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ABSTRACT
The emerging generation of radio interferometric (RI) telescopes, such as the Square Kilo-
metre Array (SKA), will acquire massive volumes of data and transition radio astronomy to
a big-data era. The ill-posed inverse problem of imaging the raw visibilities acquired by RI
telescopes will become significantly more computationally challenging, particularly in terms
of data storage and computational cost. Current RI imaging methods, such as CLEAN, its
variants, and compressive sensing approaches (i.e. sparse regularisation), have yielded excel-
lent reconstruction fidelity. However, scaling these methods to big-data remains difficult if not
impossible in some cases. All state-of-the-art methods in RI imaging lack the ability to pro-
cess data streams as they are acquired during the data observation stage. Such approaches are
referred to as online processing methods. We present an online sparse regularisation method-
ology for RI imaging. Image reconstruction is performed simultaneously with data acqui-
sition, where observed visibilities are assimilated into the reconstructed image as they arrive
and then discarded. Since visibilities are processed online, good reconstructions are recovered
much faster than standard (offline) methods which cannot start until the data acquisition stage
completes. Moreover, the online method provides additional computational savings and, most
importantly, dramatically reduces data storage requirements. Theoretically, the reconstructed
images are of the same fidelity as those recovered by the equivalent offline approach. We an-
ticipate online imaging techniques, as proposed here, will be critical in scaling RI imaging to
the emerging big-data era of radio astronomy.

Key words: techniques: image processing – techniques: interferometric – methods: data anal-
ysis – methods: numerical.

1 INTRODUCTION

Since the 1930s, radio astronomy has transitioned from the first
observations to a data-rich era. Due to rapid technological devel-
opments, radio astronomy will transition from a data-rich era to
the so-called big-data era in coming years. Radio interferometric
(RI) telescopes allow us to explore the Universe by detecting ra-
dio waves emitted from a wide range of objects in the sky. They
observe the radio sky with high angular resolution and sensitiv-
ity, providing valuable information for astrophysics and cosmol-
ogy (Ryle & Vonberg 1946; Ryle & Hewish 1960; Thompson et al.
2008). Next-generation RI telescopes are being built to achieve sci-
ence goals ranging from probing cosmic magnetic fields (Johnston-
Hollitt et al. 2015) to the detection of the epoch of re-ionization
(Koopmans et al. 2015), to name just a few.

Representative next-generation RI telescopes include: the

? E-mail: x.cai@ucl.ac.uk (XC); luke.pratley.15@ucl.ac.uk (LP);
jason.mcewen@ucl.ac.uk (JDM)

LOw Frequency ARray (LO-FAR1, van Haarlem et al. 2013), the
Extended Very Large Array (EVLA2), the Australian Square Kilo-
metre Array Pathfinder (ASKAP3, Hotan et al. 2014), the Murchi-
son Widefield Array (MWA4, Tingay et al. 2013), and the Square
Kilometer Array (SKA5, Dewdney et al. 2013). These new tele-
scopes will acquire large volumes of data, and achieve significantly
higher dynamic range and angular resolution than previous genera-
tions. The SKA itself, for instance, will provide a considerable step
in dynamic range – six or seven orders of magnitude beyond prior
telescopes – and angular resolution, while producing massive vol-
umes of data. For example, data rate estimates of SKA phase I are
around five terabits per second for both SKA1-low (a low frequency
aperture array) and SKA1-mid (a mid frequency array of reflector

1 http://www.lofar.org
2 http://www.aoc.nrao.edu/evla
3 http://www.atnf.csiro.au/projects/askap
4 http://www.mwatelescope.org/telescope
5 http://www.skatelescope.org
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dishes) (Broekema et al. 2015). Moreover, the data volume will be
greater still in SKA phase II.

Briefly speaking, radio interferometers sample Fourier coeffi-
cients (visibilities) of the radio brightness distribution in the sky.
Due to limited sampling in the Fourier plane, imaging an observa-
tion requires solving an ill-posed linear inverse problem (Thomp-
son et al. 2008), which is an important first step in many subsequent
scientific analyses. The emerging era of big-data ushered in by the
new generation of radio telescopes will, inevitably, bring further
challenges in imaging and scientific analysis. The enormous data
rates will create practical challenges in both storage and computa-
tion.

Classical image reconstruction methods, such as CLEAN-
based methods (Högbom 1974; Bhatnagar & Corwnell 2004; Corn-
well 2008; Stewart et al. 2011; Offringa et al. 2014; Pratley &
Johnston-Hollitt 2016) and the maximum entropy method (MEM)
(Ables 1974; Gull & Daniell 1978; Cornwell & Evans 1985), have
served the community well but do not exploit modern image re-
construction techniques. They suffer from cumbersome parameter
tuning and/or slow computation speed and require post processing
due to their limited image models. Furthermore, they struggle to
confront the upcoming big-data era. Recently, compressive sens-
ing (CS) techniques were ushered into RI imaging for image re-
construction (Wiaux et al. 2009a,b; McEwen & Wiaux 2011; Li
et al. 2011a,b; Carrillo et al. 2012, 2014; Wolz et al. 2013; Dabbech
et al. 2015; Dabbech et al. 2017a,b; Garsden et al. 2015; Onose
et al. 2016, 2017; Pratley et al. 2018; Kartik et al. 2017a,b). CS-
based methods exploit sparse regularisation techniques and have
shown promising results compared to traditional approaches such
as CLEAN (e.g. Pratley et al. 2018; Dabbech et al. 2017b; Kartik
et al. 2017a). Furthermore, several algorithms (Carrillo et al. 2014;
Onose et al. 2016, 2017; Kartik et al. 2017b) have been developed
to scale such approaches to big-data, as anticipated from the SKA,
using, e.g., distribution, parallelisation, dimensionality reduction,
and/or stochastic strategies. In Cai et al. (2018a,b), Bayesian in-
ference techniques for sparsity-promoting priors were presented
to quantify the uncertainties associated with reconstructed images,
e.g. to estimate local credible intervals (cf. error bars) on recovered
pixels. In particular, in Cai et al. (2018b), maximum-a-posteriori
(MAP) estimation techniques were presented to scale uncertainty
quantification to massive data sizes, i.e. to big-data.

All of these reconstruction methods (e.g., CLEAN, MEM and
CS-based methods), however, store the entire set of observed vis-
ibilities for subsequent processing once data acquisition is com-
pleted (i.e., after the full observation is made). In other words, they
can be categorised as offline methods. In this article we develop on-
line methods for RI imaging. Online methods process data piece-
by-piece as they are acquired, without having the entire data-set
available from the start (Shalev-Shwartz 2011; Hazan 2015). Pro-
cessing is thus performed while the data are acquired. In particu-
lar, online methods generally outperform offline methods in terms
of computational efficiency, and memory and storage costs. In RI
imaging, since the visibility acquisition process can take a reason-
ably long time (often ∼10 hours or longer) and the observed visi-
bilities require huge storage, particularly in the big-data era, online
methods can provide considerable advantages.

In this article we propose a special type of online imaging
method for RI. The proposed online method is based on iterative
convex optimisation algorithms (e.g. Combettes & Pesquet 2010),
which have been applied to RI imaging problems already (e.g.
Cai et al. 2018b). Compared with the standard (offline) algorithms
which use visibilities from an entire observation at every iteration,

our online method needs to deal only with one single visibility
block acquired at the latest time slot, at each iteration. Most impor-
tantly, a visibility block will be discarded once the online method
assimilates it. The storage space will be released at the same time
and will then be used for next data block. Consequently, the stor-
age requirements of our online algorithm are limited to the size of
the visibility block, rather than the size of the full set of visibilities
acquired over an observation. Storage requirements of our online
algorithm are thus a very small fraction of the storage requirements
of offline methods. Once arriving at the last data block (the entire
visibilities then have been observed) and after processing it, the im-
age from the observation will have been reconstructed by our online
method. At the moment the final visibilities are acquired, our on-
line method is close to completing its reconstruction work, whereas
standard methods are only able to start the reconstruction. More-
over, we verify the convergence properties of our online method
and show that the quality of the images recovered by our online
method is essentially the same as the equivalent offline method.
Although our proposed online method is customised for the appli-
cation of RI imaging, the concept of the method itself is generic
and therefore can be directly applied to many other applications,
such as medical imaging. Furthermore, our online framework sup-
ports the uncertainty quantification methodology proposed in Cai
et al. (2018b). Both techniques can thus be combined to target im-
age reconstruction and uncertainty analysis for the upcoming big-
data era.

The remainder of this article is organised as follows. In Sec-
tion 2 we review the RI imaging inverse problem, MAP (maximum
a posteriori) estimation, related state-of-the-art optimisation algo-
rithms and some classical online methods. Our general online op-
timisation algorithm is proposed in Section 3, with a discussion
of its convergence properties. Section 4 focuses on sparse image
reconstruction for RI imaging using the proposed online method,
including an analysis of visibility storage requirements and compu-
tational cost. Numerical results evaluating the performance of our
proposed method and the comparison with related methods are re-
ported in Section 5. Finally, in Section 6, we conclude with a brief
description of our main contributions and future works.

2 RADIO INTERFEROMETRIC IMAGING AND
RELATED METHODS

In this section the inverse reconstruction problem of RI imaging
is first reviewed. Then, we review MAP estimation techniques to
address the RI imaging problem efficiently. Finally, some represen-
tative online optimisation methods are reviewed.

2.1 Radio interferometry

In the following, we briefly recall the background of the inverse
problem of RI imaging (for further details see, e.g., Cai et al. 2018a
and references therein). A radio interferometer consists of an array
of radio antennae, where each pair of antennae forms a baseline.
When the field of view is narrow and the baselines are co-planar, the
telescope measures visibilities, y, by correlating the signals from
pairs of antennas in a given baseline, with baseline vector u =
(u, v) being defined as the separation of the antennae.

Let x represent the sky brightness distribution, described in
coordinates l = (l,m), and A(l) represent the primary beam of
the telescope. The RI measurement equation for obtaining y can be
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represented as (Thompson et al. 2008)

y(u) =

∫
A(l)x(l)e−2πiu·ld2l. (1)

Recovering the sky intensity signal x from the measured visibili-
ties y, acquired according to equation (1), forms a linear inverse
problem (Rau et al. 2009).

In the discrete setting, let x ∈ RN represent the sampled in-
tensity signal (the sky brightness distribution) which, under a ba-
sis or dictionary (e.g., a wavelet basis or an over-complete frame)
Ψ ∈ CN×L, can be represented as

x = Ψa =
∑
i

Ψiai, (2)

where vector a = (a1, · · · , aL)> represents the synthesis coeffi-
cients of x under Ψ. In particular, x is said to be sparse if a con-
tains only K non-zero coefficients, with K � N . Similarly, x is
called compressible if many coefficients of a are nearly zero, i.e.,
its sorted coefficients ai satisfy a power law decay. In practice, it
is ubiquitous that natural images x are sparse or compressible. Let
y ∈ CM be theM visibilities observed under a linear measurement
operator Φ ∈ CM×N modelling the realistic acquisition of the sky
brightness components. Then, we have

y = Φx + n, (3)

where n ∈ CM represents additive noise. Without loss of gen-
erality, we subsequently consider independent and identically dis-
tributed (i.i.d.) Gaussian noise. In practice, y is not sufficiently
sampled, which results in an ill-posed inverse problem in the per-
spective of image reconstruction of x from (3).

For the upcoming big-data era, the number of the data points
in y could be much larger than the size of image x, i.e., M � N ,
providing additional challenges in processing speed, memory load
and data storage requirements. These new challenges call for new
efficient solvers, in addition to the distributed, parallel and stochas-
tic computation approaches (e.g. Carrillo et al. 2014; Onose et al.
2016).

2.2 Maximum a posteriori (MAP) estimation

One very effective way to address the ill-posed inverse problem in
(3) is by using Bayes’ theorem to infer the posterior distribution of
the image x given data y, by

p(x|y) =
p(y|x)p(x)∫

RN p(y|s)p(s)ds
, (4)

where p(y|x) is the likelihood and p(x) is the prior. The normal-
ising constant in the denominator of (4) is the marginal likelihood
or Bayesian evidence, which need not be computed for parameter
inference. The MAP estimator, a Bayesian point estimator, can be
obtained as a solution of problem (3) by

xmap = argmax
x∈RN

p(x|y). (5)

In the following we derive a common objective functional used to
produce xmap. For the RI imaging problem of (3), in the case of
i.i.d. Gaussian noise, the likelihood function reads

p(y|x) ∝ exp(−‖y −Ax‖22/2σ2), (6)

and let the prior distributions of x be

p(x) ∝ exp(−φ(Bx)), (7)

where σ represents the standard deviation of the noise,A and B are
problem-related linear operators, and φ encodes prior information
of the image (acting as a regularising penalty). Refer to Cai et al.
(2018a) for more detailed discussions regarding choices of the prior
function φ. Let

Fy(x) := φ(Bx) + ‖y −Ax‖22/2σ2. (8)

Consider φ convex, from which it follows that Fy is convex. Then
the inverse problem in (3) can be solved by the MAP estimator
given by

xmap = argmin
x∈RN

{
φ(Bx) + ‖y −Ax‖22/2σ2} . (9)

Refer to Cai et al. (2018a) for further details about Bayesian infer-
ence in the context of RI imaging.

Let B = Ψ† (the adjoint of Ψ) and A = Φ for the analysis
setting and B = I (identity operator) and A = ΦΨ for the synthe-
sis setting. After equipping φ with the `1 norm, ‖ · ‖1, to promote
sparseness (Wiaux et al. 2009a,b; McEwen & Wiaux 2011; Onose
et al. 2016; Pratley et al. 2018; Cai et al. 2018b,a), the MAP esti-
mation model in (9) reads

xmap = argmin
x

{
µ‖Ψ†x‖1 + ‖y −Φx‖22/2σ2

}
, (10)

or

xmap = Ψ× argmin
a

{
µ‖a‖1 + ‖y −ΦΨa‖22/2σ2

}
, (11)

where µ is the regularisation parameter used to balance the tradeoff
between sparsity and data fidelity. Models (10) and (11) are gen-
erally coined as analysis and synthesis unconstrained frameworks,
respectively. Further discussions about the analysis and synthesis
forms can be found in, e.g., Maisinger et al. (2004); Elad et al.
(2007); Cleju et al. (2012); Cai et al. (2018a,b).

2.3 Convex optimisation methods for MAP estimation

MAP estimation models like the analysis model (10) and the syn-
thesis model (11) can be solved by convex optimisation methods.

Consider a general problem represented as

argmin
x∈RN

{f(x) + gy(x)}, (12)

where f : CN → R is proper, convex and lower semi-continuous,
and gy : CN → R, which is usually abbreviated as g afterwards
(when it is associated with all y), is convex, and differentiable with
Lipschitz constant βLip ∈ (0,∞), i.e.,

‖∇g(ẑ)−∇g(z̄)‖ ≤ βLip‖ẑ − z̄‖, ∀(ẑ, z̄) ∈ CN × CN . (13)

Define, ∀λ ∈ R+, the proximity operator of convex function f at
x ∈ RN as (Moreau 1965)

proxλf (x) ≡ argmin
u∈RN

{
f(u) + ‖u− x‖22/2λ

}
, (14)

and represent prox1
f (z) by proxf (z) for simplification.

The minimisation problem with form (12) can be solved by
many convex optimisation methods, e.g., the forward-backward
splitting algorithm, the Douglas-Rachford splitting algorithm, the
alternating direction method of multipliers (ADMM), or the simul-
taneous direction method of multipliers (SDMM) (see Combettes
& Pesquet 2010; Cai et al. 2015 and references therein). In the fol-
lowing, we briefly recall the forward-backward algorithm, due to
its simplicity, efficiency, and pertinence to the objective functionals
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considered in this article, i.e., the analysis model (10) and synthesis
model (11).

In general, from the fixed point equation

x = proxλf (x− λ∇g(x)) , (15)

the iteration formula of the forward-backward algorithm can be
written as (Combettes & Pesquet 2010)

x(i+1) = proxλ(i)f

(
x(i) − λ(i)∇g(x(i))

)
, (16)

where λ(i) is the step size in a suitable bounded interval. After suf-
ficient iterations, sequence {x(i)} generated by (16) converges to a
minimiser of problem (12). There are several variants of (16) that
achieve more efficient performance; refer to Combettes & Wajs
(2005), Bauschke & Combettes (2011) and Cai et al. (2018b) for
more detailed discussions.

2.4 Online optimisation methods

Nowadays, various online problems have emerged in different re-
search areas and application domains, such as computer science
and machine learning (e.g. online regression, pattern recognition);
for more details refer to Shalev-Shwartz (2011) and Hazan (2015),
and references therein. Even through these problems are different
to our focus in this article, their intrinsic ideas, i.e., their online
manner, can help to design appropriate methods in new applica-
tions such as RI imaging. We therefore, in the following, briefly
recall some classic online optimisation methods.

The general online optimisation protocol can be described as
follows. In general, consider a set of possible actions C, a set of
incoming observations D, and a given loss function l : C ×D →
R+. Here set D has a general meaning, not restricted to RI ob-
servations. At each time slot i = 1, 2, . . . , n: (i) choose an action
z(i) ∈ C and simultaneously an observation z

(i)
∗ ∈ D; (ii) obtain

the loss l(z(i),z
(i)
∗ ). Then, the objective of the online optimisation

protocol is to select actions z(i) to minimise the total loss∑
i

l(z(i),z(i)
∗ ). (17)

The above problem (17) can be solved by many methods, such as
the online mirror descent, the online Newton step algorithms, or
online gradient methods (see Shalev-Shwartz 2011; Hazan 2015
for more detail). As an example, starting at z(1) ∈ C, the online
gradient method, for i ≥ 1, updates iteratively by

z̃(i+1) = z(i) − λ∇l(z(i),z(i)
∗ ), (18)

z(i+1) = argmin
z∈C

‖z̃(i+1) − z‖2. (19)

Note that in the iteration formula (16) all observations ac-
quired are needed at every iteration. On the contrary, the online
iteration formula (18) shows that, at iteration i, only action z(i)

(observed at last iteration) and the latest incoming observation z
(i)
∗

(not all observations) are used to derive a new action. For the on-
line setting, all observations are only known at the final stage. See-
ing the visibility acquisition property in RI imaging in this manner,
i.e., the visibilities are observed one-by-one (or bunch-by-bunch),
the online approach mentioned above can be adapted to tackle the
RI imaging problem. In the next section we propose our generic
online method for minimisation problems such as (12), based on
convex optimisation methods applicable for MAP estimation.

Observe data

Observation
complete?

Load data block yk

Assimilate data

Delete data block yk

Reconstruct image

Current image x(i)

Output x∗

STOP

No

Yes

Figure 1. Our proposed online imaging method (e.g. for RI imaging).
Firstly, the algorithm checks whether the data observation stage has com-
pleted. If yes, no new data block will be observed and thus the online
method stops. Otherwise, the algorithm: loads the new observed data block;
assimilates it; releases the data block; updates the intermediate recon-
structed image (using the newly assimilated data); and then sets the current
reconstructed image as the starting point for the next iteration. The above
steps are repeated until the data observation stage completes and then the
final reconstructed image is set as the output – the reconstruction result of
the online method.

3 PROPOSED ONLINE IMAGING METHOD

In practice, in RI the time of acquiring the measurements y can
be long (often ∼10 hours or longer), and the space needed to store
the data can be extremely large, particularly in the big-data era.
Waiting to obtain and store all measurements is not efficient and
imposes large costs that may be avoided. Furthermore, popular RI
imaging methods (e.g. CLEAN and CS-based methods) can require
relatively long computation times to recover images. There is an
urgent need for online processing of the incoming data to recover
images, which is the main focus of this article. In this section we
present our general online reconstruction method for solving in-
verse imaging problems, i.e., the analysis model (10) and synthe-
sis model (11), with its convergence analysis. This new technique
can significantly improve data processing efficiency in both com-
putation time and data storage, and is essential to cope with the
challenges of next-generation radio telescopes in the big-data era.

The diagram in Figure 1 shows the methodology of our pro-
posed online method. As is shown, firstly, the algorithm checks
whether the data observation stage has completed. If yes, no new
data block will be observed and thus the online method stops. Oth-
erwise, the algorithm: loads the new observed data block; assim-
ilates it; releases the data block; updates the intermediate recon-
structed image (using the newly assimilated data); and then sets the
current reconstructed image as the starting point for the next itera-
tion. The above steps are repeated until the data observation stage
completes and then the final reconstructed image is set as the output
– the reconstruction result of the online method.
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3.1 Data blocks

Without loss of generality, we split the measurements y ∈ CM

into B blocks and assume these blocks are received at different but
consecutive time slots, i.e.,

y =
[
y>1 , · · · ,y>k , · · · ,y>B

]>
, yk ∈ CMk , (20)

where block yk is received earlier than yk+1 and
∑B
k=1 Mk = M .

Accordingly, we split the measurement operator Φ into B blocks,
i.e.,

Φ =
[
Φ>1 , · · · ,Φ>k , · · · ,Φ>B

]>
, Φk ∈ CMk×N . (21)

Note that, for each data block k ∈ {1, · · · , B}, problem (3) can be
rewritten as

yk = Φkx + nk, (22)

where nk represents additive noise associated with measurement
block yk.

3.2 Online algorithm

For the B blocks of y in (20), which are assumed to be obtained at
different times, we suggest using the measurement blocks as they
are received for early-stage reconstruction, rather than waiting and
starting reconstruction once all measurement blocks are received.
Then, once receiving the last measurement block, a complete re-
construction can be achieved immediately, or at least much faster
than an offline approach, since a close estimate of the underlying
image is already available from early-stage reconstructions. In the
following, we present our online reconstruction strategy based on
the standard forward-backward algorithm reviewed in the previous
section.

We assume g (the second term in (12)) is separable according
to the B blocks of y in (20), i.e.,

g = gy1 + · · ·+ gyk + · · ·+ gyB , (23)

where gyk represents function g corresponding to data block k in
y. For simplicity, we use gk to denote gyk in the following. Note
the fact that the data fidelity term in the analysis form (10) or syn-
thesis form (11) is indeed separable. Then, using (23), the general
minimisation problem (12) can be rewritten as

argmin
x∈RN

Fy(x) :=

{
f(x) +

B∑
k=1

gk(x)

}
. (24)

In the online setting, the B blocks of y are being received one
by one at different time slots, so the objective functional (24) can
only be exactly formed when all the B blocks are acquired. For the
first b blocks available at some time slot where b ≤ B, problem
(24) can be written as

argmin
x∈RN

Fyb
1
(x) :=

{
f(x) +

b∑
k=1

gk(x)

}
. (25)

Clearly, all the methods and techniques mentioned in Section 2.3
that are applicable to solve problem (12) can also be applied to
solve problem (25). For example, applying the forward-backward
iterative formula (16) to problem (25), we obtain

x(i+1) = proxλ(i)f

(
x(i) − λ(i)∇gb1(x(i))

)
, (26)

where gb1 = g1 + · · ·+ gb.
With a given starting point, the iterative strategy of the pro-

posed online algorithm is implemented as follows. Starting with

b = 1 (corresponding to the first data block), execute formula (26)
associated with objective functional (25) for a few iterations (a sin-
gle iteration can be applied in practice), and denote the current re-
sult by x(i). Then, move to b = 2 (corresponding to the second
data block) at the appropriate time by executing formula (26) us-
ing x(i) as the starting point. Continue this procedure until b = B
(corresponding to the final data block), and denote the final result
by x∗ – the reconstruction result of the online method. In order
to solve problem (24), the online algorithm is tackling a series of
subproblems (25) according to different b (1 ≤ b ≤ B), where
the reconstruction result corresponding to the previous subproblem
is used as a starting point to process the next one, until the final
subproblem amounts to the full problem.

We summarise our online algorithm in Algorithm 1. While we
present an overview of the general form of the algorithm, it is possi-
ble to separate the data assimilation and imaging stages and discard
the data block as soon as the data are assimilated (as discussed in
Section 4). The stopping criterions used in Algorithm 1 are speci-
fied as type I and type II, and are defined as follows: (i) type I can
be set using the maximum number of data blocks (if known in ad-
vance) or a feedback of whether no new data blocks are available;
(ii) type II can be set using a chosen maximum iteration number
and, in practice, we set this value to 1, which requires the least
computational cost. Apart from the maximum iteration number, the
relative error of the solutions at two consecutive iterations can also
be adopted as a stopping criterion for type II.

Algorithm 1: Online forward-backward algorithm

1 Input: x(0) ∈ RN , σ and λ(b) ∈ (0,∞)
2 Output: x∗

3 i = 0, b = 0
4 do
5 b = b+ 1
6 load data yb // Load data block
7 do
8 // Assimilate yb and image

9 x(i+1) = proxλ(b)f

(
x(i) − λ(b)∇gb1(x(i))

)
10 i = i+ 1

11 while Stopping criterion type II is not reached [e.g.
maximum iteration number (typically once) or
relative error of the solutions];

12 delete yb // Discard data block
13 while Stopping criterion type I is not reached (e.g.

maximum number of data blocks);

14 set x∗ = x(i)

Remark 3.1. The forward-backward algorithm presented in Algo-
rithm 1 is just a specific example of our proposed online methodol-
ogy. The online iterative form, however, can be very general. Any
iterative methods which are applicable for minimising problem (24)
are likely to be compatible with the online strategy proposed here.
In other words, these methods can be simply extended to online
versions in the same manner.

3.3 Convergence analysis

Since the convergence properties of standard splitting algorithms
have been verified (e.g. see Combettes & Pesquet 2010 and refer-
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ences therein), the convergence of our online algorithm is there-
fore self-evident if the stopping criterion type II in Algorithm 1
is proper, i.e., the maximum iteration number is assigned large
enough. Nevertheless, it is still important to consider the converge
performance when executing as few iterations as possible, e.g. a
single iteration in stopping criterion type II.

For simplicity, represent the iterative form (26) as

x(i+1) = K(x(i)). (27)

In particular, symbol K here is a general operator which represents
any type of iterative formula applicable. Let x∗ be a minimiser of
problem (24). We want to show that x(i) goes to x∗ and Fyb

1
(x(i))

goes to Fy(x∗). Obviously, when i→∞ and b→ B, we have

x(i) → x∗, Fyb
1
(x(i))→ Fy(x∗), (28)

due to the standard convergence results of splitting methods.
For the online algorithm, the computed x(i+1) are associated

with just part of data blocks before all of them are acquired. As
x(i+1) are finally expected to minimise problem (24), there is an
important relationship between x(i+1) and the objective functional
Fy(·), which considers all visibility blocks. To address this point,
the following Theorem 3.2 concludes that sequence Fy(x(i)) is
monotone decreasing to Fy(x∗), under a mild assumption: let
x(i+1) be obtained with b data blocks, b ≤ B, then assume
B∑

k=b+1

gk(x(i)) ≥
B∑

k=b+1

gk(x(i+1)). (29)

In words, inequality (29) means that the intermediate reconstruc-
tion corresponding to a later iteration fits the unknown data blocks
better than the reconstruction corresponding to an earlier iteration.
This is reasonable, since the more data that is received and used,
the better the intermediate reconstruction should fit the whole data.

Theorem 3.2. Under assumption (29) and let x∗ be a minimiser
of Fy in (24), the sequence

{
Fy(x(i))

}
i

produced by the online
method Algorithm 1 is monotone decreasing to Fy(x∗).

Proof. We just need to verify, ∀i ∈ Z (the set of all integers),

Fy(x(i)) ≥ Fy(x(i+1)). (30)

Obviously, the above inequality (30) is correct if x(i+1) is produced
using allB visibility blocks. Otherwise, if x(i+1) is associated with
b visibility blocks, b < B, we have

Fyb
1
(x(i)) ≥ Fyb

1
(x(i+1)). (31)

The above inequality (31) is obtained using the convergence prop-
erty of splitting methods: the total energy of the objective func-
tional with respect to fixed visibilities (input) is monotone decreas-
ing. Then, using (29) and (31), and the fact that

Fy(·) = Fyb
1
(·) +

B∑
k=b+1

gk(·), (32)

we have

Fy(x(i)) = Fyb
1
(x(i)) +

B∑
k=b+1

gk(x(i)), (33)

≥ Fyb
1
(x(i+1)) +

B∑
k=b+1

gk(x(i+1)), (34)

= Fy(x(i+1)). (35)

Thus inequality (30) still holds if x(i+1) is associated with b visi-
bility blocks, b < B. This completes the proof.

4 ONLINE RI IMAGING

In this section we present the explicit procedures of applying the
general online method proposed in the previous section (i.e., Algo-
rithm 1) to find MAP estimators for the RI imaging problem, using
both the analysis form (10) and synthesis form (11). Moreover, we
also discuss the visibility storage requirements and computational
costs of our online method. We use the label ¯ for symbols related
to the analysis model and ˆ for symbols related to the synthesis
model (following Cai et al. 2018a,b).

4.1 MAP estimation by online convex optimisation

4.1.1 Analysis

Set f̄(x) = µ‖Ψ†x‖1 and ḡk(x) = ‖yk − Φkx‖22/2σ2, k =
1, . . . , B. Then the reconstruction problem for the analysis form
(10), ∀b ∈ {1, · · · , B}, i.e.,

min
x

{
f̄(x) + ḡb1(x)

}
, (36)

can be solved by the forward-backward iteration formula given in
(26), i.e.,

x(i+1) = proxλ(i)f̄

(
x(i) − λ(i)∇ḡb1(x(i))

)
. (37)

Assume Ψ†Ψ = I, where I is identity matrix. We have, ∀z̄ ∈ RN ,

proxλf̄ (z̄) = z̄ + Ψ
(

softλµ(Ψ†z̄)−Ψ†z̄
)
, (38)

and

∇ḡb1(x) =

b∑
k=1

Φ†k(Φkx− yk)/σ2, (39)

where softλ(z) =
(
softλ(z1), softλ(z2), · · ·

)
is the pointwise

soft-thresholding operator of vector z defined by

softλ(zk) =

{
zk(|zk| − λ)/|zk| if |zk| > λ,

0 otherwise.
(40)

Refer to Cai et al. (2018a) for the derivation of (38). Substituting
(38) and (39) into (37), then the analysis problem (36) can be solved
iteratively by

v(i+1) = x(i) − λ(i)
b∑

k=1

Φ†k(Φkx
(i) − yk)/σ2, (41)

x(i+1) = v(i+1)+Ψ
(

softλ(i)µ(Ψ†v(i+1))−Ψ†v(i+1)
)
, (42)

with initialisation set to, e.g. x(0) = Φ†1y1, i.e. the dirty image
according to the first data block. Note, importantly, that the term
related to yk in (41), i.e., Φ†kyk, can be computed once in advance.

Remark 4.1. In the analysis form (10), when choosing a Ψ such
that Ψ†Ψ 6= I, i.e. an over-complete basis Ψ, then proxλf̄ (z̄) can
be computed in an iterative manner:

u(t+ 1
2

) = λ
(t)
ite(1−prox

λµ‖·‖1/λ
(t)
ite

)

(
u(t− 1

2
)

λ
(t)
ite

+Ψ†u(t)

)
, (43)

u(t+1) = z̄ −Ψu(t+ 1
2

), (44)

where λ(t)
ite ∈ (0, 2/βPar) (βPar is a constant satisfying ‖Ψz‖2 ≤

βPar‖z‖2, ∀z ∈ RL) is a predefined step size and u(t) →
proxλf̄ (z̄); refer to Fadili & Starck (2009) and Jacques et al.
(2011) and references therein for details. Here, we repeat the re-
mark given in Cai et al. (2018a,b) for ease of reference.
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4.1.2 Synthesis

Set f̂(a) = µ‖a‖1 and ĝk(a) = ‖yk − ΦkΨa‖22/2σ2. Then,
similar to (36), the reconstruction problem for the synthesis form
(11), ∀b ∈ {1, · · · , B}, i.e.,

min
x

{
f̂(a) + ĝb1(a)

}
, (45)

can be solved by the forward-backward iteration formula given in
(26), i.e.,

a(i+1) = proxλ(i)f̂

(
a(i) − λ(i)∇ĝb1(a(i))

)
. (46)

We have, ∀ẑ = (ẑ1, · · · , ẑL) ∈ RL,

proxλf̂ (ẑ) = proxλµ‖·‖1(ẑ)

= argmin
u∈RL

λµ‖u‖1 + ‖u− ẑ‖2/2

= softλµ(ẑ)

(47)

and

∇ĝb1(a) =

b∑
k=1

Ψ†Φ†k(ΦkΨa− yk)/σ2. (48)

Substituting (47) and (48) into (46), we get the iterative formula
solving the synthesis problem (45), i.e.,

a(i+1) = softλ(i)µ

(
a(i)

− λ(i)
b∑

k=1

Ψ†Φ†k(ΦkΨa(i) − yk)/σ2
)
.

(49)

Like (39), the term related to yk in (49), i.e., Ψ†Φ†kyk, can be
computed once in advance.

Remark 4.2. Note that, in (41) and (49), the operators Φ†kΦk and
Ψ†Φ†kΦkΨ can be precomputed for later invoking. Most impor-
tantly, as already noted, the terms Φ†kyk (the so-called dirty map
according to the k-th data block) and Ψ†Φ†kyk respectively in (41)
and (49), for k = 1, . . . , b, can also be computed just once for
subsequent use.

We summarise the online forward-backward splitting algo-
rithm corresponding to the analysis and synthesis reconstruction
forms in Algorithms 2 and 3, in which the stopping criteria men-
tioned in Algorithm 1 are specified explicitly. In particular, when
processing individual visibility blocks, for simplicity and effi-
ciency, we execute one iteration (cf. stopping criterion type II in
Algorithm 1) for each block. Furthermore, when the number of
visibility blocks B is small (less than the iteration number neces-
sary for a standard forward-backward algorithm to converge), a few
more optional iterations can then be applied after the algorithms
process the last visibility block. However, in practice B is gener-
ally very large in order to reduce storage costs, especially with the
trend towards big-data, in which case these optional iterations are
not necessary.

4.2 Storage requirements

We discuss visibility storage requirements of the proposed online
method in RI imaging. In the forthcoming big-data era storing the
visibilities y will be challenging. Standard offline methods, which
need all visibilities to be acquired and stored in advance, have ex-
tremely large storage requirements. The proposed online method

Algorithm 2: Online forward-backward algorithm for the
analysis model (10)

1 Input: x(0) ∈ RN , σ and λ(b) ∈ (0,∞)
2 Output: x∗

3 i = 0, b = 0,vt1 = 0

4 // Online update
5 do
6 b = b+ 1
7 load visibility yb

8 vt1 = vt1 + λ(b)Φ†byb/σ
2

9 delete visibility yb

10 vt2 = λ(b)∑b
k=1 Φ†kΦkx

(i)/σ2

11 update v(i+1) = x(i) + vt1 − vt2

12 compute u = Ψ†v(i+1)

13 update x(i+1) = v(i+1) + Ψ
(
softλ(i)µ(u)− u

)
14 i = i+ 1

15 while New visibility block;

16 // Update with all assimilated visibilities (optional)
17 while Maximum iteration number is not reached (cf.

stopping criterion type II in Algorithm 1) do
18 vt2 = λ(b)∑b

k=1 Φ†kΦkx
(i)/σ2

19 update v(i+1) = x(i) + vt1 − vt2

20 compute u = Ψ†v(i+1)

21 update x(i+1) = v(i+1) + Ψ
(
softλ(i)µ(u)− u

)
22 i = i+ 1

23 end

24 set x∗ = x(i)

Algorithm 3: Online forward-backward algorithm for the
synthesis model (11)

1 Input: a(0) ∈ RL, σ and λ(i) ∈ (0,∞)
2 Output: a∗

3 i = 0, b = 0,vtemp = 0

4 // Online update
5 do
6 b = b+ 1
7 load visibility yb

8 vt1 = vt1 + λ(b)Ψ†Φ†byb/σ
2

9 delete visibility yb

10 vt2 = λ(b)∑b
k=1 Ψ†Φ†kΦkΨa(i)/σ2

11 update a(i+1) = softλ(b)µ(a(i) + vt1 − vt2)

12 i = i+ 1

13 while New visibility block;

14 // Update with all assimilated visibilities (optional)
15 while Maximum iteration number is not reached (cf.

stopping criterion type II in Algorithm 1) do
16 vt2 = λ(b)∑b

k=1 Ψ†Φ†kΦkΨa(i)/σ2

17 update a(i+1) = softλ(b)µ(a(i) + vt1 − vt2)

18 i = i+ 1

19 end

20 set a∗ = a(i)
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Figure 2. Comparison between the standard algorithm and the online algorithm (this work) in terms of visibility storage requirements and computational
cost. In the plots, the left vertical-axis represents the ratio of visibility storage requirements (described in the text as ηs = 1/B when all blocks have the
same size) between the online algorithm with different number of visibility blocks and the standard algorithm (blue solid curve); the right vertical-axis
represents the approximate ratio of computational cost between the online algorithm and the standard algorithm with different maximum iteration numbers,
i.e., imax = 50, 100, 300 and 500 (brown dashed lines). In particular, panels (a) and (b) correspond to a maximum number of visibility blocks set to 100 and
600, respectively. These plots show that as the number of visibility blocks increases the online method needs significantly less storage than the offline method.
The computational cost can also be reduced by approximately a half using the online method when both methods execute similar number of iterations.

for RI imaging, as illustrated in Algorithms 2 and 3, can dramati-
cally reduce storage requirements. In essence, if all blocks are the
same size, the storage requirement for our online algorithm is 1/B
of the total number of visibilities. In the following we analyse the
general storage requirements of our proposed online method in fur-
ther detail and discuss some more subtle points.

The online method only needs to deal with a single block of
visibilities (i.e., a subset of the visibilities) at one time. The size of
each block can be controlled as required: when a large storage vol-
ume is available, a large visibility block can be considered; other-
wise, any arbitrarily small block can be considered, to the extreme
case of just a single visibility in each block (see lines 7 and 8 re-
spectively in Algorithms 2 and 3 about the visibility block loading
and assimilation). Note that after loading and assimilating a block
by the online method, the storage used to store that block will be
released for storing another block (see line 9 in Algorithms 2 and
3 about the visibility block storage releasing). The ratio of visi-
bility storage required for the online method relative to the offline
method, which must store all M visibilities, is therefore

ηs =
maxk{Mk}

M
. (50)

When all blocks are the same size, the storage requirement is
ηs = 1/B of the total visibilities, which means less than 1 percent
of visibilities need to be stored when B > 100. Figure 2 (the blue
solid curve) shows the ratio of visibility storage requirements be-
tween the online algorithm and the standard algorithm for different
number of visibility blocks.

Another important advantage of the online method in terms of
storage requirement is that, due to its independence with respect
to the number of visibility blocks, it has the ability of tackling RI
imaging problems encountered with an arbitrarily large amount of
visibilities – just divide the entire visibilities into individual visibil-
ities blocks and then conquer them one-by-one online.

Finally, since the standard offline methods can only deal with
a complete set of visibilities, when new visibilities are available it is

not possible for standard methods to use the new input to improve
their reconstruction quality in a principled manner (unless the com-
putation is restarted). The online method, on the contrary, is able to
immediately process any new observed visibilities – just treat the
new input as a normal visibility block and assimilate it to update
the reconstruction.

It should be noted that storage during the image reconstruc-
tion process is not only burdened by the measurements, but also
by storing the baseline coordinates and weights, which are compa-
rable. Furthermore, the interpolation kernel for performing a two
dimensional non-uniform fast Fourier Transform can take up to 16
or more times the amount of storage from the measurements alone
(Fessler & Sutton 2003; Offringa et al. 2014; Pratley et al. 2018).
However, methods exist to reduce this storage cost. For example, it
is possible for the interpolation kernel to be calculated on-the-fly,
or to prune the interpolation kernel. Furthermore, alternative effi-
cient methods can be developed to reduce these storage costs, e.g.
by precomputing Φ†Φ.

4.3 Computational cost

We now compare the computational cost between the online
method and the standard method. Comparing to the standard
method, in addition to dramatically reducing storage costs, the on-
line method can provide considerable computational savings when
the number of visibility blocks considered is not much larger than
the number of iterations necessary for the standard method.

For both the online and standard methods, at each iteration, the
most computationally demanding part is to apply the measurement
operator {Φ†kΦk}bk=1 on an image (refer to line 10 in Algorithms 2
and 3), in that the rest of the computations are highly dominated by
this step. In particular, for this step the standard method needs all
the B blocks, i.e., {Φ†kΦk}Bk=1, to be involved in the computation
for each iteration, whereas only the first b blocks, b < B, are used
at the b-th iteration in the online method. In other words, for the on-
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line method at iteration b, just b/B portion of Φ† and Φ is involved
in the computation (again, as an example, refer to line 10 in Algo-
rithm 2), whereas the standard method needs the whole operators.
When we consider our online method with B iterations (to ensure
convergence B � 1), and where imax denotes the maximum itera-
tion number of the standard method, the ratio of the computational
cost between the online method and the standard method can be
approximated by

ηc =

∑B
b=1 b/B

imax
=

(B + 1)/2

imax
, (51)

where the numerator and denominator represent the computational
costs of the online method and the standard method, respectively.
Figure 2 (the brown dashed lines) shows the approximate ratio of
the computational cost between the proposed online method (with
different number of visibility blocks, B) and the standard method
(with different maximum iteration numbers, imax).

From (51), we conclude that, when imax is large enough (i.e.,
1/imax ≈ 0) and both methods execute similar iterations (i.e.,
B ≈ imax), the online method then requires only a half of the
computations of the standard method, approximately, i.e.,

ηc ≈
1

2
. (52)

Furthermore, ratio (51) also reveals the following twofold fact.
Firstly, if 1 � B � imax then the online method will be much
more economical. Secondly, if B � imax then the online method
will be computationally expensive but then its visibility storage re-
quirement is extremely low – just ηs ∼ 1/B of the storage space
needed by the standard method (see (50)). On the whole, the online
method provides the choice of using a large or small number of vis-
ibility blocksB. This choice depends on the priority of the applica-
tion, between saving storage space or reducing computational cost.
Again, see Figure 2 for the pictorial explanation of the compari-
son between the online and standard methods in terms of visibility
storage requirements and computational cost.

Finally, we emphasise that the online method can actually
achieve a reconstruction as soon as no more visibility blocks are
available. No matter what the computational costs, in the scenario
when B � imax the online method executes almost all of its it-
erations before the data acquisition stage finishes. On the contrary,
all of the computational costs of the standard method have to be
carried out after the data acquisition stage. In this sense the online
method always wins at the starting point of the offline method.

4.4 Further discussion

The online method proposed in the article is very general but
for the proof of concept presented in this article we focus on simu-
lations without considering gridding/degridding (e.g. see Rau et al.
2009; Bhatnagar et al. 2013; Rau et al. 2016; Pratley et al. 2018
and references therein) and calibration errors. Gridding/degridding
will be considered in following work. However, as long as the
measurement operator accurately represents the observation pro-
cess there will not be any significant difference when moving to
real data sets. For example, in equation (39), the calculation of∑b
k=1 Φ†kΦkx will require degridding and gridding at each itera-

tion (done so that it requires a single FFT and not b) and the calcu-
lation of

∑b
k=1 Φ†kyk will require gridding each block once, which

can be added as each block k arrives.
The above discussion of the storage requirements and com-

putational costs, for ease of analysis, assume that the computation

time is faster than the acquisition time for each visibility block. In
reality, this depends on the number of baselines, frequency chan-
nels, polarisations, sampling rate (time averaging during the obser-
vation), observation styles, etc. The storage requirements may be
slightly larger than stated above if each visibility block acquisition
speed is faster than the computation time for that visibility block,
due to the slightly longer time of assimilating individual blocks be-
fore discarding them to release storage space. In this case a small
additional buffer may be required.

It is worth emphasising that our proposed online method and
the equivalent standard offline methods consider the visibilities to
be calibrated. In this case, the original model is fixed, and both the
online method and the offline methods are solving exactly the same
optimisation problem. In practice, however, this scenario may not
be the case, for example if data are not calibrated accurately. Self-
calibration algorithms may be required to improve calibration. In
that case, our online algorithm may nevertheless still be applied
and its computational advantages can still be realised but visibili-
ties should not be discarded once assimilated. Instead, visibilities
should be stored for later use for self-calibration. The ideal way to
deal with this scenario, however, would be to perform online imag-
ing and calibration simultaneously. That is the study of future work
but is beyond the scope of the current article.

Furthermore, even though the method proposed in this article
is mainly targeting the online RI imaging, the basic strategy pre-
sented, like dealing with the whole data block by block, could be
useful for other uses. For example, offline methods can also use
the same strategy for offline image reconstruction and will then
save roughly half of their computational cost (with a saving in the
amount of disk I/O as well) whenB ≈ imax according to the analy-
sis given above. Moreover, since the online strategy splits the whole
problem into many subproblems, there are many flexibilities that
can be considered to improve a method after equipping it with the
online strategy. For example, by combining different optimisation
algorithms for these subproblems, depending on what is most ap-
propriate for the data block for each subproblem. We leave further
investigations to future work.

5 EXPERIMENTAL RESULTS

In this section we investigate the performance of the proposed on-
line method using representative RI test images and compare to the
standard (offline) method.

5.1 Simulations

Figure 3 shows the four images used for tests, including an HI re-
gion of the M31 galaxy (size 256×256), the Cygnus A radio galaxy
(size 256 × 512), the W28 supernova remnant (size 256 × 256),
and the 3C288 radio galaxy (size 256×256). All the images in this
article are shown using the cubehelix colour scheme presented in
Green (2011). The hardware used to perform simulations and sub-
sequent numerical experiments is a laptop (Macbook) with CPU of
2.2 GHz, four Intel Core i7 processors and memory of 16 GB. All
the codes are running on MATLAB R2015b.

The measurement (sensing) operator, Φk, k = 1, . . . , B,
used for simulations, for simplicity, is a Fast Fourier Transform
(FFT) operator, F, followed by a masking operation, Mk, i.e.,
Φk = MkF. In principle, this can easily be extended to the more
realistic case for measurements that lie off the Fourier grid, where
Mk is replaced with a degridding matrix, and zero padding and de-
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(a) M31

(b) Cygnus A

(c) W28 (d) 3C288

Figure 3. Radio images used to test the performance of the online and stan-
dard reconstruction methods. Panels (a)–(d): M31, Cygnus A, W28 and
3C288 radio galaxies, respectively.

gridding correction is applied before the the FFT (see Pratley et al.
2018 for more details).

The entire visibilities are generated randomly through the vari-
able density sampling profile (Puy et al. 2011) in half the Fourier
plane with 10% of discrete Fourier coefficients of each ground
truth image. Then, the visibilities are corrupted by complex Gaus-
sian noise with zero mean and standard deviation σ, where σ =
‖f‖∞10−SNR/20, ‖ · ‖∞ is the infinity norm (referring to the maxi-
mum absolute value of components of f ), and SNR (signal to noise
ratio) is set to 30 dB for all simulations. The definition of SNR is
given by

SNR = 20 log10

‖x‖2
‖x− x∗‖2

, (53)

where x is the ground truth of a reconstruction x∗. The basis Ψ in
the analysis and synthesis models (10) and (11) is set to Daubechies
8 wavelets, which can be applied by using the MATLAB built-in
function wavedec2. Note that appreciable difference between the
results of the analysis and synthesis models is not expected, since
this basis satisfies Ψ†Ψ = I. Nevertheless, using other varieties
(e.g. overcomplete bases) is straightforward and likely to improve
reconstruction fidelity. Since the focus of this article is the online
method rather than optimising imaging performance, we leave the
discussion of other cases of Ψ for future investigation.

In practice, visibilities will be provided as they are acquired
by a telescope and so likely to be observed along uv tracks. One
simple way to capture this, approximately, in our simplified experi-

mental setup is to take visibilities based on distance from the origin.
In any case, to demonstrate the robustness of the online method
with respect to different visibility splitting settings, we also con-
sider uniformly random visibility selection (from the variable den-
sity sampled profile) as a visibility splitting rule. The performance
of the online method with respect to different number of visibility
blocks is investigated as well.

For simplicity, the `1 regularisation parameter µ is fixed to
104 by trial-and-error inspection. For the standard algorithm, the
maximum iteration number imax is used as its stopping criterion,
and is set to 50, which is sufficient for reasonably good reconstruc-
tion. Without loss of generality, we report the results correspond-
ing to the analysis model and do not show results for the synthe-
sis model. The reason being that the performance difference of the
tested methods between the synthesis and the analysis models is
negligible under an orthogonal basis, as anticipated.

5.2 Algorithm performance

We present the results of the tested methods – the online method
(our work) and the standard method – and their comparison in
terms of reconstruction quality, visibility storage requirements and
computational cost. Moreover, the quantitative performance of the
methods is also analysed with respect to different settings regarding
the number of visibility blocks.

5.2.1 Reconstruction

Figure 4 shows the reconstruction results of the tested methods for
the analysis model (10) on the four test images. For the online
method, all the acquired visibilities (10% of Fourier coefficients)
are partitioned into B = 50 blocks, where every block has the
same number of visibilities (2% of the acquired visibilities or 0.2%
of the total number of discrete Fourier coefficients). Figure 4 (a)
shows the results of the standard method using the entire observed
visibilities. Similarly, Figure 4 (b) shows the results of the stan-
dard method but with just 0.2% of Fourier coefficients uniformly
randomly selected from the variable density samples (rather than
by distance to the origin), which equals the number of Fourier co-
efficients contained in a single visibility block used for the online
method. This is to test both methods under the situation of lim-
ited storage – a storage which is not large enough to store the en-
tire observed visibilities. Recall that the online method in principle
works for arbitrarily small storage. Clearly, using all visibilities a
good reconstruction is obtained by the standard method, which is
not the case when using just 0.2% of Fourier coefficients, which is
too few to produce a reasonable reconstruction. Figure 4 (c) shows
the results of our online method, which are as good as those of the
standard method (cf. Figure 4 (a)) under visual validation and quan-
titative comparison in SNR. For instance, both methods achieve the
same SNR, 14.2946 dB, for test image M31. More detailed quanti-
tative comparison of SNR will be deferred to the next subsection.
On the whole, the results between each test image are consistent
with each other, demonstrating the excellent performance of the on-
line method, which provides approximately as good reconstruction
quality as the standard method.

We test that the online method is independent of the visibility
splitting strategies, i.e., that different strategies produce consistent
results. As mentioned before, the alternative strategy to split visibil-
ities is to sample the full set of variable density sampled visibilities
in a uniformly random manner. As an example, the result of M31

MNRAS 000, 1–14 (2017)



11
M

31
C

yg
nu

s
A

W
28

3C
28

8

(a) Offline algorithm (b) Offline algorithm (c) Online algorithm (our work)
(storage: 100% visibilities) (storage: 2% visibilities) (storage: 2% visibilities)

Figure 4. Image reconstruction results of the standard (offline) algorithm and the online algorithm (our work) for images M31 (first row), Cygnus A (second
row), W28 (third row), and 3C288 (fourth row). The number of iterations for the tested methods is set to 50, and all images are shown in log10 scale.
Panels (a) and (b): results of the standard algorithm correspond to 100% and 2% of all acquired visibilities, respectively, where 10% of discrete visibilities are
acquired in our simple discrete simulations. Panel (c): result of the online algorithm, with visibilities gradually increased from 2% to 100% block-by-block
(each visibility block contains 2% of all acquired visibilities), according to the distance of the visibilities to the origin of the Fourier domain. Clearly, when
using all visibilities similar reconstruction quality is obtained by both the standard offline and online methods (panels (a) and (c), respectively), which achieve
the same SNR (14.2946 dB) for M31, for example. However, the online method requires storage for only 2% of the acquired visibilities, whereas the offline
method must store them all. Panel (b) shows reconstructions when using the the same amount of storage for the standard offline method as required by the
online method. In this setting there are too few visibilities to produce a reasonable reconstruction. We emphasise that the online algorithm combines the
reconstruction task with the visibility acquisition stage, which can significantly improve the reconstruction speed and dramatically reduce storage costs.
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shown in Figure 4 (c, top) is achieved with SNR 14.2946 dB, and an
almost identical result with SNR 14.2943 dB is obtained using the
alternative visibility splitting strategy. For all the tests, we do not
show the reconstructed images when using the different splitting
strategy to avoid repetition, since, from visual validation the results
are very similar to those shown in Figure 4 (c) based on distance
from the origin. Seeing this fact, in the following experiments, the
splitting strategy based on distance from the origin is adopted.

5.2.2 SNR analysis

For the online method, as we discussed, splitting the entire visibili-
ties into different numbers of visibility blocks impacts both storage
requirements and computational cost. Firstly, when the number of
blocks is relatively small, i.e., similar to the number of iterations
of the standard (offline) method, the computational cost is reduced
compared to the standard method. Secondly, the larger the num-
ber of blocks, the lower the visibility storage requirements. Even
though a large number of blocks requires lots of iterations, the first
iterations are very fast due to the small amount of data used. More-
over, no matter how large the number of blocks is, since almost
all the computation is done before the data acquisition finishes, the
online method always ends its reconstruction task much faster than
the standard method. Recall Figure 2 for a pictorial inspection.

In order to show the influence of the number of visibility
blocks on the reconstruction quality, simulation results are reported
in Figure 5 with, as examples, the number of visibility blocks set to
50, 100, 200, 300 and 500. The iteration histories (SNR against it-
erations) of the standard method and the online method are respec-
tively shown by blue (solid) and red (dot-dashed) lines. Moreover,
for the online method, five more iterations, which are regarded as
extra iterations, are executed when the obtained SNR is lower than
that of the standard method and are shown by the magenta line with
cross marks. For all the test images, Figure 5 demonstrates that the
online method, for different numbers of visibility blocks, provides
reconstructions with as good SNR as those achieved by the standard
method, i.e., slightly higher or lower with almost equal chances but
with no substantial difference.

In particular, from Figure 5, we can also see that the larger the
visibility block size, the quicker (in terms of number of iterations)
the highest SNR is reached. Nevertheless, after processing the last
visibility block, all of the settings with different number of blocks
get reconstructions with very similar SNR. This suggests that the
online method converges stably and is robust with respect to arbi-
trary numbers of visibility blocks.

Accompanying Figure 5, Table 1 gives the relative difference
in SNR between the results of the standard method (SNRstandard)
and online method (SNRonline) under different number of visibility
blocks, i.e.,

relative difference =
SNRstandard − SNRonline

SNRstandard
. (54)

Positive and negative signs of the relative difference correspond to
better performance of the standard method and the online method,
respectively. In the previous subsection, we concluded that both
methods achieve comparable reconstruction results via visual val-
idation. This agrees with Table 1, which shows that both methods
quantitatively perform similarly: sometimes the standard method is
slightly better and sometimes the online method is, but there are no
substantial differences in quality.

Figure 5 and Table 1 tells us that the online method can already
provide very good reconstructions after processing the last visibil-

ity block. After that, it is optional to execute a few more iterations
to improve the SNR of the reconstruction, as we can see from the
magenta lines with cross marks in Figure 5. However, the improve-
ment is not dramatic; the standard number of iterations, basically,
can ensure excellent reconstructions already.

6 CONCLUSIONS

The work in this article has been motivated by critical computa-
tional problems in scaling RI imaging to the big-data era of radio
astronomy that will be ushered in by the SKA and precursor tele-
scopes. In particular, we addressed the extremely high storage re-
quirements and computational costs of standard (offline) methods
of recovering images from the raw data that will be acquired by
forthcoming telescopes. We presented an online imaging method-
ology by extending standard sparse regularisation methods.

Generally speaking, our online method starts the reconstruc-
tion task at the beginning of the data acquisition stage (not after)
and keeps updating the quality of the reconstruction by continu-
ally assimilating newly acquired visibilities (visibility blocks), be-
fore discarding them to release storage. In other words, it combines
the data acquisition stage with the data processing stage, and it or-
derly processes data blocks as received at consecutive time slots. In
detail, the online method firstly achieves intermediate reconstruc-
tions using the currently acquired data blocks, and then treats the
intermediate reconstruction as a starting point to further update the
reconstruction with newly obtained data blocks, until the last data
block is processed.

The online method achieves good reconstruction fidelity much
faster than standard methods, which do not begin until the visibil-
ity acquisition stage is completed. Roughly speaking, the online
method has the ability of providing an excellent reconstruction as
soon as the visibility acquisition procedure completes, which sig-
nificantly improves the reconstruction speed. Moreover, the com-
putational cost of the online method is further reduced for a reason-
able choice of number of blocks since the amount of data to be con-
sidered for early iterations is small. Furthermore, the online method
has the advantage of significantly lower visibility storage require-
ments. In principle, the storage needed for the online method can be
arbitrarily small; recall that standard methods always require all the
visibilities to be stored for subsequent processing. Consequently,
these two main virtues – extremely low storage requirements and
fast computation speed – make the online method highly relevant
for addressing the big-data processing obstacles of RI imaging in
the near future.

There are a number of avenues of future work. Since the pro-
posed online framework is very general, it will be interesting to
investigate equipping other methods with this online strategy. Con-
sidering overcomplete bases in the objective functionals is likely
to provide improvements in reconstruction fidelity and is another
interesting avenue of future investigation. The online method will
be implemented in the existing PURIFY6 package for RI imaging,
where it may then be applied easily to real observations and com-
bined with existing performance gains from distributed and shared
parallelisation. Finally, we will integrate our online method with
the uncertainty quantification framework presented in Cai et al.
(2018b) to perform efficient imaging and uncertainty quantification
for the emerging big-data era of radio astronomy.

6 https://github.com/astro-informatics/purify
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.
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Table 1. Relative difference in SNR between the results of the standard method and the online method (our work) with the number of visibility blocks set to
50, 100, 200, 300 and 500, for test images of M31, Cygnus A, W28 and 3C288, for the analysis model (10). In particular, a negative SNR means the online
method performs better than the standard method (and vice versa for a positive SNR). The number in brackets, e.g. 50 (5), means the result of the online
method is computed with 50 visibility blocks and 5 extra iterations assigned after processing the entire 50 blocks. Extra iterations can improve reconstruction
quality but differences are small. From this table, we see that, quantitatively, both methods perform similarly: sometimes the standard method is slightly better
and sometimes the online method is, but there is no substantial difference.

Images
Number of visibility blocks (extra number of iterations of the online method)

50 50 (5) 100 100 (5) 200 200 (5) 300 300 (5) 500 500 (5)

M31 1.9e−6 −1.1e−7 −1.3e−6 −1.3e−6 −1.4e−6 −1.4e−6 −1.4e−6 −1.4e−6 −1.3e−6 −1.3e−6

Cygnus A 1.4e−2 7.6e−3 3.9e−3 2.1e−3 −3.0e−3 −3.4e−3 8.7e−4 5.3e−4 3.1e−3 2.3e−3

W28 2.4e−2 1.8e−2 −4.4e−3 −7.0e−3 1.1e−2 9.6e−3 1.4e−2 1.2e−2 1.3e−2 9.3e−3

3C288 1.5e−6 6.1e−7 −1.3e−7 −4.0e−8 −6.0e−8 −3.0e−8 −7.0e−8 −3.0e−8 −2.0e−8 −2.0e−8
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