 5.94 or at zori = 1.00) should remain
Gaussian and peak at the frequency of νobs × (1 + zrefine

central)/(1 + zori) with νobs = 1.42 GHz. The standard deviation of the normalized input
and the output Gaussian profiles should remain the same. The ratio of the peak intensity of the output emission profile to that of the input
profile follows rana

I
= 1/(1+ zori)3. Furthermore, comparing the outputs of the two cases, the ratio of the peak intensity at zero redshift should

follow a power law of [(1 + z′′ori)/(1 + z′ori)]
3, where z′′ denotes the higher redshift. That is, the power-law index mana = 3.0.

We summarize the results in Table 2, from which one can see that the empirical results are consistent with the theoretical expectation
up to machine floating-point precision. Furthermore, consistent results are obtained using the parallelized code (i.e. with multiple threading
using OpenMP) as those obtained by the serial execution.

5 APPLICATIONS

Here we present a set of CPRT calculations to demonstrate the ability of the algorithm in tracking the change of polarization on astrophysical
and cosmological scales. Changes in polarization features caused by the frequency shift of the radiation, or those caused by the evolution of
intervening cosmic plasmas can be separately investigated; direct studies of their combined effects can also be directly carried out.

We start with a set of single-ray calculations, showing in our case studies how polarization changes over cosmological distances with
and without a bright line-of-sight point source. Then we demonstrate how to incorporate cosmological MHD simulation results into CPRT
calculations to make polarization maps. We compute the polarization of a simulated galaxy cluster. We also compute the entire polarized sky
using a model magnetized universe. Polarization maps generated in such a way, i.e. by CPRT calculations with an interface of simulation
results, encapsulate theoretical predictions. They are crucial to aid our interpretation of observational data. Model templates of the entire sky
are particularly important for comparison with future observational data, such as those from all-sky surveys of polarized emission with the
SKA.

5.1 Cosmological evolution of polarization

We perform a set of ray-tracing calculations for radiation with observed frequency νobs = ν0 = 1.42 GHz propagating from z = 6.0 through
some distributions of ne(z) and |B(z)| as described below. The z-sampling scheme follows the recipe described in Section 3.1.1.
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Without point source Point source at z = 6.0 Point source at z = 0.206

initial Stokes parameters


I

Q

U

V

 z=6.0


0.0000
0.0000
0.0000
0.0000




8.7096 × 10−14

−4.5372 × 10−16

2.5731 × 10−15

4.3548 × 10−17




0.0000
0.0000
0.0000
0.0000


final Stokes parameters


I

Q

U

V

 z=0.0


1.0438 × 10−23

6.7617 × 10−25

5.1681 × 10−26

−1.7613 × 10−32




2.5392 × 10−16

−2.8095 × 10−18

7.0807 × 10−18

1.2696 × 10−19




2.5392 × 10−16

−1.3221 × 10−18

7.5021 × 10−18

1.2696 × 10−19


initial ϕ(z = 6.0) 0.0000 0.8727 0.0000
final ϕ(z = 0.0) 3.8142 × 10−2 0.9731 0.8726
initial Πl(z = 6.0) 0.0000 3.0000 0.0000
final Πl(z = 0.0) 6.4969 3.0000 3.0000
initial Πc(z = 6.0) 0.0000 5.0000 × 10−2 0.0000
final Πc(z = 0.0) 1.6874 × 10−7 5.0000 × 10−2 5.0000 × 10−2

initial Πtot(z = 6.0) 0.0000 3.0004 0.0000
final Πtot(z = 0.0) 6.4969 3.0004 3.0004

Table 3. Numerical results of the CPRT calculations for the demonstrative cases where bright point source is (i) absent, (ii) located at z = 6.0 or (iii) located at
z = 0.206; magnetic fields orientate along the line-of-sight at random angles (see Section 5.1.1). The Stokes parameters are in units of erg s−1 cm−2 Hz−1 str−1,
ϕ is measured in radian, and Πl, Πc, and Πtot are expressed in percentage. Note that for case (i) the resulting I has an order of magnitude 10−23, which is much
smaller than the specific intensity of the cosmic microwave background of 10−18 erg s−1 cm−2 Hz−1 str−1 at the same observed frequency. This suggests that
emission and polarization signals would be overwhelmed by the CMB background in real observations.

5.1.1 Point-source emissions

Bright polarized emitters such as quasars and radio galaxies may lie along the line-of-sight acting as back-light illuminating the foreground.
Here, we calculate how the polarization and intensity of a fiducial quasar-like point source changes over a cosmological distance. Emissions
of such a point source at z observed at 1.42 GHz is given by [I,Q,U,V]|z = [I,Q,U,V]|z=0(1 + z)3, where [I,Q,U,V]|z=0 = [ 2.54 ×
10−16,−1.32 × 10−18, 7.50 × 10−18, 1.27 × 10−19] erg s−1 cm−2 Hz−1 str−1, where we have assumed the degree of linear polarization to be
3.00% (Jagers et al. 1982), the degree of circular polarization to be 0.05% (Conway et al. 1971), and the polarization angle ϕ = 0.87 rad. For
demonstrative purposes, we adopt such a simple interpolation of [I,Q,U,V]|z from [I,Q,U,V]|z=0, focusing on polarization effects caused
by our input plasma of known properties.

Three cases are investigated, including (i) the control experiment where there is no bright point source lying along the line-of-sight, no
radiation background, but the intervening medium is a self-emitting, absorbing, Faraday-rotating and Faraday-converting medium, (ii) the
fiducial point source is placed at z = zinit = 6.0, serving as a bright distant radio back-light, and (iii) the fiducial point source is located much
nearer, at z = 0.206 (cf. Jagers et al. 1982). The prescription of the intervening plasma at z = 0 follows model A-II described in Table 1;
simple cosmological evolutions of ne(z), Te(z) and |B(z)| described in Section 3.1.3 are now accounted for while the fraction of non-thermal
relativistic electrons Fnt, their energy spectral index p and the Lorentz factor of low-energy electron cut-off γi are assumed to be constant
over all redshifts. The results of the three different scenarios are displayed in parallel in Fig. 5 – Fig. 7 for comparison purposes. Numerical
results are summarized in Table 3.

Differences in the results of the three cases indicate that on cosmological scale, polarized radiative transfer of light traveling through a
foreground cosmologically-evolving IGM-like plasma, with or without a bright point source, can impart unique polarization features. Also,
it can be readily seen from Fig. 5 and Fig. 6 that both the total emission and the polarized emission from the fiducial point source dominate
over the contributions from the foreground plasma, as expected. The invariant intensity I of the radiation stays by and large constant from
where the bright point source is positioned with a very small increase over increasing z due to the emission of the line-of-sight plasma, which
is calculated in case (i). Fluctuations in Stokes parameters are induced by random field orientations along the line-of-sight.

The observed change of polarization angle ∆ϕ, which is a measure of the amount of Faraday rotation and is sensitive to the magnetic
field directions along the line-of-sight, depends on the z-position of the point-source, as is seen in Fig. 7 and Table 3. In all three cases we
obtained ∆ϕ < π. This indicates that the effect of Faraday rotation is weak, as is expected for a line-of-sight plasma that is threaded with a
weak magnetic field of nG and has a low electron number density. Insignificant Faraday conversion is also observed in case (i), for which there
is only the plasma but no bright sources lying along the line-of-sight. Note that Πc is much weaker than Πl by an order of magnitude of 105.
For case (ii), Πl and Πc are dominated by the contributions of the bright point source over the foreground plasmas. For case (iii), the sudden
drops in ∆ϕ, Πl and in Πtot and the large rise in Πl shows the effects of having a foreground (nearby) source. Understanding the foregrounds,
particularly any bright line-of-sight sources and their locations, is crucial for scientific inference of magnetic fields and their evolution.

In addition, depolarization effect is observed: there is a net drop in Πtot as z decreases (i.e. as path-length increases). By the experimental
set up, this is mainly due to differential Faraday rotation (i.e. emission at different z is rotated by different amount due to their magneto-
ionized foreground, thus reducing the net polarization). Random magnetic fields has also been identified in the literature as another cause of
depolarization (see e.g. Burn 1966). Investigation of the effects of random fields is beyond the scope of this demonstration, but our results
here illustrate how the effects on polarization can be quantified by performing a full cosmological polarized radiative transfer.
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Figure 5. Cosmological evolution of the invariant Stokes parameters (in units of erg s−1 cm−2 Hz−4 str−1) for νobs = 1.42 GHz for the cases where the radio bright point source is (i) absent, (ii) located at z = 6.0,
and (iii) located at z = 0.206; line-of-sight magnetic field orientations, simulated from a single realization, are random (see Section 5.1.1). Emission, absorption, Faraday rotation, and Faraday conversion for thermal
bremsstrahlung and non-thermal synchrotron radiation process are taken into account. Note that fluctuations caused by random field directions in the results of case (iii) can be seen in zoom-in figures, where at z
prior to the point-source location the Stokes parameters evolve as in those of case (i). Here we display the results over the full redshift range for comparison purposes.
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Figure 6. Cosmological evolution of the comoving Stokes parameters (in units of erg s−1 cm−2 Hz−1 str−1) for νobs = 1.42 GHz for the cases where the radio bright point source is (i) absent, (ii) located at z = 6.0,
and (iii) located at z = 0.206; line-of-sight magnetic field orientations, simulated from a single realization, are random (see Section 5.1.1). Emission, absorption, Faraday rotation, and Faraday conversion for thermal
bremsstrahlung and non-thermal synchrotron radiation process are taken into account. Note that fluctuations caused by random field directions in the results of case (iii) can be seen in zoom-in figures, where at z
prior to the point-source location the Stokes parameters evolve as in those of case (i). Here we display the results over the full redshift range for comparison purposes.
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Figure 7. Cosmological evolution of ∆ϕ (in radian), Πl, Πc and Πtot (in percentages) for the cases where the radio bright point source is (i) absent, (ii) located at z = 6.0, and (iii) located at z = 0.206; line-of-sight
magnetic field orientations, simulated from a single realization, are random (see Section 5.1.1). Emission, absorption, Faraday rotation, and Faraday conversion for thermal bremsstrahlung and non-thermal synchrotron
radiation process are taken into account. Note that the change of polarization angle is sensitive to the randomness of the magnetic field angle along the line-of-sight.
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Figure 8. The line-of-sight view of the central slices of a simulated galaxy cluster obtained from a GCMHD+ simulation, showing the structure of electron
number density (left), magnetic field strength (middle) and magnetic field orientations along the line-of-sight as defined by cos θ (right). The whole galaxy
cluster data of dimension 256 × 256 × 256 are used for the demonstrative pencil-beam calculation (see Section 5.2). Note that the GCMHD+ simulation is
adiabatic, so to focus on the evolution of the magnetic field due to structure formation without the additional complications, e.g. the impacts of star formation.

5.2 Single galaxy cluster

Here we illustrate the making of intensity and polarization maps of an astrophysical object by carrying out pencil-beam (post-processing)
CPRT calculations, where results obtained from a cosmological MHD simulation are incorporated. Each pixel of the maps corresponds to a
solution obtained by the radiative transfer calculation.

We use the data of a simulated galaxy cluster obtained from the “cleaned" implementation of a higher resolution GCMHD+ simulation
(see Section 4 in Barnes et al. 2018). The GCMHD+ simulations, designed to focus on the evolution of the magnetic field due to structure
formation without the additional complications, are adiabatic, i.e. no radiative cooling, reionization, star formation and feedback from
supernovae and Active Galactic Nuclei. The cluster obtained at z = 0 from the simulation has a virial radius of Rvir = 1.4439 Mpc, and a gas
mass of mgas ∼ 1013 M� . Non-thermal electrons has energy density that amounts to 1% of the thermal energy density (see Barnes et al. 2018).
Simple statistics of the properties of the cluster are summarized in Table 4. In Fig. 8 we plot the central slices of the data cube viewing along
the z-direction, illustrating the input structures of electron number density, magnetic field strength and orientation for the CPRT calculation.

Radiative transfer of a total number of 2562 = 65536 rays is computed from z = 6.0 to z = 0.0 through the galaxy cluster centered at
zcluster. Without loss of generality, we choose zcluster = 0.5 (i.e. placed between z = 0.500645 and z = 0.499355, corresponding to a length
scale of 2.89 Mpc ≈ 2Rvir). In order to study the intrinsic polarization emission of the cluster, no materials fill the line-of-sight outside
the cluster and zero initial radiation background are assumed. Emission, absorption, Faraday rotation, and Faraday conversion by thermal
bremsstrahlung and non-thermal synchrotron radiation process are taken into account.

Fig. 9 shows the resulting intensity and polarization maps obtained at z = 0; simple statistics of those maps are summarized in Table 4.
The simulated cluster is intrinsically polarized at the νobs = 1.42 GHz with the mean value of degree of total polarization ∼ 68.57 %,
dominated by linear polarization. Emission is the highest in the cluster’s central region, where both magnetic field and electron number
density are the highest (see Fig. 8). Faraday rotation is also strong in the central region, leading to a bigger change of polarization angle, as
is seen in the map of ∆ϕ shown in Fig. 9. At the same time, depolarization in that region is also the most significant, where the degree of
polarization is . 30% and the minimum reaches ∼ 1%. Strong differential Faraday rotation and the effect of random field orientations along
the line-of-sight are the causes of depolarization in this demonstration. These results agrees with the observational trends of smaller degree
of polarization for sources close to the cluster center (see e.g. Bonafede et al. 2011; Feretti et al. 2012).

CPRT calculation provides a rich set of data products, enables quantitative measures of polarization and intensity, and its algorithm
allows interfacing with simulation results. While here we demonstrate the calculation of a simulated cluster at a fixed redshift and show only
the intensity and polarization maps at z = 0, the CPRT algorithm can generate maps at any sampled redshifts. Comparisons of the statistics
of maps generated at different redshifts may provide a useful means to study the cosmological evolution of magnetic fields, as well as giving
insights to tomographic studies of large-scale magnetic fields in real data. Mock data set obtained from CPRT calculations can also be used
to test analyses tools used for magnetic field structure inference.

5.3 All-sky calculation

With the advent of the SKA surveys over a very large fraction of the celestial sky will be enabled. Here we describe how applying the all-sky
CPRT algorithm allows us to compute theoretical polarization maps of the radio sky, with a model magnetized universe obtained from a
cosmological MHD simulation with GCMHD+ code (Barnes, Kawata & Wu 2012; Barnes et al. 2018) as an input structure. Mock data of
such a kind can be statistically characterized for comparison with observations, as well as serving as testbeds for validating analysis methods
used for scientific inference.

Ray-tracing CPRT calculations are carried out for a total number of Nray = 12 × 642 = 49152 rays distributed on z-spheres according to
the HEALPix sampling scheme (Górski et al. 2005). We consider radiation frequency of νobs = 1.42 GHz. Contribution from the redshifted
CMB photons to the radiation background is neglected, and radio polarization is arisen from sources consisting both thermal and non-thermal
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Figure 9. Resulting maps of log I , log |V |, log |Q |, and log |U | in units of erg s−1 cm−2 Hz−1 str−1, ∆ϕ in radian, and the maps of Πl, Πc, Πtot in percentage,
obtained from the demonstrative CPRT calculation at z = 0 for a simulated galaxy cluster (see Section 5.2).

Mean Standard Deviation Minimum Maximum
Input
ne, tot 6.3561 × 10−5 2.7001 × 10−4 6.3577 × 10−7 2.6508 × 10−2

|B | 1.5585 × 10−8 5.0621 × 10−8 2.5227 × 10−14 2.5175 × 10−6

cos θ −5.9235 × 10−3 5.7434 × 10−8 -1.0000 1.0000
Output
I 7.0217 × 10−18 4.4204 × 10−18 2.2564 × 10−27 1.3000 × 10−16

Q 1.6270 × 10−19 1.0358 × 10−18 −2.96286 × 10−19 3.3099 × 10−17

U −2.3702 × 10−21 9.3950 × 10−19 −2.9899 × 10−17 3.2602 × 10−17

V −2.6325 × 10−25 4.2232 × 10−23 −1.5752 × 10−21 1.9561 × 10−21

∆ϕ 1.1957 × 10−3 0.2543 −3.1240 3.1401
Πl 68.5725 8.0302 1.1191 70.5876
Πc 2.3278 × 10−4 2.8580 × 10−4 6.4526 × 10−10 4.2846 × 10−3

Πtot 68.5725 8.0302 1.1191 70.5876

Table 4. Statistics of the input and output parameters at z = 0 of the demonstrative pencil-beam CPRT calculation using the simulated galaxy cluster
obtained from a GCMHD+ cosmological MHD simulation; see Section 5.2. ne, tot is in units of cm−3, while |B | is in G. The Stokes parameters are in units
of erg s−1 cm−2 Hz−1 str−1, ∆ϕ is in radian, and Πl, Πc, Πtot are in percentages. All values are corrected to four decimal places for compactness.
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Figure 10. Plots of the cosmological evolution of the ne, tot (left) and that of the logarithmic of magnetic energy densityUB = |B |2/8π (right) outputted from
a GCMHD+ cosmological simulation. The solid red line in the right diagram shows the piecewise function that fits to the data, ignoring the anomalous bump
caused by instantaneous infall and outflow of the simulation box. Note that smoothing via the 21-point averaging method is applied to obtain B‖ (z) for the
CPRT calculation. Note also that we consider only the post-reionization epoch, i.e. 6.0 ≥ z ≥ 0.0 , in our calculation.

electrons distributed across the entire universe in the post-reionization epoch14 (i.e. z ≤ 6.0). Both thermal bremsstrahlung and non-thermal
synchrotron radiation process are taken into account. To isolate the polarization signatures imparted by magnetic structures, electron number
density ne,tot(z, θ, φ) is assumed to be uniform across the entire sky at each z; its cosmological evolution over z underwent a dilution in
an expanding universe, i.e. ne,tot(z) = ne,tot,0(1 + z)3, where ne,tot,0 = 2.1918 × 10−7 cm−3 (see Appendix E for details). We assume that
non-thermal relativistic electrons amounts to 1% of the total electron number density. We also assume that their energy spectrum follows a
power law with a spectral index of p = 4.0 (i.e. the non-thermal electrons have aged, steepening the spectrum), corresponding to a radiation
power-law spectrum with index α = (p − 1)/2 = 1.5. The low cutoff of the electron energy is set to γi = 10.0, and the high cut-off is set to
infinity.

We use the GCMHD+ cosmological MHD simulation (Barnes, Kawata & Wu 2012) to determine the evolution of the large-scale
magnetic field as structures in the universe assemble. A cubic region of comoving volume (40 Mpc)3 was taken from a comoving (100 Mpc)3
volume in the simulation, which started at z = 47.4 as determined by the initial condition generator grafic++. The magnetic field was assumed
to be generated at some early epoch via a method that filled the volume of the simulation. It has a configuration of B = (10−11, 0, 0)G. We fit
analytically the output of B‖(z) obtained from the GCMHD+ simulation by the piecewise function:

log10
©­«

B2
‖
(z)

8π
ª®¬ =


8.1737 x4 − 40.352 x3 + 73.647 x2 − 55.264 x − 12.16 : 0.64 < x < 1.70
0.67 tanh(−x/0.18 + 2.72) − 26.14 : 0.15 ≤ x ≤ 0.64
− tanh(x/0.52 + 0.28) − 24.91 : −2.00 ≤ x < 0.15 ,

(17)

with x = log10 z. This fit15, plotted in Fig. 10, is smoothed by interpolation using twenty-one-points averages to model the input of B‖(z) for
the CPRT calculation. We assumed a log-normal spatial distribution of B‖(z, θ, φ) over each z-sphere, where the mean value is deduced from
equation (17) multiplied by a factor of 103 to match the expected observed field strength of 1.0 nG typical to filaments (see e.g. Araya-Melo
et al. 2012). The log-normal distribution ensures the magnetic field strength to be all positive. Directions of the magnetic fields, which are
defined by the cos θ, are assumed to have random orientations along the line-of-sight.

5.3.1 Results and discussion

(I) Along a randomly selected ray
Fig. 11 shows the resulting cosmological evolution of both the invariant and co-moving Stokes parameters, as well as the cosmological
evolution of ∆ϕ, Πl, Πc and Πtot of a randomly selected ray. Notably, one can see that the fluctuations in Q,U and V increase significantly
during the late time, i.e. when the structure formation and evolution processes (such as the assembly of galaxy clusters) in the cosmological
simulation become prominent and that magnetic fields become significantly amplified along with these processes, hence imposing a Faraday
screen (i.e. strong Faraday-rotating component). In addition, highly volatile behavior is observed in the change of polarization angle over
z, i.e. throughout the entire radiation path. Volatility in the evolution of polarization angle increases the difficulty to distinguish between
different Faraday depth components, limiting the usage of the standard approach to infer magnetic field properties using RM synthesis (see
e.g. Brentjens & de Bruyn 2005) in some cases. Results showing similar trends in polarization evolution are observed commonly in all the
other randomly selected rays.

(II) All-sky maps
Theoretical all-sky polarization maps of I, Q, U, and V can be generated at any chosen redshifts. In Fig. 12 we show the Stokes maps obtained

14 We expect that non-linear growth in magnitudes and structures of electron number density during the reionization epoch would have imparted observational
signatures to the traveling radiation, varying the statistics such as the polarization power spectrum. However, for demonstrative purpose we do not consider
such an effect in this paper.
15 Note that the anomalous bump in the Fig. 10 at log z = −0.5 is caused by the instantaneous infall and outflow of the simulation box. This structure does not
appear in the other four simulations that ran with different initial conditions, and is therefore neglected.
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Figure 11. Cosmological evolution of the invariant Stokes parameters, the comoving Stokes parameters, ∆ϕ, Πl, Πc and Πtot over the redshifts 6.0 ≥ z ≥ 0.0
obtained from the CPRT calculation using a a model magnetized universe obtained from the GCMHD+ simulation as the input structure, see Section 5.3.
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Figure 12. All-sky maps of the Stokes parameters I,Q,U,V at z = 0 obtained from the demonstrative CPRT calculation in which cosmological GCMHD+
simulation results of the cosmological evolution of magnetic field strength is incorporated, log-normal distribution of the field strength over the redshift spheres
are assumed, and the electron number density is diluted by 1/(1+ z)3 due to the expansion of the universe; see Section 5.3. The scale of the colorbar is adopted
to make the fluctuations in the Stokes maps apparent. The full dynamical range of the data is given in Table 5.

at z = 0. Their statistics are summarized in Table 5. As pointed out from the previous discussion on the single-ray results, the evolution of
the change of polarization angle, which serves as a probe to Faraday rotation effect, is highly volatile and complex, demanding advanced
statistical analyses at different redshifts to be performed for science extraction from map data.

(III) Remarks on the CPRT method and the existing RM techniques

Our demonstrative calculation results have two major implications in the study of large-scale magnetic fields, firstly on the future power
spectrum analysis, and secondly on the validity of the current methodologies to investigate large-scale magnetic fields.

Our results show that a Faraday screen can be introduced when structure formation and evolution processes in the universe becomes
prominent, as is seen in Fig. 11 where significant polarization fluctuations happened during the late time when galaxy clusters started to
assemble in the simulation, boosting the mean magnetic field strength. This finding means that cosmological contributions from line-of-sight
IGM-like media will likely be screened (or shielded) by fluctuations sourced from astrophysical structures like a galaxy cluster (i.e. ionized
systems with relatively high magnetic field strengths and electron number density). This further implies that the polarization power spectrum
of an all-sky map will be dominated by high frequency (small scale) signals. At the same time, it is worth noting that the morphology of
ionized bubbles during the Epoch of Reionization, which has not been investigated in this paper, may imprint observable signatures onto
the polarization maps, contributing to the power in low frequency (large scale) in polarization power spectrum as those ionized regions
overlapped.

The highly volatile cosmological evolution of Stokes parameters suggests that analysis methods using RM is likely to be deemed
inappropriate to study inter-galactic magnetic fields, particularly those that permeate emitting cosmic filaments. This is because Faraday
rotation will no longer be the single important process that imprints the polarization signals, but also the emissions from filaments themselves,
as well as the absorption processes along the line-of-sight. However, the quantity of RM is derived from a restrictive case of polarized radiative
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Mean Standard Deviation Minimum Maximum
Input
ne, tot 2.1918 × 10−7 0.0000 2.1918 × 10−7 2.1918 × 10−7

|B | 5.2855 × 10−9 6.8763 × 10−9 4.5734 × 10−11 1.9587 × 10−7

cos θ −1.8850 × 10−3 0.5769 −1.0000 0.9999
Output
I 9.6274 × 10−24 3.3006 × 10−26 9.5894 × 10−24 1.1695 × 10−23

Q 4.7385 × 10−26 2.6055 × 10−26 1.7357 × 10−26 1.6790 × 10−24

U 2.9300 × 10−31 3.5445 × 10−28 −2.7505 × 10−26 1.0346 × 10−26

V −1.0209 × 10−33 2.0177 × 10−30 −2.1578 × 10−28 8.4035 × 10−29

∆ϕ 1.1597 × 10−5 4.7925 × 10−1 −3.0689 × 10−1 3.4868 × 10−1

Πl 4.9131 × 10−3 2.5886 × 10−3 1.8100 × 10−3 1.4359 × 10−1

Πc 5.4946 × 10−8 1.8629 × 10−7 1.5424 × 10−12 1.8452 × 10−5

Πtot 4.9131 × 10−3 2.5886 × 10−3 1.8100 × 10−3 1.4359 × 10−1

Table 5. Statistics of the input and output parameters at z = 0 of the demonstrative all-sky CPRT calculation using a model magnetized universe obtained from a
cosmological GCMHD+ simulation; see Section 5.3. ne, tot is in units of cm−3, while |B | is in G. The Stokes parameters are in units of erg s−1 cm−2 Hz−1 str−1,
∆ϕ is in radian, and Πl, Πc, Πtot are in percentage. All values are corrected to four decimal places for compactness.

transfer, as is described in Section 1 and reviewed in details in our related paper (On et al. 2019). Interpretation of polarization signals in those
cases, therefore, requires full CPRT consideration, so to correctly and accurately determine how large-scale magnetic fields have evolved and
where they came from.

6 DISCUSSION AND SUMMARY

In this paper, a covariant formulation of cosmological polarized radiative transfer, which provides a solid theoretical foundation to use
polarized light as a probe of large-scale magnetic fields, is presented. Such a formulation naturally accounts for the space-time metric of an
arbitrary cosmological model with a flat geometry. It is derived based on a covariant general relativistic radiative transfer formulation, which
is derived from the first principles of conservation of phase-space volume and photon number. Without loss of generality, the corresponding
polarized radiative transfer equations derived using a flat FRW space-timemetric are constructed. In addition, we developed the (all-sky) CPRT
algorithm that allows incorporation of the results from cosmological MHD simulation to the CPRT calculations, henceforth, a straightforward
generation of theoretical polarization maps. Those maps serve as model templates, crucial for interpreting all-sky polarized data which will
be measured by the next generation radio telescopes such as the SKA.

Sets of CPRT calculations are performed to validate the code implementation of the ray-tracing algorithm and to demonstrate its
applications for practical astrophysical studies. We summarize below the richness of the polarization data product the CPRT algorithm offers,
as well as the findings from our demonstrative sets of calculations.

Solving the CPRT equation yields the evolution of the Stokes parameters of radiation as a function of z, allowing tracking of how
the intensity and polarization of radiation are modified on its way by local radiation processes (thermal bremsstrahlung and non-thermal
synchrotron radiation process in this paper) in a cosmologically evolving universe. From the set of single-ray calculations presented in Section
5.1, we showed the resulting evolution of the polarization for cases where a bright radio point source is present or absent, and magnetic field
orientations are random along the line-of-sight. It is seen that line-of-sight bright radio point sources dominate the intensity and polarization,
and their locations lead to different signatures in the polarization evolution of the radiation. CPRT calculations provide quantitative studies
of the intensity and polarization of radiation in their transport. They allow direct tracking of the change of polarization angle, which will
help to resolve nπ-ambiguity problem, aiding our interpretation of observational data. Evolution of the degree of linear, circular and total
polarization can also be computed, allowing further investigation of Faraday rotation and depolarization.

Carrying out multiple-ray CPRT calculation yields data maps of intensity and polarization, where spatial fluctuations across the sky plane
can be statistically studied and characterized for comparison with observational data for magnetic field structure inference. We performed
such a calculation using simulated cluster data obtained from a GCMHD+ simulation as the input. Contributions from the galaxy cluster
dominated over those from the inter-galactic space. This is as expected due to their much higher electron number density and magnetic field
strength. Faraday screening effect may be dominated when performing common analysis methods that use RM as a quantitative measure to
study intra-cluster magnetic fields. We highlight that carrying out a full CPRT calculation, which does not assume the relative strength of
radiative transfer effect in emission, absorption, Faraday rotation, and Faraday conversion, allows a reliable assessment of the validity of the
standard RM methods in different astrophysical scenarios in an expanding Universe.

In full cosmological settings, we performed an all-sky CPRT calculation using amodelmagnetized universe obtained from a cosmological
GCMHD+ simulation as the input. Our results show that the cosmological evolution of the polarization components of propagating radiation is
highly volatile, suggesting that full CPRT consideration is needed for accurate large-scale inter-galactic magnetic field studies, particularly for
the fields that permeate emitting cosmic filaments. Another implication is that polarization power spectra obtained from all-sky measurements
are likely to be dominated by the high frequency (small scale) signals caused by strong Faraday-rotating components, such as galaxy clusters.
Impacts on the polarization signals due to the morphology of the cosmic reionization, which are not addressed in this paper but are important
research problems, will be considered in our future work.

All in all, the CPRT formulation provides a reliable platform to compute polarized sky. Furthermore, with known input distributions of
ne(z) and B(z), and full radiative transfer processes taken into account, results obtained from the forward computation of the CPRT algorithm
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will provide valuable data sets that may also serve as a testbed for assessing analysis tools used for large-scale magnetic field studies. Also,
since the cosmological terms in the CPRT equation can be easily switched off in our algorithm and its code implementation, calculations in
astrophysical contexts can be easily carried out; calculations for foreground contributions in cosmology studies can also be performed.

With the current version of the implementation, our next step is to characterize the polarization fluctuations for different input mag-
netic field and electron number density distributions, developing statistical methods for reliable scientific inference from data. Alongside,
implementation of more accurate transfer coefficient expressions for a broader class of synchrotron distributions, as well as the inclusion
of cyclotron process, is to be carried out and tested. Solving a stiff set of CPRT equations is foreseen to be one of the biggest numerical
challenges. Nonetheless, the CPRT formulation, and its algorithm provide a solid theoretical foundation and a reliable platform to study
large-scale magnetic fields. The CPRT formulation derived and the (all-sky) algorithm that has been developed enable more straightforward
comparisons between theories and observations, ultimately guiding us to answers about the origins and the co-evolution of magnetic fields
with structures in the Universe.
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Figure A1. Coordinate systems adopted and the geometry of the magnetic field considered in this work.
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APPENDIX A: ADOPTED COORDINATE SYSTEM

In this work we adopt right-handed coordinate systems as depicted in Fig. A1 following Huang & Shcherbakov (2011a). In our notations,
magnetic field B is directed along the z̃-axis, making an angle θ clockwise to the propagation direction of the radiation k. An orthonormal
(x, y, z) basis is defined such that z ‖ k, x = C(B × k), where C is a scalar that can be positive or negative, and x ‖ x̃, and y = (k × x). Here x
is perpendicular to the plane of (B, k), and (B, k, y) are coplanar. Electric field of an electromagnetic wave traveling along k ‖ z oscillates in
the (x, y)-plane. By such a choice of configuration (or by the choice of y ‖ ỹ in the systems defined in Sazonov (1969); Pacholczyk (1977)),
absorption coefficient uν , conversion coefficient gν and emission coefficient εU,ν are zeros.

Note that the transfer coefficient matrices are commonly derived in the “magnetic-field" system, i.e. first in the (x̃, ỹ, z̃) basis, and then
projecting them onto (x, y) for k ‖ z and cos θ = (k ·B)/(|k| |B|) (see e.g. Sazonov 1969; Pacholczyk 1970, 1977; Jones & Odell 1977a; Huang
& Shcherbakov 2011a). Transformation between the coordinate systems ẽi = (x̃, ỹ, z̃) and ej = (x, y, z) is given by ej = ẽiMi j , where

Mi j =
©­«

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

ª®¬ , (A1)

i.e.

©­«
x
y

z

ª®¬ = ©­«
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ª®¬ ©­«
x̃
ỹ

z̃

ª®¬ . (A2)

It follows that the rotation of vectors is given by Ai = (MT)i j Ãj , and the rotation of tensors is given by σi j = (MT)ik σ̃km(M)mj (Huang &
Shcherbakov 2011a). In future studies where observational data are confronted with theoretical predictions obtained by CPRT calculations, it
is also useful to introduce the “observer’s" (or polarimeter’s) system (a, b), which is defined by rotating the (x, y)-plane about the k-direction.
Such a transformation, i.e. between the local system (given by the local projection of the magnetic field) in the comoving frame and the frame
in which polarimetric data are measured, invokes the use of rotational matrix R(χ), which follows the definition given in equations (50)
and (51) in Huang & Shcherbakov (2011a), where the angle χ relates a and b to the magnetic field components perpendicular to k, i.e.
B⊥ = B − k(k · B)/k2, by sin χ = (a · B⊥)/|B⊥ | and cos χ = −(b · B⊥)/|B⊥ | respectively.

APPENDIX B: CONVENTION OF POLARIZATION

Stokes parameters Iν ,Qν ,Uν are defined unambiguously once the (x, y) coordinate system is specified. The different definitions of polarization
angle adopted in the cosmic microwave background community and the International Astronomical Union (IAU) can be reconciled by a sign
flip of Uν . However, interpretation of the sign of Vν (and consequently the signs for the corresponding transfer coefficients εV,ν , vν and hν) in
the literature is often ambiguous. This is because the sign ofVν depends not only on the definition of the senses of circular polarization (which
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Figure B1. A right-handed circularly polarized wave, as defined by the IEEE, in the adopted right-handed coordinate system. The electric vector rotates
counter-clockwise as seen by the observer, i.e. at a fixed position as time advances (note that at fixed time the electric vector along the line-of-sight rotates
clockwise i.e. forms a left-handed screw in space).

also depends on the handedness of the coordinate systems used) and the definition of Vν , but also on the choice of sign in the time-dependent
description of the electromagnetic wave, as well as the definition of the relative phase between the x and y-components of the electric vector
of the wave. Much variation in these dependences exist in the literature, or sometimes this information is inexplicitly assumed or left unstated.
Another source of variation comes from the choice of the attachment of the sense of circular polarization to the helicity of the photon. Any
confusion and ambiguity can easily cause a slip in the interpretation of Vν .

Here we first describe the circular polarization sense defined by the Institute of Electrical and Electronics Engineers (IEEE) (IEEE
1998), which is commonly adopted by radio astronomers (but opposite to classical physicists and optical astronomers’ common practice16),
and the International Astronomical Union (IAU) convention of Stokes Vν (Reid 2007). Then we discuss the intricacies to test the conformity
to the IEEE/IAU polarization convention. Finally we remark on the magnetic field direction of the system and state explicitly the Stokes V
convention used in this paper.

IEEE/IAU polarization convention:

The exact quote of the IEEE (1998)’s definition17 of a right-handed polarized wave reads “a circularly or an elliptically polarized
electromagnetic wave for which the electric field vector, when viewed with the wave approaching the observer, rotates counter-clockwise in
space". As pointed out by Hamaker & Bregman (1996), such a definition stipulates that the position angle ϕ of the electric vector of the wave
at any point increases with time, implying that the y-component of the filed, Ey , to lag the x- component, Ex . In other words, the electric
field traces out a counter-clockwise helix (right-hand screw) in time at fixed position, whereas in space at any instant in time it forms a
clock-wise helix (left-hand screw) (see e.g. Rochford 2001). The IAU endorses the sense of circular polarization defined by IEEE and defines
Vν = (RCP − LCP), i.e. Vν is positive for RCP (Reid 2007). The x- and y- axes of a right-hand triad align with North and astronomical East,
and the z- axis points towards the observer for standard IAU convention.

Conformity to IEEE/IAU convention:

It is important to note that even when the Stokes parameters are uniquely defined when combined the IEEE/IAU definition with the
standard formulae for Iν = 〈|Ex |

2 + |Ey |
2〉, Qν = 〈|Ex |

2 − |Ey |
2〉, and Uν = 2〈|Ex | |Ey | cos δ〉, two similar but distinct mathematical

representations are allowed for the same physics of the problem, as is shown by Hamaker & Bregman (1996). One has the choice18 of the
sign of the time dependence of the electromagnetic wave, i.e. e+iωt or e−iωt , for ω > 0. Both choices are equally valid, but once the sign is
chosen for

E(z, t) = E0 e±i(ωt−kz) =

(
Ex(z, t)
Ey(z, t)

)
=

(
Ex0 e±i(ωt−kz+φx )

Ey0 e±i(ωt−kz+φy )

)
, (B1)

the following quantities must have the sign adjustments such that Ey lags Ex for a (unit amplitude) RCP wave:

ERCP =
1
√

2

(
1
∓i

)
, (B2)

16 The right-handed circular polarization convention by the IEEE corresponds to the left-handed circular polarization convention in the classical sense, i.e.
IEEE-RCP = classical-LCP.
17 The same definition was first introduced in 1942 when the IEEE was still known as the Institute of Radio Engineers (IRE).
18 Another choice is relate to the attachment of the RCP and LCP to positive and negative helicity (see also Appendix III in Simmons & Guttmann 1970, for
a complete table of different conventions of RCP, including those that do not comply to IEEE/IAU convention).

MNRAS 000, 1–30 (2018)



Covariant polarized radiative transfer on cosmological scales 27

and that
Vν = 2〈|Ex | |Ey | sin δ〉 (B3)
= ∓i〈ExE∗y − EyE∗x〉 (B4)

Hamaker & Bregman (1996), so that V is positive for RCP, i.e. IEEE/IAU compliant. Note that the sign adjustment in equation (B4) is
equivalent to defining the sign of δ = ±(φy − φx) in equation (B3) for δ ∈ (0, π), where time delays correspond to negative (positive) values
of the phases φx and φy for e±i(ωt−kz) according to Equation (B1). It is apparent that one differing convention of the above would lead
to a sign reversal. In brief, an unambiguous interpretation of the circular polarization from Vν requires a clear specification of the adopted
handedness of the coordinate systems, the convention of circular polarization, the definition of Stokes Vν , as well as the chosen mathematical
representation of the traveling plane wave.

Remark on the B-field convention:

Given the coordinate systems and the geometry of the problem presented in Fig. A1, let’s consider the simple case where a uniform
magnetic field B aligns with k, so θ = 0. An electron would then precess about B in the (x̃ − ỹ)-plane, moving counter-clockwise as viewed
along k ‖ B. The electric vector of the electromagnetic wave follows the electron motion, thus also rotating couter-clockwise as viewed by
the observer. This results in IEEE-RCP, and according to the IAU convention, Vν > 0.

In this paper, we adopt the conventions conforming to the IEEE/IAU standard and stick to the magnetic field convention where the
magnetic field is positive when pointing towards the observer19. We follow the same coordinate systems as Huang & Shcherbakov (2011a)
and use it as the main reference paper to check against the signs of the Stokes parameters and their corresponding transfer coefficients. The
transfer coefficients therefore all have positive signs in their expressions.

APPENDIX C: TRANSFER COEFFICIENTS

In this Appendix we present the transfer coefficients for both thermal bremsstrahlung and non-thermal synchrotron radiation process. The
non-thermal relativistic electrons gyrating around magnetics field lines has a power-law energy spectrum. We adopt the expressions given in
Pacholczyk (1977) and Jones & Odell (1977a) respectively, but the sign of the circular polarization described by Stokes V are made to be
consistent and complied to the IEEE/IAU convention, given the coordinate system explicitly shown in Appendix A. The emission coefficients
have units of erg s−1 cm−3 Hz−1 str−1 and the absorption and Faraday coefficients have units of cm−1.

C1 Thermal bremsstrahlung

Transfer coefficients of thermal bremsstrahlung have been presented in Pacholczyk (1977); Meggitt & Wickramasinghe (1982); Wickramas-
inghe & Meggitt (1985); Rybicki & Lightman (1986). In this paper, we adopt the expressions given in Pacholczyk (1977) and make certain
changes such that the set of coefficients would follow the same conventions of polarization we have specified.

For a magnetized thermal plasma, the coefficients of Faraday rotation and Faraday conversion are respectively,

fth =

(
ω2

p/cωB
)

cos θ(
ω2/ω2

B

)
− 1

, and (C1)

hth =

(
ω2

p/cωB
)

sin2 θ

2
(
ω3/ω3

B − ω/ωB
) (C2)

(Pacholczyk 1977), where ω = 2πν is the radiation angular frequency, ωp = (4πnee2/me)1/2 is the plasma frequency, ωB = (eB/mec) is the
electron gyrofrequency, and θ is the angle between the radiation propagation and the magnetic field. The thermal bremsstrahlung components
of the absorption coefficients are given by

κth =
ω2

p
(
2ω4 + 2ω2ω2

B − 3ω2ω2
B sin2 θ + ω4

B sin2 θ
)

2 cω2
(
ω2 − ω2

B

)2 νc , (C3)

qth =
ω2

p ω
2
B sin2 θ

(
3ω2 − ω2

B

)
2 cω2

(
ω2 − ω2

B

)2 νc , and (C4)

vth =
2ω2

p ωωB cos θ

c
(
ω2 − ω2

B

)2 νc (C5)

19 This is opposite to the astronomical convention that traditionally defines magnetic field direction as positive when pointing away from the observer (i.e.
θ = 0 corresponds to a negative field while θ = π corresponds to a positive field).
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(Pacholczyk 1977), where the collisional frequency is

νc =
4
√

2πe4ne
3√me (kBTe)3/2

lnΛ ≈ 3.64 ne T−3/2
e lnΛ , (C6)

with the Coulomb logarithm factor, for ω � ωp,

Λ =

{ (
2

1.781

)5/2 (
kBTe
me

)1/2 (
kBTe
e2ω

)
, for Te ≤ 3.16 × 105 K

8πkBTe
1.781hω , for Te > 3.16 × 105 K

(C7)

(Lang 1974). kB is the Boltzmann constant and Te is the temperature of the electrons in thermal equilibrium. The emission coefficients in I,
Q and V can be computed via the Kirchoff’s law:

εI,th = κth Bω , εQ,th = qth Bω , and εV,th = vth Bω , (C8)

where the Planck function Bω = kBTeω2/(2π2c2) by the Rayleigh-Jeans law.
It is interesting to note that both the frequency dependence and the dependence on the magnetic field are different for Faraday rotation

and Faraday conversion. The strength of the Faraday rotation effect is proportional to ν−2ne,th |B‖ |δs, and the strength of Faraday conversion
is proportional to ν−3ne,th |B⊥ |2δs, where |B‖ | = |B| cos θ, |B⊥ | = |B| sin θ, and δs is the photon propagation length.

Another useful remark concerns the use of rotation measure (RM) in the literature for quantifying the strength of Faraday rotation. RM is
defined as R ≡ ∆ϕ c2/ν2, where ϕ = 0.5 arctan(U/Q). A widely-used formula in RM analysis is R(s) = 0.812

∫ s

s0
ds′
pc

ne (s
′)

cm−3
|B‖ (s′) |
µG rad m−2,

which it can be shown that this is derived from the polarized radiative transfer equation (equation 2), under the assumptions that the effects
of emission, absorption, Faraday conversion and contribution from non-thermal electrons are negligible (see On et al. 2019, for details). In
a realistic situation, however, these assumptions do not hold. The intensity of Q and U of the observed polarized light is not solely dictated
by Faraday rotation process. An accurate inference of magnetic field properties from the polarization signatures of observed light, therefore,
demands a full polarized radiative transfer treatment.

C2 Non-thermal synchrotron radiation

We adopt the expressions of the transfer coefficients for cosmic synchrotron sources from Jones & Odell (1977a), and make appropriate sign
changes for the transfer coefficients at Vν to keep a self-consistent polarization convention defined explicitly in this paper. For relativistic
electrons following a power-law energy distribution with an index p ,

dn = [nγγp]γ−pΘ(γ − γi)g(Ψ) dγ dΩΨ , (C9)

where Θ(γ − γi) is the step function, γi is the low-energy cutoff of electrons, and g(Ψ) is the pitch-angle distribution, normalized to∫
dΩΨg(Ψ) = 1. The corresponding number density of electron is

nγ =
∫ ∞
γi

dγ[nγγp]γ−p = [nγγp]γ
−(p−1)
i

/(p − 1) , for (p > 1) . (C10)

The normalization factor [nγγp] and the index p are related to the spectral index of the radiation by α = (p − 1)/2. The transfer coefficients
for non-thermal synchrotron radiation are

fnt = fακ⊥
(ωB⊥

ω

)2
(ln γi) γ

−2(α+1)
i

cot θ
[
1 +

α + 2
2α + 3

d (ln g(θ))
d (ln (sin θ))

]
, (C11)

hnt = hακ⊥
(ωB⊥

ω

)3
γ
−(2α−1)
i

[
1 − (ωi/ω)

α−1/2

α − 1/2

]
, for (α > 1/2) , (C12)

κnt = κακ⊥

(ωB⊥

ω

)α+5/2
, (C13)

qnt = qακ⊥
(ωB⊥

ω

)α+5/2
, (C14)

vnt = vακ⊥

(ωB⊥

ω

)α+3
cot θ

[
1 +

1
2α + 3

d (ln g(θ))
d (ln (sin θ))

]
, (C15)

εI,nt = ε I
α ε⊥

(ωB⊥

ω

)α
, (C16)

εQ,nt = ε
Q
α ε⊥

(ωB⊥

ω

)α
, and (C17)

εV,nt = ε V
α ε⊥

(ωB⊥

ω

)α+1/2
cot θ

[
1 +

1
2α + 3

d (ln g(θ))
d (ln (sin θ))

]
, (C18)

(Jones & Odell 1977a, and references therein), where ωB⊥ = ωB sin θ, κ⊥ = (2πrec)ω −1
B⊥
[4πg(θ)][nγγp], ε⊥ =

(mec2)(re/2πc)ωB⊥ [4πg(θ)][nγγp] with the classical electron radius re = e2/mec2, and the fiducial frequency ωi = γ2
i ωB⊥ . The di-
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mensionless functions in the transfer coefficients are

fα = 2
(α + 3/2)
α + 1

, (C19)

hα = 1 , (C20)

κα =
3α+1

4
Γ

(
α

2
+

25
12

)
Γ

(
α

2
+

5
12

)
, (C21)

qα =
(α + 3/2)
(α + 13/6)

κα , (C22)

vα =
3α+1/2

2
(α + 2)
(α + 1)

(
α +

3
2

)
Γ

(
α

2
+

7
6

)
Γ

(
α

2
+

5
6

)
, (C23)

ε I
α =

3α+1/2

4 (α + 1)
Γ

(
α

2
+

11
6

)
Γ

(
α

2
+

1
6

)
, (C24)

ε
Q
α =

(α + 1)
(α + 5/3)

ε I
α , and (C25)

ε V
α =

3α

2
(α + 3/2)
(α + 1/2)

Γ

(
α

2
+

11
12

)
Γ

(
α

2
+

7
12

)
. (C26)

The transfer coefficients are derived from a nearly isotropic dielectric tensor, appropriate for cosmic plasmas with low electron densities and
weak magnetic fields, such that ω > ωi and both ω and ωi are above the gyro-frequency ωB. The condition γ2

i > cot2 θ also has to be
satisfied. In addition, dielectric suppression is assumed to be negligible, which generally holds valid for cosmic media (see Jones, O’dell &
Stein 1974; Melrose & McPhedran 1991, for details). In this paper isotropic electron distribution is assumed so g(θ) = 1/4π. Comparing
to the thermal bremsstrahlung expression in the high-frequency limit (ω � ωB), the non-thermal synchrotron Faraday rotation coefficient
has an extra function factor ζ(p, γi) =

(p−1)(p+2)
(p+1)

(
lnγi
γ2

i

)
, implying that Faraday rotation weakens with increasing electron energy (see also

Melrose 1997; Huang & Shcherbakov 2011a).

APPENDIX D: DERIVATION OF THE COVARIANT RADIATIVE TRANSFER FORMULATION

Derivation of the covariant radiative transfer formulation has been presented in Rybicki & Lightman (1986); Fuerst & Wu (2004); Younsi,
Wu & Fuerst (2012). Here we repeat the derivation for clarity and completeness.

Consider a bundle of particles filling a phase-space volume element dV ≡ dx3 dp3, with 3-spatial volume element dx3 = dx dy dz
and the 3-momentum volume element dp3 = dpx dpy dpz at given time t. According to the Liouville’s theorem, dV/dλa = 0. Since dV is
conserved along the affine parameter λa, it is Lorentz invariant.

The distribution function (or phase space density) of the particles in the bundle is represented by f (xi, pi) = dN/dV, where dN is the
number of particles in dV . Since dN/dV is Lorentz invariant, f (xi, pi) is also Lorentz invariant.

For photons, v = c and cp = E , where E is the photon energy. The spatial and momentum volume elements are dx3 = dA c dt and
dp3 = E2 dE dΩ, where dA is the area element through which the photons travel in the time interval dt and dΩ corresponds to the direction
of photon propagation. It follows that

f (xi, pi) =
dN

dA c dt E2 dE dΩ
(D1)

(see Rybicki & Lightman 1986). The specific intensity of the radiation is

IE =
E dN

dA c dt dE dΩ
. (D2)

Comparing the two expressions yields

f (xi, pi) =
IE
E3 =

Iν
ν3 ≡ Iν , (D3)

where Iν is the Lorentz-invariant intensity.
The Lorentz-invariant absorption and emission coefficients are ζν = ν κν and ξν = εν/ν2, respectively (Rybicki & Lightman 1986). It

follows that the covariant radiative transfer equation takes the form
dIν
dτν
= −Iν + Sν , (D4)

where the source function Sν ≡ ξν/ζν = εν/(κν ν3). Since ζν and ξν are invariants under the Lorentz transformation, the transfer coefficients
measured in the observer’s frame relates to those in the co-moving frame (i.e. the local rest frame of the medium) via ν κν = νco κν,co and
εν/ν

2 = εν,co/ν2
co. Hence, the radiative transfer equation becomes

dIν
ds
= −κν Iν +

εν

ν3 , (D5)

(Fuerst & Wu 2004; Younsi, Wu & Fuerst 2012).
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IGM-like model A-I ICM-like model B-I
εI , tot εI , th + εI ,nt εI , th + εI ,nt

(erg s−1 cm−3 Hz−1 str−1) = 2.59 × 10−53 + 2.62 × 10−55 = 6.91 × 10−47 + 1.25 × 10−38

= 2.62 × 10−53 = 1.25 × 10−38

κtot κth + κnt κth + κnt
(cm−1) = 2.23 × 10−38 + 8.64 × 10−52 = 2.23 × 10−34 + 7.11 × 10−34

= 2.23 × 10−38 = 9.34 × 10−34

τ =
∫ 0.0
zinit

κtot(z) · ds 2.72 × 10−13 1.14 × 10−8

ftot fth + fnt fth + fnt
(cm−1) = 2.54 × 10−30 + 1.52 × 10−33 = 1.16 × 10−23 + 8.54 × 10−28

= 2.54 × 10−30 = 1.16 × 10−23

htot hth + hnt hth + hnt
(cm−1) = 3.76 × 10−42 + 8.12 × 10−43 = 1.72 × 10−32 + 3.01 × 10−32

= 4.57 × 10−42 = 4.72 × 10−32

Table F1. Values of the transfer coefficients and optical depths computed using parameters of models A-I and B-I at radiation frequency ν = 1.4 GHz. The
transfer coefficients obtained have a very small order of magnitude, suggesting a scale length of a few Mpc.

APPENDIX E: CALCULATION OF THE TOTAL ELECTRON NUMBER DENSITY AT THE PRESENT EPOCH

TheUniverse is neutral as awhole and themost common atoms in it areHydrogen andHelium.Wecan approximate ne,tot = np,tot = np,He+np,H,
where “p" stands for proton, “H" for Hydrogen and “He" for Helium; np,He ≈ ρHe/mHe, and np,H ≈ ρH/mH. By approximating the density
of Hydrogen taking up 75 % of the density of baryons (i.e. ρH = 3ρb/4), and the density of Helium taking up the remainder, it gives
ne = 7ρb/8mp. The value of ρb,0 can be calculated from Ωb,0 = ρb,0/ρcrit, with Ωb,0h2 = 0.02230 (Planck Collaboration et al. 2016a), and
ρcrit = 3H0/(8πG) = 1.87882 × 10−29h2. This gives ne,0 = 2.1918 × 10−7 cm−3.

APPENDIX F: REMARKS ON FINDING AN APPROPRIATE SCALE LENGTH

Here in Table F1 we present the numerical values of the absorption, emission and Faraday rotation coefficients used in the calculations
presented in Section 4.1. In general, the very different properties of cosmic media lead to a wide range of orders of magnitude spanned
by transfer coefficients in the CPRT equation, resulting in a stiff set of coupled differential equations to solve. It is therefore essential and
important to test the capability of the equation solver and the stability of the numerical solution (see Section 4.1). We emphasize that finding an
appropriate scale length is crucial to overcoming the stiffness issue. In this work, the very small order of magnitude of the transfer coefficients
computed using parameters typical to an IGM and an ICM at νobs = 1.42 GHz suggests a scale length of a few Mpc when determining the
z-sampling scheme.

In addition, note that all the CPRT calculations for the situations discussed in this paper are optically thin (i.e. τ � 1). While the media
are optically thin, they can be Faraday thick at the same time, such as in the cases of ICM-like environments. Numerical values of the optical
depths and Faraday conversion coefficients obtained using the IGM-like model A-I and the ICM-like model B-I are included in Table F1.
Note also that the effect of Faraday conversion is usually much weaker than that of Faraday rotation. Hence V is nearly always zero in the
cases of our interests.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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