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Abstract

We formulate and solve the analogue of Slepian spatial-spectral concentration problem on the three-dimensional

ball. Both the standard Fourier-Bessel and also the Fourier-Laguerre spectral domains are considered since

the latter exhibits a number of practical advantages such as spectral decoupling and exact computation. The

Slepian spatial and spectral concentration problems are formulated as eigenvalue problems, the eigenfunc-

tions of which form an orthogonal family of concentrated functions. Equivalence between the spatial and

spectral problems is shown. The spherical Shannon number on the ball is derived, which acts as the analog

of the space-bandwidth product in the Euclidean setting, giving an estimate of the number of concentrated

eigenfunctions and thus the dimension of the space of functions that can be concentrated in both the spatial

and spectral domains simultaneously. Various symmetries of the spatial region are considered that reduce

considerably the computational burden of recovering eigenfunctions, either by decoupling the problem into

smaller subproblems or by affording analytic calculations. The family of concentrated eigenfunctions forms

a Slepian basis that can be used be represent concentrated signals efficiently. We illustrate our results with

numerical examples and show that the Slepian basis indeed permits a sparse representation of concentrated

signals.

Keywords: Slepian concentration problem; band-limited function; eigenvalue problem; harmonic analysis;

ball

1. Introduction

It is well-known that functions cannot have finite support in both the spatial (or time) and spectral (or

frequency) domain at the same time [42, 41]. The fundamental problem of finding and representing the

functions that are optimally energy concentrated in both the time and frequency domains was solved by

Slepian, Landau and Pollak in the early 1960s [42, 18, 19, 43]. This problem, herein referred to as the Slepian
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spatial-spectral concentration problem, or Slepian concentration problem for short, gives rise to the orthogonal

families of functions that are optimally concentrated in the spatial (spectral) domain and exactly limited

in the spectral (spatial) domain. These families of functions and their multidimensional extensions [40, 39]

have been used extensively in various branches of science and engineering (e.g., signal processing [46, 25],

medical imaging [15], geophysics [48], climatology [47], to name a few). Notably, they have been used in

linear inverse problems [13], interpolation [28, 35, 34], extrapolation [53] and in solving partial differential

equations [5, 7]. Indeed, in many scientific and engineering applications, these functions have become the

preferred spatial or spectral windows for the regularization of quadratic inverse problems of power spectral

estimation from spatially limited observations [48, 31].

Although the Slepian spatial-spectral concentration problem was initially formulated and solved in the

Euclidean domain, generalizations for various geometries and connections to wavelet analysis have also been

well-studied (e.g., [27, 11, 8, 12, 3, 29, 30, 51, 36]). We note that the Slepian concentration problem for

functions defined on the two-sphere S2 has been thoroughly revisited and investigated [3, 36, 51]. The

resulting orthogonal family of band-limited spatially concentrated functions have been applied for localised

spectral analysis [52] and spectral estimation [10] of signals (finite energy functions) defined on the sphere.

There are also many applications [22, 38, 37] where signals or data are defined naturally on the three-

dimensional ball, or ball for short. For example, signals defined on the ball arise when observations made on

the sphere are augmented with radial information, such as depth, distance or redshift. Recently, a number

of signal processing techniques have been tailored and extended to deal with signals defined on the ball (e.g.,

[38, 21, 22]).

In this paper, we pose, solve and analyse the Slepian concentration problem of simultaneous spatial

and spectral localisation of functions defined on the ball. By considering Slepian’s quadratic (energy)

concentration criterion, we formulate and solve the problems to: (1) find the band-limited functions with

maximum concentration in some spatial region; and (2) find the space-limited functions with maximum

concentration in some region of the spectral domain. Each problem is formulated as an eigenvalue problem,

the solution of which gives the orthogonal family of functions, referred to as eigenfunctions, which are

either spatially concentrated while band-limited, or spectrally concentrated while space-limited. These

eigenfunctions serve as an alternative basis on the ball, which we call a Slepian basis, for the representation

of a band-limited or space-limited signal. We show, and also illustrate through an example, that the

representation of band-limited spatially concentrated or space-limited spectrally concentrated functions is

sparse in the Slepian basis, which is the essence of the Slepian spatial-spectral concentration problem. We

also derive the spherical Shannon number as an equivalent of the Shannon number in the one dimensional

Slepian concentration problem [43, 31], which serves as an estimate of the number of concentrated functions

in the Slepian basis.

For the spectral domain characterization of functions defined on the ball we use two basis functions: (1)
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spherical harmonic-Bessel functions, which arise as a solution of Helmholtz’s equation in three-dimensional

spherical coordinates, and are referred to as Fourier-Bessel3 basis functions; and (2) spherical harmonic-

Laguerre functions, which are referred to as Fourier-Laguerre basis functions. We consider the Fourier-

Laguerre functions in addition to the standard Fourier-Bessel functions as the Fourier-Laguerre functions

serve as a complete basis for signals defined on the ball, enable the decoupling of the radial and angular

components of the signal, and support the exact computation of forward and inverse Fourier-Laguerre

transforms [22]. We show that the eigenvalue problem to find the eigenfunctions or the Slepian basis can

be decomposed into subproblems when the spatial region of interest is symmetric in nature. We consider

two types of symmetric regions: (1) circularly symmetric regions; and (2) circularly symmetric and radially

independent regions.

As Slepian functions on the one-dimensional Euclidean domain [42, 18, 19, 43], and other geome-

tries [40, 27, 3, 30, 36], have been widely useful in a diverse variety of applications, we hope that the

proposed orthogonal family of Slepian eigenfunctions on the ball will find similar applications in fields such

as cosmology, geophysics and planetary science, where data/signals are often inherently defined on the ball.

For example, the band-limited spatially concentrated eigenfunctions can be used as window functions to de-

velop multi-window spectral estimation techniques [46, 47, 10, 51] for the estimation of the signal spectrum

from observations made over the limited spatial region.

We organize the remainder of the paper as follows. The mathematical preliminaries for functions on the

ball are presented in Section 2. The Slepian concentration problem is posed as an eigenvalue problem in

Section 3 and the resulting eigenfunctions are analysed in Section 4. The decomposition of the eigenvalue

problem into subproblems for the case of special, but important, symmetric spatial regions is presented

in Section 5. The representation of spatially concentrated band-limited functions in the Slepian basis is

discussed and illustrated in Section 6. Concluding remarks are made in Section 7.

2. Mathematical Preliminaries

We review the mathematical background of signals defined on the ball in this section. After defining

coordinate systems, measures and inner products, we then review harmonic analysis on the ball, focusing

on both the Fourier-Bessel and Fourier-Laguerre settings. We conclude this section by reviewing important

subspaces and operators related to the ball.

2.1. Signals on the Sphere and Ball

We define the ball by B3 , R+ × S2, where R+ denotes the domain [0,∞) on the real line and S2 ,

{y ∈ R3 : ‖y‖ = 1} denotes the unit sphere. A vector r ∈ B3 can be represented in spherical coordinates

3A more appropriate terminology would be spherical harmonic-Bessel basis, however we adopt the established convention

of using the term Fourier to denote the spherical harmonic part.
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as r ≡ r(r, θ, φ) , (r sin θ cosφ, r sin θ sinφ, r cos θ)T, where (·)T denotes matrix or vector transpose. Here,

r , ‖r‖ ∈ [0,∞) represents the Euclidean norm of r, θ ∈ [0, π] represents the co-latitude or elevation

measured with respect to the positive z-axis and φ ∈ [0, 2π) represents the longitude or azimuth and is

measured with respect to the positive x-axis in the x-y plane. The unit norm vector r̂ ≡ r̂(θ, φ) , r/‖r‖ =

(sin θ cosφ, sin θ sinφ, cos θ)T ∈ R3 represents a point on the unit sphere S2.

The space of square integrable complex-valued functions defined on R+, S2 and B3 form Hilbert spaces,

denoted by L2(R+), L2(S2) and L2(B3), respectively, equipped with the inner products defined by

〈
f, g
〉
R+ ,

∫

R+

dυ(r)f(r) g∗(r), (1)

〈
f, g
〉
S2 ,

∫

S2
d2ν(r̂)f(r̂) g∗(r̂), (2)

〈
f, g
〉
B3 ,

∫

B3

d3µ(r)f(r) g∗(r), (3)

where f, g are functions respectively defined on R+, S2 and B3 in (1), (2) and (3), dυ(r) = r2dr, d2ν(r̂) =

sin θ dθ dφ and d3µ(r) = r2 sin θ dr dθ dφ represents infinitesimal length, area and the volume element re-

spectively, (·)∗ denotes complex conjugation and the integration is carried out over the respective domain.

The inner products in (1), (2) and (3) induce norms ‖f‖ , 〈f, f〉1/2. Throughout this paper, the functions

with finite induced norm belonging to one of these spaces are referred to as signals.

2.2. Harmonic Analysis on the Ball

We review harmonic analysis on the ball, starting with the spherical Bessel and Laguerre transforms on

the positive real line R+ and the spherical harmonic transform on the unit sphere S2, before combining these

to recover the Fourier-Bessel and Fourier-Laguerre transforms on the ball, respectively.

2.2.1. Spherical Bessel Transform

The spherical Bessel functions, which arise as radial solutions to the Helmholtz equation in spherical

coordinates, form a basis for functions on the non-negative real line R+. In this work, we consider spherical

Bessel functions of the first kind, denoted by j` defined on R+, where ` denotes the order. The spherical

Bessel functions satisfy the closure relation [49]
∫

R+

dυ(r)j`(kr)j`(k
′r) =

π

2k2
δ(k − k′), (4)

for r ∈ R+ and k ∈ R+, and where δ(k− k′) denotes the one-dimensional Dirac delta. Consequently, we can

represent a signal f ∈ L2(R+) using the following `-th order spherical Bessel inverse and forward transform,

respectively,

f(r) =

√
2

π

∫

R+

dkf`(k)kj`(kr) with f`(k) ,

√
2

π

∫

R+

dυ(r)f(r)kj`(kr), (5)

where f`(k) denotes the spherical Bessel trasnform.
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2.2.2. Spherical Laguerre Transform

The Laguerre polynomials, solutions to the Laguerre differential equation [32, 50], are well known for

their various applications, notably in the quantum mechanical treatment of the hydrogen atom [14], and

form a basis for functions on the interval R+. We adopt the spherical Laguerre transform and associated

normalisation presented by [22], defining the spherical Laguerre basis functions of non-negative integer radial

degree p by

Kp(r) ,

√
p!

(p+ 2)!
e−r/2 L(2)

p (r), (6)

where L
(2)
p (r) represents the p-th generalized Laguerre polynomial of second order, defined by

L(2)
p (r) ,

p∑

j=0

(
p+ 2

p− j

)
(−r)j
j!

. (7)

Since we use the spherical Laguerre basis functions for the expansion of signals defined on R+ with differential

measure dυ(r) = r2dr, we have chosen the second order generalized Laguerre polynomial. The basis functions

Kp(r) in (6) are orthonormal on R+, that is,
〈
Kp,Kq

〉
R+ = δpq, where δpq denotes the Kronecker delta.

The spherical Laguerre polynomials defined in (6) serve as complete basis functions on R+, where the

completeness stems from the completeness of generalized Laguerre polynomials and therefore we can expand

a signal f ∈ L2(R+) using the following spherical Laguerre inverse and forward transform, respectively,

f(r) =

∞∑

p=0

fpKp(r) with fp ,
〈
f,Kp

〉
R+ , (8)

where fp denotes the spherical Laguerre coefficient of radial degree p.

2.2.3. Spherical Harmonic Transform

The spherical harmonic functions, which arise as angular solutions to the Helmholtz’s equation in spher-

ical coordinates, are denoted Y m` (x̂) = Y m` (θ, φ), for integer degree ` ≥ 0 and integer order |m| ≤ ` and are

defined by [9, 33, 16]

Y`m(r̂) = Y`m(θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (9)

where Pm` denotes the associated Legendre function of degree ` and order m with Condon-Shortley phase

included [16]. With the above definition, the spherical harmonic functions, or simply the spherical harmonics,

form a complete orthonormal basis for L2(S2) and therefore a signal f ∈ L2(S2) can be expanded using the

following spherical harmonic inverse and forward transform, respectively,

f(r̂) =

∞∑

`=0

∑̀

m=−`

f`mY`m(r̂) with f`m ,
〈
f, Y`m

〉
S2 , (10)
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where f`m denotes the spherical harmonic coefficient of angular degree ` and order m. We note that the

spherical harmonic functions follow the conjugate symmetry property Y`m(r̂) = (−1)mY ∗`(−m)(r̂). We further

note that the function f is real valued if its spherical harmonic coefficients satisfy the conjugate symmetry

property f`m = (−1)mf∗`(−m).

2.2.4. Fourier-Bessel Transform

We define the Fourier-Bessel functions, which arise as a solution of Helmholtz’s equation in three-

dimensional spherical coordinates, as [6, 23, 1]

X`m(k, r) ,

√
2

π
k j`(kr)Y`m(θ, φ), r = r(r, θ, φ). (11)

With the above definition, the Fourier-Bessel functions form a complete, orthogonal basis for L2(B3), satis-

fying the orthogonality relation

∫

B3

d3µ(r)X`m(k, r)X∗`′m′(k′, r) = δ(k − k′)δ``′δmm′ . (12)

By the completeness of the Fourier-Bessel functions, a signal f ∈ L2(B3) can be decomposed in the Fourier-

Bessel basis by

f(r) =

∫

R+

dk

∞∑

`=0

∑̀

m=−`

f`m(k)X`m(k, r)

=

√
2

π

∫

R+

dk

∞∑

`=0

∑̀

m=−`

f`m(k)kj`(kr)Y`m(θ, φ) (13)

where f`m(k) denotes the Fourier-Bessel coefficient, of degree `, order m and radial harmonic variable

k ∈ R+, given by

f`m(k) ,

√
2

π

∫

B3

d3µ(r)f(r)kj`(kr)Y
∗
`m(θ, φ). (14)

The Fourier-Bessel coefficients constitute a spectral domain representation of signals defined on the ball.

Such a spectral domain is to referred as the Fourier-Bessel spectral domain.

The Fourier-Bessel transform is the natural (standard) harmonic transform on the ball since the Fourier-

Bessel functions are the eigenfunctions of the spherical Laplacian and thus the Fourier-Bessel transform

corresponds to the standard three-dimensional Fourier transform in spherical coordinates. However, the

Fourier-Bessel transform suffers from a number of practical limitations [22], motivating alternative harmonic

representations of the ball, such as the Fourier-Laguerre transform.

2.2.5. Fourier-Laguerre Transform

In the Fourier-Bessel transform, the spherical Bessel functions are used for the decomposition of a signal

along the radial line R+. Alternatively, we can use the spherical Laguerre basis functions for the expansion
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of a signal along R+. Combining the spherical Laguerre basis functions and spherical harmonic functions,

we define the Fourier-Laguerre basis functions for a signal as

Z`mp(r) , Kp(r)Y
m
` (θ, φ), r = r(r, θ, φ). (15)

By the completeness of both Laguerre polynomials and spherical harmonics, any signal f ∈ L2(B3) can be

expanded as [22]

f(r) =

∞∑

p=0

∞∑

`=0

∑̀

m=−`

f`mpZ`mp(r), (16)

where f`mp is the Fourier-Laguerre coefficient of radial degree p, angular degree ` and angular order m, and

is obtained by the Fourier-Laguerre transform

f`mp , 〈f, Z`mp〉B3 =

∫

B3

d3µ(r)f(r)Z∗`mp(r). (17)

These Fourier coefficients constitute another spectral domain representation of signals defined on the ball,

which we refer to as the Fourier-Laguerre spectral domain.

The Fourier-Laguerre transform exhibits a number of practical advantages over the Fourier-Bessel trans-

form, namely: (1) the angular and radial components of signals are decoupled in harmonic space; and (2)

exact quadrature can be developed, leading to theoretically exact forward and inverse Fourier-Laguerre

transforms [22].

2.2.6. Dirac Delta on the Ball

The Dirac delta function on the ball is defined by

δ(r, r′) ,
(
r2 sin θ

)−1
δ(r − r′)δ(θ − θ′)δ(φ− φ′), (18)

and satisfies the sifting property
∫

B3

d3µ(r′)f(r′)δ(r, r′) = f(r). (19)

The Dirac delta has the following expansion in terms of Fourier-Bessel basis functions

δ(r, r′) =

∞∑

`=0

∑̀

m=−`

∫

R+

dkX`m(k, r)X∗`m(k, r′)

=
1

2π2

∞∑

`=0

(2`+ 1)P 0
` (r̂ · r̂′)

(∫

R+

dk k2j`(kr)j`(kr)

)
, (20)

and has the following expansion in terms of Fourier-Laguerre basis functions

δ(r, r′) =

∞∑

p=0

∞∑

`=0

∑̀

m=−`

Z`mp(r)Z∗`mp(r
′)

=

∞∑

p=0

Kp(r)Kp(r
′)

∞∑

`=0

2`+ 1

4π
P 0
` (r̂ · r̂′), (21)
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where r̂ · r̂′ denotes the three dimensional dot product between unit vectors r̂ and r̂′ and we have noted the

addition theorem for the spherical harmonics.

2.3. Important Subspaces of L2(B3)

Define H̃KL as the space of band-limited functions such that the signal is band-limited in the Fourier-

Bessel spectral domain within the spectral region ÃKL , {0 ≤ k ≤ K, 0 ≤ ` ≤ L − 1} for L ∈ Z+ and

K ∈ R+. Due to the continuous Fourier-Bessel spectral domain k, H̃KL is an infinite dimensional subspace

of L2(B3). Define HPL as the space of band-limited functions such that the signal is band-limited in the

Fourier-Laguerre spectral domain within the spectral region APL , {0 ≤ p ≤ P − 1, 0 ≤ ` ≤ L − 1} for

P,L ∈ Z+. HPL is a finite dimensional subspace of L2(B3) with size PL2. Also define HR as the space

of finite energy space-limited functions confined within the region R ⊂ B3. HR is an infinite dimensional

subspace of L2(B3).

2.4. Important Operators of L2(B3)

Define an operator S for signals on the ball by the general Fredholm integral equation [16]

(Sf)(r) =

∫

B3

d3µ(r′)S(r, r′) f(r′), (22)

where S(r, r′) is the kernel for an operator S defined on B3 × B3.

Definition 1 (Spatial Selection Operator). Define the spatial selection operator SR, which selects the func-

tion in a volume region R ⊂ B3, with kernel SR(r, r′) as

SR(r, r′) , IR(r)δ(r, r′), (23)

where IR(r) = 1 for r ∈ R and IR(r) = 0 for r ∈ B3\R is an indicator function of the region R. SR projects

the signal f ∈ L2(B3) onto the subspace HR.

Definition 2 (Fourier-Bessel Spectral Selection Operator). Define the spectral selection operator S̃KL, which

selects the harmonic contribution of functions in the Fourier-Bessel spectral domain ÃKL, by its kernel

S̃KL(r, r′) ,
L−1∑

`=0

∑̀

m=−`

∫ K

k=0

dkX`m(k, r)X∗`m(k, r′). (24)

The operator S̃KL projects a signal onto the subspace of Fourier-Bessel band-limited functions H̃KL.

Definition 3 (Fourier-Laguerre Spectral Selection Operator). Define the spectral selection operator SPL,

which selects the harmonic contribution of functions in the Fourier-Laguerre spectral domain APL, by its

kernel

SPL(r, r′) ,
P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

Z`mp(r)Z∗`mp(r
′). (25)

The operator SPL projects a signal onto the subspace of Fourier-Laguerre band-limited functions HPL.
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Since both the spatial and spectral selection operators are orthogonal projection operators, they are

idempotent and self-adjoint in nature. By noting the expansions of the Dirac delta in (20) and (21), it is

evident that the kernels of the spectral selection operators in (24) and (25) are Dirac delta functions that

are band-limited in the appropriate basis.

3. Simultaneous Concentration in Spatial and Spectral Domain

By virtue of the uncertainty principle, no function can be space-limited and band-limited simultaneously.

In other words, a signal f ∈ L2(B3) cannot belong to the subspace HR and the subspaces HPL or H̃KL at

the same time. In this section we first develop a framework to determine band-limited functions f ∈HPL or

f ∈ H̃KL that are optimally concentrated in some spatial region R ⊂ B3. We then formulate the problem to

determine space-limited functions g ∈ HR that are optimally concentrated within the spectral region ÃKL

or APL. Later, we show the equivalence between these two problems and provide the harmonic domain

formulations of the problems.

3.1. Spatial Concentration of Band-Limited Functions

Let f ∈ L2(B3) be a band-limited signal, that is, f ∈ H K
L or f ∈ HPL. The energy concentration of

the function f within the spatial region R ⊂ B3 is given by

λ =

〈
SRf, SRf

〉
〈
f, f
〉 , (26)

which, by noting that the signal f is band-limited, can also be equivalently expressed as

λ =

〈
SRS̃KLf, SRS̃KLf

〉
〈
S̃KLf, S̃KLf

〉 , f ∈H K
L (27)

λ =

〈
SRSPLf, SRSPLf

〉
〈
SPLf, SPLf

〉 , f ∈HPL, (28)

where we have used the fact that both the spectral selection operators, S̃KL and SPL are idempotent oper-

ators. It is well-known that the band-limited function f that renders the Rayleigh quotient (26) stationary

is a solution of following Fredholm integral equations (eigenvalue problems), given by

S̃KLSRS̃KLf = λf, f ∈H K
L , (29)

SPLSRSPLf = λf, f ∈HPL. (30)

The solution of each of the eigenvalue problems in (29) and (30) yields band-limited eigenfunctions. Since

the composite operator S̃KLSRS̃KL (or SPLSRSPL) is a self-adjoint projection operator, these eigenvalues

are positive and bounded above by unity. The eigenvalue associated with each eigenfunction serves as a

measure of energy concentration of the eigenfunction in the spatial region R. We discuss the properties of

the eigenfunctions in Section 4.
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3.2. Spectral Concentration of Space-Limited Functions

Here we consider the dual of the problem posed in the previous subsection. Instead of seeking band-

limited spatially concentrated functions, we seek space-limited functions with optimal concentration in some

spectral region. Let g ∈ HR be the space-limited function within the spatial region R. We maximize the

concentration of g in the spectral region ÃKL or APL, depending on the basis functions chosen for the

characterization of the spectral domain (Fourier-Bessel or Fourier-Laguerre, respectively). To maximize the

concentration of the space-limited signal g within the spectral region ÃKL in the Fourier-Bessel spectral

domain, we maximize the ratio

λ =

〈
S̃KLSRg, S̃KLSRg

〉
〈
SRg,SRg

〉 , g ∈HR. (31)

Similarly, to maximize the concentration within the spectral region APL in the Fourier-Laguerre spectral

domain, we maximize the ratio

λ =

〈
SPLSRg,SPLSRg

〉
〈
SRg,SRg

〉 , g ∈HR. (32)

Following a similar approach to the spatial concentration problem above and noting SRg = g, the Fourier-

Bessel concentration problem in (31) results in the following eigenvalue problem

SRS̃KLSR g = λg. (33)

Similarly, the Fourier-Laguerre problem in (32) gives rise to the following eigenvalue problem

SRSPLSR g = λg. (34)

The solution of each of the eigenvalue problems presented in (33) and (34) provides space-limited eigen-

functions. Again, the eigenvalues are positive and bounded above by unity since the both SRSPLSR and

SRS̃KLSR are self-adjoint projection operators. The eigenvalue associated with each eigenfunction serves

as a measure of concentration of the eigenfunction in the spectral region APL or ÃKL, as we show later in

Section 4.

3.3. Equivalence of Problems

Here we show that the concentration problems to find the spatially concentrated band-limited functions

and spectrally concentrated space-limited functions have equivalent solutions. Equivalence is shown explic-

itly only for the Fourier-Bessel spectral domain; however, the same result also holds for the Fourier-Laguerre

spectral domain.
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By defining a composite operator U , S̃KLSRS̃KL with kernel representation given by

U(r, r′) =

∫

R

d3µ(r′′) S̃KL(r, r′′)S̃KL(r′′, r′)

=

L−1∑

`=0

∑̀

m=−`

L−1∑

`′=0

`′∑

m′=−`′

∫ K

k=0

dk

∫ K

k′=0

dk′X`m(k, r) X∗`′m′(k′, r′)

∫

R

d3µ(r′′)X∗`m(k, r′′)X`′m′(k′, r′′),

(35)

we can write the eigenvalue problem in (29) as

Uf = λf, (36)

or equivalently

∫

R

d3µ(r′)

∫ K

k=0

dk

L−1∑

`=0

∑̀

m=−`

X`m(k, r)X∗`m(k, r′)f(r′) = λf(r), r ∈ B3. (37)

Also, we define the composite operator V , SRS̃KLSR with kernel representation given by

V (r, r′) = IR(r)IR(r′)

L−1∑

`=0

∑̀

m=−`

∫ K

k=0

dkX`m(k, r)X∗`m(k, r′)

= IR(r)S̃KL(r, r′), (38)

using which the eigenvalue problem in (33) can be expressed as

Vg = λg. (39)

or equivalently

∫

R

d3µ(r′)

∫ K

k=0

dk

L−1∑

`=0

∑̀

m=−`

X`m(k, r)X∗`m(k, r′)g(r′) = λg(r), r ∈ R. (40)

It is evident that this eigenvalue problem formulated for space-limited (analytic) function g ∈HR is equiv-

alent to the problem in (37) for band-limited function f ∈ H K
L over the domain r ∈ R. Consequently, the

eigenvalue problems in (36) and (39) have the same solution, with the same eigenvalue, within the region

R, that is,

g(r) = (SRf) (r), r ∈ R ⊂ B3. (41)

For a signal band-limited in the Fourier-Laguerre spectral domain, the equivalent of the eigenvalue

problem in (36) is

Wf = λf, (42)

where W , SPLSRSPL is the composite operator with kernel representation given by
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W (r, r′) =

∫

R

d3µ(r′′)SPL(r, r′′)SPL(r′′, r′)

=

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

P−1∑

p′=0

L−1∑

`′=0

`′∑

m′=−`′
Z`mp(r)Z∗`′m′p′(r

′)

∫

R

d3µ(r′′)Z∗`mp(r
′′)Z`′m′p′(r

′′), (43)

and the analogous result holds.

Remark 1. The equivalence of the spatial and spectral concentration problems implies that we only need

to solve the eigenvalue problem presented in (36) or (42) to obtain the band-limited spatially concentrated

eigenfunctions and the space-limited spectrally concentrated eigenfunctions then can be obtained using (41),

i.e., by setting the space-limited eigenfunctions to the band-limited eigenfunctions in the region R and zero

elsewhere.

3.4. Harmonic Domain Analysis

So far the eigenvalue problems have been formulated in the spatial domain. Here we present the spectral

domain formulation of the eigenvalue problems presented in (36) and (42). By taking the Fourier-Bessel

transform of (37) with respect to spatial variable r, we obtain the following formulation of the eigenvalue

problem in the Fourier-Bessel spectral domain

L−1∑

`′=0

∑̀

m′=−`

∫ K

k′=0

dk′X`′m′,`m(k′, k)f`′m′(k′) = λf`m(k), (44)

with

X`m,`′m′(k, k′) =

∫

R

d3µ(r)X`m(k, r)X∗`′m′(k′, r). (45)

Similarly, the eigenvalue problem (42) can be formulated in the Fourier-Laguerre spectral domain as

P∑

p′=0

L−1∑

`′=0

`′∑

m′=−`′
Z`′m′p′,`mpf`′m′p′ = λf`mp, (46)

with

Z`mp,`′m′p′ =

∫

R

d3µ(r)Z`mp(r)Z∗`′m′p′(r). (47)

By defining the vector f =
(
f000, f001, . . . , f(L−1)(L−1)(P−1)

)T
of length PL2 as the spectral representation

of the signal f and the matrix Z of size PL2×PL2 with entries given by (47), (46) can be written compactly

in matrix form as

Zf = λf . (48)

12



U = S̃KLSRS̃KL

Eigenvalue problem: Uf = λf

Maximize spatial concentration
of band-limited functions

Eigenfunctions: fα, α = 1, 2, . . .

Eigenvalues: 1 > λα ≥ λα+1 > 0

Equivalence of
problems

Eigenvalue problem: Vg = λg

Maximize spectral concentration
of space-limited functions

Eigenfunctions: gα, α = 1, 2, . . .

Eigenvalues: 1 > λα ≥ λα+1 > 0

V = SRS̃KLSR

Properties of band-limited eigenfunctions:

L−1∑
`=0

∑̀
m=−`

∫

R+

dkfα`m(k)
(
fβ`m(k)

)∗
= δαβ

∫

B3

d3µ(r)fα(r)
(
fβ(r)

)∗
= δαβ

∫

R
d3µ(r)fα(r)

(
fβ(r)

)∗
= λαδαβ

gα = 1√
λα

(SRf
α)

Properties of space-limited eigenfunctions:

L−1∑
`=0

∑̀
m=−`

∫ K

k=0
dk gα`m(k)

(
gβ`m(k)

)∗
= λαδαβ

∫

B3

d3µ(r)gα(r)
(
gβ(r)

)∗
= δαβ

∫

R
d3µ(r)gα(r)

(
gβ(r)

)∗
= δαβ

U(r, r′) =
∞∑
α=1

λαf
α(r) (fα(r′))∗

V (r, r′) =
∞∑
α=1

λαg
α(r) (gα(r′))∗

Composite operator

Composite operator

Mercer’s theorem

Mercer’s theorem

Solution

Solution

Figure 1: Concept map of Slepian spatial-spectral concentration problem for Fourier-Bessel spectral domain

summarising the Slepian concentration problems, presented in Section 3, to find spatially concentrated band-limited functions

and spectrally concentrated space-limited functions. The relation between the band-limited and space-limited eigenfunctions

arising as a solution of each problem is also presented. Furthermore, the key properties of the eigenfunctions, presented in

Section 4 are summarised. Employing Mercer’s theorem [16], we have also shown the (convergent) representation of the kernel of

the operator U or V in terms of eigenfunctions of the respective operator. The equivalent concept map can also be constructed

for the Slepian spatial-spectral concentration problem for the Fourier-Laguerre spectral domain.

Thus, the spectral representation f of the band-limited spatially concentrated signal f can be obtained as a

solution of an algebraic (finite dimensional) eigenvalue problem of size PL2 × PL2. Due to the continuous

nature of the Fourier-Bessel harmonic space (i.e. k is continuous), an equivalent finite-dimensional matrix

formulation cannot be written for the Fourier-Bessel setting.

For the eigenvalue problems (36) and (42), which are expressed in terms of the spatial domain represen-

tation of the signal, we have obtained here the equivalent harmonic formulations (44) and (48) respectively.

In the next section, we discuss the properties of band-limited and space-limited eigenfunctions.

3.5. Review

In the present section, we first formulated two types of eigenvalue problems: (1) problem (29) and (30)

to find band-limited spatially concentrated functions f ; and (2) problems (33) and (34) to find space-limited

functions g with optimal concentration within a spectral region. We then showed that the eigenfunctions

that arise as a solution of both problems are the same, up to a multiplicative constant, within the spatial
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region R and spectral region APL or ÃKL. Due to the equivalence of the spatial and spectral concentration

problems, we are only required to solve the eigenvalue problem presented in (36) (Fourier-Bessel domain) or

(42) (Fourier-Laguerre domain) to obtain the band-limited spatially concentrated eigenfunctions. For these

eigenvalue problems (36) and (42), which are expressed in terms of the spatial domain representation of

the signal, we have also obtained the equivalent harmonic formulations (44) and (48) respectively. For the

concentration problems for Fourier-Bessel spectral domain, we encapsulate the key developments presented

in this section in the form of concept map presented in Fig. 1, where we have also summarised the key

properties, presented in detail in the next section, of the band-limited and space-limited eigenfunctions.

The equivalent concept map for the Fourier-Laguerre spectral domain is analogous.

4. Analysis of Eigenfunctions and Eigenvalue Spectrum

We first study the properties of the both band-limited and space-limited eigenfunctions in this sec-

tion, both for the Fourier-Bessel and Fourier-Laguerre scenarios. In both of these scenarios we also study

the eigenvalue spectrum and calculate the analog of the Shannon number in the one dimensional Slepian

concentration problem.

4.1. Properties of Fourier-Bessel Band-Limited Eigenfunctions

The Fourier-Bessel band-limited and spatially concentrated eigenfunctions are recovered in the spectral

domain by solving the eigenvalue problem given in (44). That is, we obtain f`m(k) for 0 ≤ k ≤ K,

0 ≤ ` ≤ L − 1 and |m| ≤ `. In practice [24, 23, 21], the spectrum along k ∈ R+ is discretized to solve

the eigenvalue problem in (44) as an algebraic eigenvalue problem (we further elaborate this in Section 5).

Since both (36) and (44) are equivalent and the operator U, with kernel given in (35), is a self-adjoint

composition of projection operators, the eigenfunctions are orthogonal and the associated eigenvalue of each

eigenfunction is real, positive and bounded above by unity. We choose the eigenfunctions to be orthonormal.

Since the spectral response is continuous along k, the number of eigenfunctions is (theoretically) infinite and

depends on the resolution of the discretization of the spectrum along k. We order eigenfunctions f1, f2, . . .

and eigenvalues λ1, λ2, . . . such that 1 > λ1 ≥ λ2 ≥ . . . > 0.

The eigenfunctions fα ∈ L2(B3) in the spatial domain can be recovered from their spectral representation

through the inverse Fourier-Bessel transform (13), where α is used to index the eigenfunctions. Since

the Hermitian symmetry property X`m,`′m′(k, k′) = (X`′m′,`m(k′, k))
∗

is satisfied, as is directly apparent

from (45), it follows that the eigenvalues are real and the eigenfunctions orthogonal. The band-limited

eigenfunctions are orthonormal in both the Fourier-Bessel spectral domain and in the entire spatial domain
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B3, that is,

L−1∑

`=0

∑̀

m=−`

∫

R+

dkfα`m(k)
(
fβ`m(k)

)∗
= δαβ , (49)

∫

B3

d3µ(r)fα(r)
(
fβ(r)

)∗
= δαβ . (50)

The eigenfunctions are also orthogonal (but not orthonormal) within the spatial region R, with

∫

R

d3µ(r)fα(r)
(
fβ(r)

)∗
= λαδαβ , (51)

which is obtained using the spectral domain formulation of the eigenvalue problem in (44) and the or-

thonormality relation in (49). It is clear from (51) that the eigenvalue λ associated with each unit energy

band-limited eigenfunction provides a measure of energy concentration within the spatial region R.

4.2. Properties of Fourier-Laguerre Band-Limited Eigenfunctions

The Fourier-Laguerre band-limited and spatially concentrated eigenfunctions are recovered in the spectral

domain by solving the eigenvalue problem given in (48), to recover the eigenvector f . Since the matrix Z
in (48) is of size PL2 × PL2, the number of eigenvectors/eigenfunctions is also PL2. The matrix Z is

positive definite, therefore the eigenvalues are positive, real and bounded by unity and the eigenvectors are

orthogonal. We chose the eigenvectors to be orthonormal. We again order eigenvectors f1, f2, . . . , fPL
2

and

eigenvalues λ1, λ2, . . . , λPL2 such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λPL2 > 0.

The eigenfunctions fα(r) in the spatial domain can be recovered from their spectral representation though

the inverse Fourier-Laguerre transform (16), where again α is used to index the eigenfunctions. Again, the

reality of eigenvalues and orthogonality of eigenvectors also follows from the fact that the matrix Z in (47),

with entries given in (48), is Hermitian symmetric. The band-limited eigenfunctions are orthonormal in

both the Fourier-Laguerre spectral domain and in the entire spatial domain B3, that is,

(fα)Hfβ =

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

(
fα`mp

)∗
fβ`mp = δαβ , (52)

∫

B3

d3µ(r)fα(r)
(
fβ(r)

)∗
= δαβ , (53)

where (·)H denotes the Hermitian transpose operation, and are orthogonal (but not orthonormal) within the

spatial region R,

∫

R

d3µ(r)fα(r)
(
fβ(r)

)∗
= λαδαβ , (54)

which is obtained by using (46) and the orthonormality relation in (52). It is clear from (54) that the

eigenvalue λα associated with each unit energy band-limited eigenfunction fα provides a measure of energy

concentration within the spatial region R.
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4.3. Properties of Space-Limited Eigenfunctions

As highlighted earlier, the space-limited spectrally concentrated eigenfunctions g(r) of the eigenvalue

problems (33) and (34) can be obtained from the band-limited spatially concentrated eigenfunctions of

problems (44) and (48), respectively. This is achieved by employing the relationship given in (41), i.e.,

by setting the space-limited eigenfunctions to the band-limited eigenfunctions in the region R and zero

elsewhere.

Each band-limited eigenfunction fα(r) thus provides a space-limited eigenfunction gα(r) and the eigen-

value associated with each eigenfunction provides a measure of energy concentration within the Fourier-

Bessel or Fourier-Laguerre spectral domain. In order to normalize the space-limited eigenfunctions to unit

energy, we update the relationship between fα(r) and gα(r), given in (41), by noting (51) and (54), as

gα(r) =
1√
λα

(SRf
α) (r), λα 6= 0. (55)

The revised space-limited eigenfunctions gα(r) then satisfy

∫

B3

d3µ(r)gα(r)
(
gβ(r)

)∗
=

∫

R

d3µ(r)gα(r)
(
gβ(r)

)∗
= δαβ . (56)

The relation between the band-limited eigenfunctions fα(r) and space-limited eigenfunctions gα(r) can

be expressed in the spectral domain as

gα`m(k) =
1√
λα

L−1∑

`′=0

∑̀

m′=−`

∫ K

k′=0

dk′X`′m′,`m(k′, k)fα`′m′(k′), fα(r) ∈ H̃KL,

gα`mp =
1√
λα

P∑

p′=0

L−1∑

`′=0

`′∑

m′=−`′
Z`′m′p′,`mpf

α
`′m′p′ , fα(r) ∈HPL, (57)

for `, p ∈ Z+ and k ∈ R+, where we have used the kernel representation of the spatial-selection operator SR.

Note that the harmonic representations of the space-limited eigenfunctions gα`m(k) and gα`mp are obviously

not band-limited and the expressions given above apply over the entire harmonic domains. Using (44) and

(46) these relations can also be expressed within the finite spectral regions as

gα`m(k) =
√
λαf

α
`m(k), `, k ∈ ÃKL,

gα`mp =
√
λαf

α
`mp, `, p ∈ APL. (58)

Finally, using (49) or (52) in conjunction with (58), we can obtain the orthogonality relations for space-

limited eigenfunctions in the spectral domain

L−1∑

`=0

∑̀

m=−`

∫ K

k=0

dk gα`m(k)
(
gβ`m(k)

)∗
= λαδαβ ,

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

gα`mp

(
gβ`mp

)∗
= λαδαβ . (59)
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It is clear from (59) that the eigenvalue λ associated with each unit energy space-limited eigenfunction

provides a measure of energy concentration within the spectral regions ÃKL or APL.

Remark 2. We highlight again that the eigenvalue λα serves as a measure of the concentration of the (unit

energy) band-limited eigenfunctions fα(r) in the spatial domain, and the concentration of the (unit energy)

space-limited eigenfunctions gα(r) in the spectral domain. The energy 1−λα leaked by fα(r) into the spatial

region B3\R is equal to the energy leaked by gα(r) outside of the spectral region ÃKL or APL, depending on

the chosen spectral domain.

Remark 3. Since HR is an infinite dimensional subspace of L2(B3), the number of space-limited eigen-

functions arising from the solution of (34) is infinite. However, when we maximize the spatial concentration

of the functions band-limited in the Fourier-Laguerre spectral domain, the equivalent problem in the spectral

domain given in (48) is finite dimensional, giving rise to a finite number (PL2) of band-limited, and thus

also space-limited, eigenfunctions. The remaining space-limited eigenfunctions, which do not have any en-

ergy in the spatial region R nor in the spectral region APL, belong to the infinite dimensional null space of

(34) and have associated eigenvalue equal to zero.

4.4. Eigenvalue Spectrum

Following Remark 2, the band-limited eigenfunctions and space-limited eigenfunctions, which are well

concentrated within the spatial region and spectral region respectively, have eigenvalue near unity, whereas

those which are poorly concentrated have value near zero. If the spectrum of eigenvalues λ1, λ2, . . . , has a

narrow transition width from values near unity to values near zero, as in the case of one dimensional Slepian

concentration problem [43] and spherical concentration problem [36], the sum of all of the eigenvalues well

approximates the number of significant eigenfunctions with eigenvalue near unity. We elaborate this fact

later in the paper with the help of examples. If the signal is band-limited in the Fourier-Bessel spectral

domain, the sum of eigenvalues is given by

ÑKL = tr(U) =

∫

B3

d3µ(r)U(r, r) =

∫ K

k=0

dk

L−1∑

`=0

∑̀

m=−`

X`m,`m(k, k)

=

L−1∑

`=0

2`+ 1

2π2

∫

R

d3µ(r)

(∫ K

k=0

dkk2j`(kr)j`(kr)

)

=

L−1∑

`=0

2`+ 1

4π2
K3

∫

R

d3µ(r)
(

(j`(Kr))
2 − j`−1(Kr)j`+1(Kr)

)
, (60)

with r = r(r, θ, φ). Here we use tr(·) to denote the trace of an operator or a matrix.
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For a signal band-limited in the Fourier-Laguerre spectral domain, the sum of eigenvalues is given by

NPL = tr(W) = tr(Z) =

∫

B3

d3µ(r)W (r, r)

=

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

Z`mp,`mp

=
L2

4π

P−1∑

p=0

∫

R

d3µ(r)Kp(r)Kp(r), r = r(r, θ, φ). (61)

We note that the sum of eigenvalues given in (60) and (61) involve an integral of a positive function over

the spatial region R. Thus, if the volume of the spatial region is relatively smaller, the sum of eigenvalues,

which also indicates the number of significant eigenfunctions, is also smaller.

Remark 4. ÑKL and NPL serve as an analog of the Shannon number in the one-dimensional Euclidean

Slepian concentration problem [43, 31], in which the Shannon number is given by a space-bandwidth product.

Here, we refer to NKL or NPL as spherical Shannon numbers. Since the significant eigenfunctions have

value near unity and the remaining eigenfunctions have eigenvalue near zero, the number of significant

eigenfunctions is given approximately by ÑKL or NPL. Thus, a function spatially concentrated in R and

band-limited in the Fourier-Bessel (Fourier-Laguerre) domain within the spectral region ÃKL (APL), can

be represented approximately by ÑKL (NPL) band-limited orthonormal eigenfunctions. This is the essence

of the concentration problem: spatially concentrated band-limited functions on the ball, which belong to the

infinite dimensional space H̃KL, can be approximately represented by ÑKL finite orthonormal basis functions

of the same space. Similarly, the dimension of the space required to represent spatially concentrated band-

limited signals belonging to the finite dimensional space H̃KL of size PL2 can be reduced from PL2 to NPL.

This fact is further explored in Section 6.

Remark 5. The approximation of the number of significant eigenfunctions by the spherical Shannon number

ÑKL or NPL is based on an assumption that the spectrum of eigenvalues has a narrow transition width from

values near unity to values near zero. This assumption can be further studied by computing the Hilbert-

Schmidt norm of the integral operators U or W. Since the Hilbert-Schmidt norm is equal to the sum of

the squares of the eigenvalues, the difference between the Hilbert-Schmidt norm and the spherical Shannon

number can be used as a measure to quantify the transition width of the spectrum of eigenvalues. Since we

actually compute the eigenvalues (later in the paper), we do not carry out further analysis to determine the

transition width of the eigenvalues spectrum and the distribution of the eigenvalues (e.g., [17, 20]) using the

Hilbert-Schmidt of the operator defining the eigenvalue problem.
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5. Eigenfunctions Concentrated within Spatially Symmetric Regions

In the preceding section we analysed the properties of eigenfunctions arising from the spatial-spectral

concentration problem on the ball. We have yet to discuss the computation of these eigenfunctions. As

mentioned briefly earlier, the eigenvalue problem of (44) to find eigenfunctions band-limited in the Fourier-

Bessel domain can be transformed into an algebraic eigenvalue problem by discretizing the spectrum along

k ∈ R+. If we discretize along k with a step size ∆k by selecting M , dK/∆ke uniform samples kn =

nK/M, n = 1, 2, . . . , M , between 0 < k ≤ K, the eigenvalue problem in (44) becomes an algebraic

eigenvalue problem of size ML2, for which we need to compute a Hermitian matrix of size ML2×ML2. For

each element of this matrix we must evaluate the integral given in (45) over the spatial region of interest.

Similarly, the eigenvalue problem of (46), of size PL2, must be solved to find band-limited eigenfunctions

in the Fourier-Laguerre domain. Again, for each element of the matrix we must evaluate the integral given

in (47) over the spatial region of interest. Since observations in practical applications can support very

high band-limits, the direct computation of eigenfunctions by solving the algebraic eigenvalue problems is

computationally intensive, motivating alternative procedures.

In this section we analyze the eigenvalue problems when the spatial region of concentration is symmetric

in nature. Under certain symmetries we show that the eigenvalue problems given in the spectral domain

in (44) and (48), originally formulated in (36) and (42), decompose into subproblems, which reduce the

computational burden. In some special cases X`m,`′m′(k, k′) in (45) and Z`mp,`′m′p′ in (47) can be computed

analytically. We consider two types of symmetric regions: (1) circularly symmetric regions only; and (2)

circularly symmetric and radially independent regions, which are formally defined below:

Definition 4 (Circularly Symmetric Region). We define a region to be circularly symmetric if it is rota-

tionally symmetric around some rotation axis defined by its center r0 , r0(r0, θ0, φ0) ∈ B3.

Definition 5 (Circularly Symmetric and Radially Independent Region). In addition to circular symmetry,

if the spatial region R is also radially independent, that is, R = Rs × Rr with Rs ⊂ S2 and Rr ⊂ R+, the

region is referred to as circularly symmetric and radially independent region.

5.1. Circularly Symmetric Region Only

First, we analyze the case when the spatial region is circularly symmetric. For convenience, we consider

the region with rotation axis η0 , η0(r0, 0, 0) ∈ B3 on the z-axis and refer to such a region as an azimuthally

symmetric region. Through a rotation of θ0 around the y-axis, followed by a rotation of φ0 around the z-

axis, the azimuthally symmetric region with center at η0 can be transformed into the circularly symmetric

region with center at r0. When considering the azimuthally symmetric region, the azimuthal angle becomes

independent of r and θ and therefore we can write the integral over region R as
∫
R
≡
∫
(r,θ)

∫ 2π

φ=0
. Noting this
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decoupling of the integral and the orthonormality of the complex exponentials, we can simplify X`m,`′m′(k, k′)

given in (45) as

X`m,`′m′(k, k′) = δmm′2π

∫

(r,θ)

r2 sin θdrdθX`m(k, r)X∗`′m′(k′, r), r = r(r, θ, 0)

= δmm′X`m,`′m(k, k′), (62)

which can be used to decompose the spectral domain eigenvalue problem in (44) into 2L− 1 subproblems,

∫ K

k′=0

dk′
L−1∑

`′=0

X`′m,`m(k′, k)f`′m(k′) = f`m(k), (63)

for each m ∈ {−(L − 1), . . . , (L − 1)}. Furthermore, it can be easily shown that

X`m,`′m(k, k′) = X`(−m),`′(−m)(k, k
′) which leaves us with L subproblems for m ∈ {0, 1, . . . , (L− 1)}. The

subproblem in (63) gives the spectral domain representation f`m(k) of eigenfunctions for each m, which can

be used to obtain the spatial functions for each m as

f (m)(r, θ) =

∫ K

k=0

dk

L−1∑

`=m

f`m(k)X`m(k, r), r = r(r, θ, 0). (64)

Furthermore, since X`′m,`m(k′, k) = X`m,`′m(k, k′) is real valued, the spectral domain representation f`m(k)

of the eigenfunction and consequently the spatial eigenfunction f (m)(r, θ) is real valued. We note that the

superscript m on the left hand side of (64) indicates angular order and should not be confused with the

rank of the eigenfunction.

Similarly, the symmetry of the region along the z-axis also simplifies the elements Z`mp,`′m′p′ in (47) as

Z`mp,`′m′p′ = δmm′Z`mp,`′mp′ = δ(−m)(−m′)Z`(−m)p,`′(−m)p′ , (65)

due to which the matrix Z becomes block diagonal. By defining the matrix Z(m) of size P (L−m)×P (L−m),

with entries

Z(m)
`p,`′p′ = Z`mp,`′mp′ , (66)

the matrix eigenvalue problem in (48) can be decomposed into L subproblems of the following form

Z(m)f (m) = λf (m), (67)

for each m ∈ {0, , 1, . . . , L − 1}. The vector f (m) ,
(
fmm0, fmm1, . . . , fmm(P−1), . . . f(L−1)(m)(P−1)

)T
of

length P (L−m) represents the spectral domain response of the band-limited eigenfunction for given order

m, given by

f (m)(r, θ) =

P−1∑

p=0

L−1∑

`=m

f`mpZ`mp(r, θ, 0). (68)
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Again, due to the fact that the matrix Z(m) is real valued and symmetric, both f (m) and f (m)(r, θ) are real

valued.

Using the spatial domain eigenfunction f (m)(r, θ) for each m given by (64) and (68), the eigenfunction

f(r) can be obtained by scaling with the complex exponential eimφ, characterizing the variation of an

eigenfunction along azimuth, giving

f(r) = f (m)(r, θ)eimφ =

P−1∑

p=0

L−1∑

`=m

f`mpZ`mp(r, θ, φ), r = r(r, θ, φ). (69)

To summarise this subsection, the symmetry of the spatial region along azimuth allows the decomposition

of the large eigenvalue problem that includes all angular orders −(L − 1) ≤ m ≤ L − 1 into smaller L

subproblems, each for single angular order m ∈ {0, 1, 2, . . . , L− 1}.

5.2. Circularly Symmetric and Radially Independent Region

In the previous subsection, we showed that the eigenvalue problem decomposes into subproblems for

circularly symmetric regions. For circularly symmetric and radially independent regions, the eigenvalue

problem decomposes further into subproblems. For convenience, we again consider a circularly symmetric

and radially independent region defined as

R , {R1 ≤ r ≤ R2, θ1 ≤ θ ≤ θ2, 0 ≤ φ < 2π}, (70)

which is circularly symmetric around rotation axis η0 , η0(r0, 0, 0) ∈ B3 on the z-axis. Note that the region

R, given in (70), becomes a spherical shell region, characterized by R1 and R2, for θ1 = 0 and θ2 = π, which

reduces to a spherical symmetric (volume) region of radius R2 for R1 = 0.

For the circularly symmetric and radially independent region R given in (70), the integral over the spatial

region R decouples as
∫
R
≡
∫ R2

r=R1

∫ θ2
θ=θ1

∫ 2π

φ=0
, which can be incorporated to simplify X`m,`′m′(k, k′) given in

(62) as

X`m,`′m′(k, k′) =δmm′
2

π

∫ R2

r=R1

r2drkk′j`(kr)j
′
`(k
′r)

︸ ︷︷ ︸
C`,`′ (k,k

′)

× 2π

∫ θ2

θ=θ1

sin θdθ Y`m(θ, 0)Y ∗`′m(θ, 0)

︸ ︷︷ ︸
Gm

`,`′

. (71)

The integral C`,`′(k, k
′) can be evaluated analytically for some special cases. When k = k′,

C`,`′(k, k) = k2+`+`
′
2(−2−`−`

′)Γ(2 + `+ `′) (F1(`, `′, kR2)− F1(`, `′, kR1)) , (72)
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where

F1(`, `′, kR) = R3+`+`′
pF

q

([
2 + `+ `′

2
,

3 + `+ `′

2
,

3 + `+ `′

2

]
, . . .

. . .

[
3 + 2`

2
,

5 + `+ `′

2
,

3 + 2`′

2
, 2 + `+ `′

]
,−k2R2

)
(73)

is the Hypergeometric generalized regularized function.4 When ` = `′,

C`,`(k, k
′) =





2
√
kk′

π(k2−k′2)

(
R2

2k
′j`−1(k′R2)j`(kR2)−R2

2kj`−1(kR2)j`(k
′R2)

−R2
1k
′j`−1(k′R1)j`(kR1) +R2

1kj`−1(kR1)j`(k
′R1)

)
k 6= k′

k
2π (T (`, k,R2)− T (`, k,R2)) k = k′

(74)

with T (`, k,R1) = R1
3
(
j2` (kR1)− j`−1(kR1)j`+1(kR1)

)
. The integral Gm`,`′ can be evaluated analytically

for all `, `′ ≥ |m| by [36]

Gm`,`′ = (−1)m
√

(2`+ 1)(2`′ + 1)

2

|`+`′|∑

j=|`−`′|

(
` j `′

0 0 0

)(
` j `′

m 0 −m

)

×
(
P 0
j−1(cos θ2) + P 0

j+1(cos θ1)− P 0
j+1(cos θ2)− P 0

j−1(cos θ1)
)
, (75)

where the arrays of indices are Wigner-3j symbols [33]. We note that the integral C`,`′(k, k
′) depends on

only R1 and R2, and the integral denoted by Gm`,`′ depends on only θ1 and θ2. For brevity, this dependence is

not explicit in the notation. The azimuthal symmetry of the spatial region allows the eigenvalue problem to

be decomposed into sub-problems and the independence between r and θ enables the analytic computation

of X`m,`′m′(k, k′) when ` = `′ or k = k′. For the Fourier-Bessel setting, the independence between r and θ in

the definition of the region does not allow further decomposition of the problem due to the coupling between

the radial and angular spectral components, characterized by, respectively, the Bessel functions j`(kr) and

the spherical harmonics Y`m(θ, φ) (i.e., the harmonic index ` is shared).

For the Fourier-Laguerre setting, the independence between the radial component r and angular colat-

itude θ allows us to further decompose the eigenvalue problem given in (67) since the radial and angular

spectral domains are also decoupled. Considering the azimuthally and radially symmetric region R, the

elements of the matrix Zm given in (66) can be expressed as

Zm
`p,`′p′ =

∫ R2

r=R1

r2drKp(r)Kp′(r)

︸ ︷︷ ︸
Ep,p′

2π

∫ θ2

θ=θ1

sin θdθ Y`m(θ, 0)Y ∗`′m(θ, 0)

︸ ︷︷ ︸
Gm

`,`′

. (76)

Since there is no dependence between the integrals along the radial and angular spectral components, the

4Mathematica: HypergeometricPFQRegularized
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fixed order eigenvalue problem in (67) can be decomposed into two separate eigenvalue subproblems:

P−1∑

p′=0

Ep′,pfp′ = λ1fp, f ∈ L2(R+), (77)

L−1∑

`′=m

Gm`′,`f`′m = λ2f`m, f ∈ L2(S2). (78)

The eigenvalue problem in (77) maximizes the concentration of the band-limited signal defined on R+ in the

interval r ∈ [R1, R2] and the eigenvalue problem in (78) maximizes the concentration of the signal defined

on S2 in the region characterized by colatitude θ ∈ [θ1, θ2]. We note that the eigenvalue problem in (77)

is independent of angular order m and is an algebraic eigenvalue problem of size P , therefore its solution

provides the spectral domain representation of P orthonormal eigenfunctions defined on R+. The sum of

eigenvalues is given by

NP =

P−1∑

p=0

Ep,p, (79)

which also indicates the number of significant eigenfunctions with eigenvalues near unity. An analytic

expression to evaluate Ep,p′ can be obtained by using the definition of the Laguerre basis functions in (6)

and (7), yielding

Ep,p′ =

√
p! p′!

(p+ 2)!(p′ + 2)!
e−r

p∑

j=0

p′∑

j′=0

(−1)j+j
′

j! j′!

(
p+ 2

p− j

)(
p′ + 2

p′ − j′
)

×
∫

dr e−rrj+j
′+2, (80)

where the integral can be evaluated using the upper incomplete gamma function [4] as

∫
dr e−rrj+j

′+2 = (j + j′ + 2)!

j+j′+2∑

a=0

e−R1(R1)a − e−R2(R2)a

a!
. (81)

Similarly, the solution of the eigenvalue problem in (78) for each m gives rise to L −m eigenfunctions

defined on S2. The sum of eigenvalues for all orders is given by

NL =

L−1∑

m=−(L−1)

L−1∑

`=|m|

Gm`,` =
L2

2
(cos θ1 − cos θ2) . (82)

Explicit expressions to determine the sum of eigenvalues for each order m have been derived in [36], where

the subproblem in (78) to find band-limited functions on the sphere with optimal spatial concentration in

the polar cap region about the North pole has been investigated in detail. By the decompositions due to

the symmetry of the region, the spherical Shannon number in (61) can be expressed as

NPL = NPNL. (83)
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For the Fourier-Laguerre setting, the band-limited eigenfunction f (m)(r, θ) given by the solution of the

fixed order eigenvalue problem in (67) can be expressed in terms of the solution of the subproblems given

in (77) and (78) as

f (m)(r, θ) =

P−1∑

p=0

L−1∑

`=m

fpf`mZ`mp(r, θ, 0), (84)

where the eigenvalue λ = λ1λ2 is a measure of concentration in the spatial region R. The band-limited

eigenfunction f(r) can be obtained by scaling f (m)(r, θ) with the complex exponential eimφ, as given in

(69).

Remark 6. If the region R ⊂ B3 is not circularly symmetric but is radially independent, that is, R = Rs×Rr,

then due to the separability of the Fourier-Laguerre functions, the eigenvalue problem in the Fourier-Laguerre

domain formulated in (48) can be decomposed into subproblems to separately find band-limited functions in

the region Rr as formulated in (77) and in the region Rs as formulated in [36]. Using (61) in conjunction

with (79), the spherical Shannon number for a radially independent region R = Rs ×Rr is given by

NPL =
NP L2

4π

∫

Rs

d2ν(r̂). (85)

It must be noted that no simplification is possible for the problem in the Fourier-Bessel domain, formulated in

(44), due to the spectral coupling between the radial and angular components in the Fourier-Bessel functions.

Remark 7. Unlike the eigenvalue problem to find band-limited eigenfunctions in the Fourier-Bessel domain,

the separation of the integrals over the spatial region due to the independence between r and θ completely

decouples the problem to find band-limited eigenfunctions in the Fourier-Laguerre domain, such that the

eigenfunctions can be independently concentrated along radial component and angular component. Due to

such decoupling, the eigenfunctions can be computed efficiently compared to the case when the spatial region

does not exhibit symmetry and/or independence.

Remark 8. If one is interested in computing eigenfunctions in an arbitrarily spatial region, the region can

be approximated by the union of T subregions R = R1∪R2∪ . . .∪RT such that each subregion is azimuthally

symmetric and radially independent. Furthermore, as indicated earlier, an azimuthally symmetric region can

be rotated to a circularly symmetric region. The rotation of eigenfunctions can be performed in the spectral

domain through the use of Wigner-D functions [16, 33]. The decomposition of arbitrary spatial regions

into symmetric (and rotated) subregions can be useful in two respects. First, entries of the matrix defining

an algebraic eigenvalue problem can be efficiently computed due to the separation of integrals and spectral

decoupling (Remark 7). Second, the eigenvalue problem of larger size may be decomposed into a series of

subproblems of smaller size provided the interactions between the subproblems are low-rank.
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5.3. Computational Considerations

In order to obtain band-limited eigenfunctions with spatial concentration in circularly symmetric and/or

radially independent regions, we are required to solve algebraic eigenvalue problems formulated in (63) for

discretized Fourier-Bessel spectral domain and (67), (77) and (78) for Fourier-Laguerre spectral domain. For

some cases, we have derived analytic expressions to compute the entries of the matrix defining the eigenvalue

problem that is required to be numerically diagonalized in order to obtain the band-limited eigenfunctions.

In all of these cases, the entries of these matrices may also be obtained by adopting numerical quadrature to

evaluate the defining integral. The Gauss-Legendre quadrature or equiangular sampling quadrature [26] can

be used for discretization on S2. For the discretization along r ∈ R+, the quadrature rules associated with the

spherical Bessel transform and spherical Laguerre transform polynomials can be adopted5 [22]. The order of

the quadrature, both on S2 and R+, should be adjusted upward until the band-limited eigenfunctions satisfy

the orthogonality relations, given in (49)–(51) or (52)–(54), to within machine precision or the desired level

of accuracy. Note that the orthogonality relations are also evaluated using the same high order quadrature.

The numerical quadrature is also applicable if the spatial region is of arbitrary shape and does not exhibit any

symmetry. For such a spatial region, the lack of symmetry does not allow decomposition of the eigenvalue

problem into subproblems, due to which we are required to solve an algebraic eigenvalue problem of size

ML2 or PL2, and therefore the computation of eigenfunctions may only be feasible for small-to-moderate

band-limits.

Another computational consideration is the choice of step size ∆k used for the discretization of the

spectrum along k ∈ R+, which transforms the eigenvalue problem of (44) to find eigenfunctions band-

limited in the Fourier-Bessel domain into an algebraic eigenvalue problem. In order to choose the step size

∆k, we propose to take into account the following considerations: (1) ∆k should be sufficiently small such

that none of the eigenvalues λ1, λ2, . . . , are greater than unity; and (2) ∆k should be small enough that

the sum of eigenvalues is sufficiently close to the spherical Shannon number ÑKL given in (60). The second

consideration in choosing the step size ∆k ensures that the further decrease in ∆k does not result in the

increase in the number of significant eigenfunctions (with eigenvalues near unity). This is the essence of the

Slepian concentration problem: the infinite dimensional space H̃KL is (approximately) spanned by ÑKL

finite orthonormal basis functions of the same space. In the next subsection, we illustrate that the sum of

eigenvalues converges to the spherical Shannon number ÑKL as ∆k → 0.

5.4. Illustration

As an example, we compute band-limited and space-limited eigenfunctions for the azimuthally and

radially symmetric spatial region R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} and spectral regions

5Note that the evaluation of the quadrature (over the full spatial domain) is approximate and exact for the spherical Bessel

transform and spherical Laguerre transform, respectively.
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Figure 2: Analytical plots for the spherical Shannon number for (a) ÑKL given in (60) for different values of band-limit

K and (b) NPL given in (61) for different values of band-limit P . The angular band-limit is L = 20 and the spatial region of

concentration is R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π}.

ÃKL = Ã(1.4,20) in the Fourier-Bessel spectral domain and APL = A(30,20) in the Fourier-Laguerre spectral

domain. The band-limit K = 1.4 for the Fourier-Bessel domain is chosen such that, for the spatial region

under consideration, the spherical Shannon numbers ÑKL given in (60) and NPL given in (61) are the same,

i.e. ÑKL ≈ NPL. The spherical Shannon numbers for this region are plotted in Fig. 2a and b respectively

for different values of band-limits K and P . Since the region is azimuthally symmetric, the eigenfunctions

band-limited in Fourier-Bessel and Fourier-Laguerre spectral domains can be found by solving the fixed-order

eigenvalue problems formulated in (63) and (67) respectively.

For the computation of band-limited functions in the Fourier-Bessel domain, we discretize the spectrum

along k with a step size of ∆k. Due to the discretization of the spectrum along k, the problem in (63)

reduces to a finite dimensional algebraic eigenvalue problem, the solution of which gives L2K/∆k number

of band-limited eigenfunctions. We analyse the effect of choosing different step sizes for the discretization of

the spectrum along k. We plot the sum of eigenvalues and the spectrum of eigenvalues for different values

of the step size 0.001 ≤ ∆k ≤ 0.16 in Fig. 3a and Fig. 3b respectively. It is evident in Fig. 3a that the sum of

eigenvalues converges to the spherical Shannon number ÑKL computed using the analytic expression (60).

It is also worth noting from Fig. 3b that that the number of significant eigenfunctions is independent of the

choice of discretization along k and thus confirms that the infinite dimensional subspace H̃KL is, in fact,

sufficiently spanned by the finite ÑKL eigenfunctions. For the remaining of the illustration, we keep the

step size ∆k = 0.02, for which ÑKL is greater than 99.9% of the sum of eigenvalues.

In order to find band-limited eigenfunctions in the Fourier-Laguerre domain as a solution of (67), we

use the decomposition into the two subproblems formulated in (77) and (78) to separately maximize the

radial and angular concentration respectively. From the band-limited eigenfunction f , the space-limited
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Figure 3: Spectrum of eigenvalues for the Fourier-Bessel domain eigenvalue problem formulated in (44) to find

spatially concentrated eigenfunctions band-limited in the Fourier-Bessel domain in the spectral region Ã(1.4,20) and spatially

concentrated in the region R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π}. For different step size 0.001 ≤ ∆k ≤ 0.16 used for

the discretization of the spectrum along k, the spectrum of eigenvalues is plotted in (a) and the sum of eigenvalues is plotted

in (b). The sum of eigenvalues, given by the spherical Shannon number ÑKL = 408.33 (computed using analytic expression

(60)) is also indicated by the straight dashed lines. The sum of eigenvalues converges to the spherical Shannon number in (b)

as step size ∆k → 0. It can also be noted in (a) that the spherical Shannon number estimates the location of the transition in

the eigenvalue spectrum accurately.

eigenfunction g can be obtained by limiting the band-limited eigenfunction f in the spatial domain using

(55). Alternatively, the space-limited eigenfunction g can be obtained in the spectral domain from the band-

limited eigenfunction f using (57). The spectrum of eigenvalues is plotted in Fig. 4a for the Fourier-Laguerre

problem, where the spherical Shannon number NPL is also indicated, which confirms that the spherical

Shannon number is indeed a good approximation of the number of significant eigenvalues. The spectrum of

eigenvalues λ1 and λ2 is plotted in Fig. 4c and Fig. 4d respectively, where we have also indicated NP and NL.

For the concentration problem in the Fourier-Laguerre domain, the measure of radial concentration (λ1) is

independently controlled by the radial band-limit P and angular concentration (λ2) is controlled by the

angular band-limit L. Consequently, concentration in the spatial region R ⊂ B3 is given by λ = λ1λ2, due

to which, the transition of the spectrum of eigenvalues λ from unity to zero is non-smooth6. However, the

spectrum of each λ1 and λ2 does have a smooth transition, that is, the spectrum does not have step-like

transitions. For the problem in the Fourier-Bessel domain, the transition is smooth due to the spectral

coupling between radial and angular components, as discussed earlier.

For the Fourier-Bessel spectral domain, the first 12 most concentrated band-limited eigenfunctions

f (m)(r, θ) given in (64) for m = 2 are shown in the spatial domain in Fig. 5. The associated space-limited

6Non-smooth here refers to the observed step-like transitions in the spectrum of eigenvalues.
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Figure 4: Spectrum of eigenvalues for the Fourier-Laguerre domain eigenvalue problem formulated in (48) to find

spatially concentrated eigenfunctions band-limited in the Fourier-Laguerre domain in the spectral region A(30,20), plotted in (a).

The spatial region of concentration is R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π}. Since the region is circularly symmetric

and radially independent, the problem in the Fourier-Laguerre domain can be decomposed into two separate eigenvalue problems

in radial and angular regions formulated in (77) and (78), for which the spectrum of eigenvalues is plotted in (b) and (c)

respectively. Note that the transition of the eigenvalue spectrum from unity to zero in (b) is not smooth since the radial and

angular components are interspersed. The sum of eigenvalues, given by the spherical Shannon number for each case is (a)

NPL = 403.21, (b) NP = 3.72 and (c) NL = 108.24, as indicated by the vertical dashed lines. The spherical Shannon numbers

estimate the location of the transition in the eigenvalue spectrum accurately.

functions concentrated in the spectral domain are shown in Fig. 6, computed using (57) (note that these

functions are not band-limited and so their spectral representation is non-zero outside of the plotted domain).

For the Fourier-Laguerre domain, the first 12 most concentrated band-limited eigenfunctions f (m)(r, θ) given

in (68) for m = 2 are shown in the spatial domain in Fig. 7. The associated space-limited functions concen-

trated in the spectral domain are shown in Fig. 8, computed using (57) (again, note that these functions are

not band-limited). For space-limited eigenfunctions, it can be noted that the leakage of concentration (en-
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Figure 5: Fourier-Bessel band-limited spatially concentrated eigenfunctions fm(r, θ) given in (64), obtained as solu-

tions of the fixed-order eigenvalue problem in (63) for m = 2. Each eigenfunction fm(r, θ) is independent of φ and is plotted

for r ≤ 50. The spatial region of concentration is R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} and is azimuthally

symmetric and radially independent. The dependence of the eigenfunction in φ is eimφ, as given in (69). The eigenfunctions

are band-limited in the Fourier-Bessel domain within the spectral region Ã(1.4,20). The eigenvalue λ associated with each

eigenfunction is a measure of spatial concentration within the spatial region R.

ergy) outside the Fourier-Bessel spectral region of interest is diagonally spread due to the spectral coupling

between the radial and angular components for the Fourier-Bessel functions. In contrast, the leakage out-

side the Fourier-Laguerre spectral region of interest has horizontally and/or vertically spread due to the

separability of the radial and angular components of the Fourier-Laguerre functions.
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Figure 6: Fourier-Bessel spectral domain response of space-limited spectrally concentrated eigenfunctions, given

by their magnitude square |g`m(k)|2. Each eigenfunction is limited in the azimuthally symmetric and radially independent

spatial region R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} and spectrally concentrated in the Fourier-Bessel domain within

the spectral region Ã(1.4,20). The eigenvalue λ associated with each eigenfunction is a measure of the spectral concentration

within the Fourier-Bessel spectral domain Ã(1.4,20). The values of |g`m(k)|2 are plotted in decibels as 20 log |g`m(k)|, normalized

to zero at the individual maxima of each eigenfunction.

6. Representation of Signal in Slepian Basis

The eigenfunctions, band-limited in the Fourier-Bessel or Fourier-Laguerre spectral domain, form a

complete orthonormal basis for signals band-limited in the respective domain. We call the band-limited

eigenfunctions that arise as solutions of the eigenvalue problems (44) and (48) a Slepian basis. By complete-

ness, any band-limited signal can be represented in the Slepian basis constructed with the same band-limit.
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Figure 7: Fourier-Laguerre band-limited spatially concentrated eigenfunctions fm(r, θ) given in (68), obtained as

solutions of the fixed-order eigenvalue problem in (67) for m = 2. Each eigenfunction fm(r, θ) is independent of φ and is

plotted for r ≤ 50. The spatial region of concentration is R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} and is azimuthally

symmetric and radially independent. The dependence of the eigenfunction in φ is eimφ, as given in (69). The eigenfunctions

are band-limited in the Fourier-Laguerre domain within the spectral region A(30,20). The eigenvalue λ associated with each

eigenfunction is a measure of spatial concentration within the spatial region R.

A Fourier-Bessel band-limited signal h ∈ H̃KL ⊂ L2(B3) can thus be represented by

h(r) =

∫ K

k=0

dk

L−1∑

`=0

∑̀

m=−`

h`m(k)X`m(k, r)

=

JC∑

α=1

hαf
α(r), fα, h ∈ H̃KL, (86)
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Figure 8: Fourier-Laguerre spectral domain response of space-limited spectrally concentrated eigenfunctions,

given by their magnitude square |g`mp|2. Each eigenfunction is limited in the azimuthally symmetric and radially independent

spatial region R = {15 ≤ r ≤ 25, π/8 ≤ θ ≤ 3π/8, 0 ≤ φ < 2π} and spectrally concentrated in the Fourier-Laguerre domain

within the spectral region A(30,20). The eigenvalue λ associated with each eigenfunction is a measure of the spectral concen-

tration within the Fourier-Laguerre spectral domain A(30,20). The values of |g`mp|2 are plotted in decibels as 20 log |g`mp|,
normalized to zero at the individual maxima of each eigenfunction.

and a Fourier-Laguerre band-limited signal h ∈HPL ⊂ L2(B3) can be represented by

h(r) =

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

h`mpZ`mp(r)

=

JC∑

α=1

hαf
α(r), fα, h ∈HPL, (87)
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where hα denotes the Slepian coefficient given by

hα =

∫

B3

d3µ(r)h(r) (fα(r))
∗

(88)

(we use a single subscript to denote Slepian coefficients, similar to the notation used to denote spherical

Laguerre coefficients; however, the case intended should be obvious from the context). In (86) and (87),

JC = ML2 and JC = PL2, respectively, denotes the number of band-limited eigenfunctions that serve as

complete orthonormal basis for the subspace H̃KL or HPL. Here M = dK/∆ke with ∆k denoting the

step size used for the discretization of the continuous spectrum along k. Note that the signal h and the

eigenfunctions fα belong to the same subspace. We note that the Slepian coefficient in (88) can also be

obtained through the spectral domain representation of both signal and Slepian basis function, that is, by

hα =

L−1∑

`=0

∑̀

m=−`

∫ K

k=0

dk h`m(k) (fα`m(k))
∗
, fα, h ∈ H̃KL

hα =

P−1∑

p=0

L−1∑

`=0

∑̀

m=−`

h`mp
(
fα`mp

)∗
, fα, h ∈HPL. (89)

When a band-limited signal is spatially concentrated in some spatial region R, it can be approximated

by the number of significant eigenfunctions that are well concentrated in the spatial region R. Since the

eigenvalue associated with each eigenfunction is a measure of concentration in the spatial region R and the

eigenfunctions fα are indexed such that λα ≥ λα+1, a band-limited signal concentrated in the spatial region

R can be approximated accurately by truncating the summation over the Slepian basis functions in (86)

and (87) at the truncation level JT such that λJT+1 ≈ 0, that is,

h(r) ≈
JT∑

α=1

hαf
α(r), (90)

where the same region R is used to construct the eigenfunctions. It also follows that the Slepian coefficients

associated with the remaining eigenfunctions (which are concentrated in the region B3\R) are close to zero.

Consequently, a concentrated signal is sparse7 when represented in the Slepian basis, where the degree

of sparsity is quantified by the number of significant eigenfunctions with eigenvalues close to unity. The

representation of a concentrated signal in the Slepian basis, truncated JT, can thus give considerable savings

in terms of the number of coefficients required to represent the signal accurately.

The accuracy of the approximate representation of the signal within the spatial region R can be quantified

by the ratio of the energy of the approximate representation to the energy of the exact representation within

7Formally the signal is compressible since the Slepian coefficients associated with the remaining eigenfunctions are small

and not identically zero.
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the region R. We define such an accuracy measure by

Q(JT) =

∫

R

d3µ(r)

∣∣∣∣
JT∑
α=1

hαf
α(r)

∣∣∣∣
2

∫

R

d3µ(r)

∣∣∣∣
JC∑
α=1

hαfα(r)

∣∣∣∣
2 =

JT∑
α=1

λα
∣∣hα
∣∣2

JC∑
α=1

λα
∣∣hα
∣∣2
, (91)

where we have used the orthogonality relationships given in (51) and (54) in obtaining the second equality.

The closer the value of Q(JT) to unity, the greater the accuracy of the approximate representation of signal

within the spatial region R. Since the truncation level is chosen such that and λJT+1 ≈ 0, the accuracy of

the approximation within the spatial region R is high.

Since the spherical Shannon numbers approximately represent the number of significant band-limited

eigenfunctions that are well concentrated in the spatial region R, the summation over the Slepian basis

functions in (86) and (87) can be truncated at the spherical Shannon numbers ÑKL and NPL, respectively,

that is, JT = ÑKL for fα, h ∈ H̃KL and JT = NPL for fα, h ∈ HPL. The truncation at the spherical

Shannon number is based on an assumption that the spectrum of eigenvalues has narrow-width transition

from unity to zero. For the cases when this assumption is not fairly supported, the spherical Shannon number

can be used as a measure to determine a truncation level JT greater than the spherical Shannon number such

that all of the eigenfunctions are included in the truncated representation given in (90). In such cases, the

difference between the truncation level JT and the spherical Shannon number depends on the spatial region

of interest and the desired accuracy required for the representation of the signal in the Slepian basis. In the

next section, we provide an illustration to demonstrate that truncation at the spherical Shannon number

gives a sufficiently accurate representation of the signal within the spatial region R. Finally, we note that

truncation at the spherical Shannon number has also been adopted for the representation of signals in the

Slepian basis defined for multi-dimensional Euclidean domains and various geometries (e.g., [36, 39, 51]).

6.1. Illustration

We present an example to illustrate the fact that the representation of a spatially concentrated band-

limited signal in the Slepian basis is sparse. We consider a test signal obtained from a simulation of the

dark matter distribution of the Universe, observed over a partial field-of-view. Specifically, the test signal

is extracted from the full-sky Horizon Simulation [45], an N -body simulation that covers a 1Gpc periodic

box of 70 billion dark matter particles generated from the cosmological concordance model derived from

3-year Wilkinson Microwave Anisotropy Probe (WMAP) observations [44]. We limit the data in the spatial

domain with an Sloan Digital Sky Survey (SDSS) DR78 quasar binary mask on the sphere, denoted by

Rs ⊂ S2, and in the interval 15 ≤ r ≤ 25 along the radial line (note that the units of radius for the data

8http://www.sdss.org/dr7/
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(a) Angular region (b) Radial region

Figure 9: Non-trivial spatial region constructed from (a) the SDSS DR7 quasar mask on the sphere (shown on the sphere

of radius r = 20) and (b) a radial profile limited to the interval 15 ≤ r ≤ 25 (shown in the x-y plane).

(a) Slices through the ball (b) Spherical shell

 

 

−60 −40 −20 0 20 40 60

Figure 10: Simulated dark matter density test signal on the ball, band-limited and spatially concentrated in the region

shown in Fig. 9. The test signal h ∈ HPL ⊂ L2(B3) is band-limited in the Fourier-Laguerre domain at angular degree L = 72

and radial degree P = 144, and spatially concentrated in the angular region defined by the SDSS DR7 quasar mask and radially

in the interval 15 ≤ r ≤ 25. The test signal is plotted on (a) slices through the ball and (b) on a spherical shell at r = 20.
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under consideration are Mpc). The resulting mask is shown in Fig. 9. The masked signal is band-limited

at L = 72 and P = 144 to obtain the spatially concentrated band-limited test signal h ∈ HPL shown in

Fig. 10.

The region considered is not symmetric but is radially independent, hence we compute the band-limited

eigenfunctions separately on the radial line over the interval 15 ≤ r ≤ 25 with band-limit P = 144 and on

the sphere over the region Rs with band-limit L = 72. In total, PL2 = 746 496 eigenfunctions fα ∈ HPL

are computed. The spectrum of eigenvalues is plotted in Fig. 11 for the first 16 000 eigenvalues only, where

the spherical Shannon number bNPLc = 8 696 is also indicated, which is computed using (85).

Since the eigenfunctions fα serve as a complete basis for the subspace HPL, the signal h can be alterna-

tively represented in the Slepian basis as given in (87), where we compute the Slepian coefficients hα using

(89). Recall that HPL is a PL2 dimensional subspace, thus there are PL2 spectral coefficients h`mp or

Slepian coefficients hα. The decay of the Fourier-Laguerre coefficients h`mp and the Slepian coefficients hα

is compared in Fig. 12, where both are first sorted and then plotted. As expected, the Slepian coefficients

decay much more rapidly than the Fourier-Laguerre coefficients. The spatially concentrated signal indeed

has a very sparse representation in the Slepian basis; it can be represented accurately within the spatial

region of interest with only bNPLc = 8 696 Slepian coefficients, compared to the full dimensionality of the

subspace of PL2 = 746, 496. The energy ratio captured by the approximate representation, defined by

the accuracy measure of (91), is Q(NPL) = 99.73%, again indicating that the approximation is sufficiently

accurate within the spatial region of interest.

Our code to solve the eigenvalue problems that result from the Slepian spatial-spectral concentration

problem on the ball, and used to perform the illustrations presented here, is publicly available.9

7. Conclusions

We have formulated and solved the Slepian spatial-spectral concentration problem on the ball. We

consider two domains for the spectral characterization of the signal defined on the ball, namely the Fourier-

Bessel domain and the Fourier-Laguerre domain. The Fourier-Laguerre domain is considered in addition

to the standard Fourier-Bessel domain since the former has a number of practical advantages. The orthog-

onal families of band-limited spatially concentrated functions and of space-limited spectrally concentrated

functions can be computed as solutions of eigenvalue problems. The spatially and spectrally concentrated

eigenfunctions that arise as solutions of these eigenvalue problems coincide with each other inside both the

spatial and spectral regions of interest. The eigenvalue associated with each eigenfunction is a measure of

both the spatial concentration of the band-limited function and of the spectral concentration of the space-

limited function. The number of well-concentrated (significant) eigenfunctions depends on the spherical

9http://astro-informatics.github.io/b3slep
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Figure 11: Spectrum of eigenvalues λα for the non-trivial region associated with the band-limited spatially concentrated

eigenfunctions. The angular band-limit L = 72 and radial band-limit P = 144 are assumed, while the spatial region shown

in Fig. 9 is considered, i.e. defined by the SDSS DR7 quasar mask on the sphere and the radial interval 15 ≤ r ≤ 25. The

horizontal axis is truncated to show only the first 16 000 eigenvalues (out of the total of 746 496 eigenvalues). The spherical

Shannon number bNPLc = 8 696 is also indicated by the vertical dashed line. Note, again, that the transition of the eigenvalue

spectrum from unity to zero is not smooth since the radial and angular components are interspersed. The spherical Shannon

number again estimates the location of the transition in the eigenvalue spectrum accurately.

Shannon number, which also serves as the dimension of the space of functions that can be concentrated in

both the spatial and spectral domains at the same time. When the spatial region of interest is rotation-

ally symmetric and/or radially independent, the eigenvalue problem decomposes into subproblems, which

reduces the computational burden. This reduction in the computational complexity is significant for the con-

centration problem in the Fourier-Laguerre spectral domain and radially independent spatial regions, where

the independence between the radial and angular components of the basis functions completely decouples

the problem to find band-limited eigenfunctions such that they can be independently concentrated along

radial component and angular component. The family of concentrated eigenfunctions can be used to form

an orthonormal basis, or Slepian basis, which provides a sparse representation of concentrated functions.

Just as the Slepian basis in the one-dimensional Euclidean domain and other geometries have proven

to be extremely valuable, we hope the Slepian eigenfunctions on the ball developed in this work will prove

useful in a variety of applications in various fields of science and engineering (e.g., geophysics, cosmology and

planetary science), where signals are inherently defined on the ball. Some applications where the proposed

orthogonal family of eigenfunctions (Slepian basis) are likely to be of use are the estimation of signals, their

power spectrum, and other statistics, when noisy observations on the ball can only be made over partial

fields-of-views. For example, surveys of the distribution of galaxies in our Universe are observed only over

37



0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

spectral index

|h
lm

p| o
r 

|h
α|

x105

0 0.2 0.4 0.6
0

10

20

x105

Figure 12: Spectral decay of the Fourier-Laguerre (red dashed line) and Slepian coefficients (blue solid line) of

the band-limited spatially concentrated test signal shown in Fig. 10. The absolute values of both the Fourier-Laguerre h`mp

and Slepian hα coefficients are first sorted in descending order and then plotted. Since the band-limited signal h is spatially

concentrated, it has a sparse representation in the Slepian basis.

partial fields-of-view [2] on the ball, while their statistical properties can be used to infer the physics of our

Universe, such as the nature of dark energy and dark matter.
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